
A CONVERSATIONAL APPROACH TO THE INTERACTION
WITH WEB SERVICES

L ILIANA ARDISSONO, GIOVANNA PETRONE AND MARINO SEGNAN

Dipartimento di Informatica, Università di Torino
Corso Svizzera 185, 10149 Torino, Italy

Phone: +1 011 6706711
Fax: +1 011 751603

Abstract

The emerging standards for the specification of Web Servicessupport the publication
of the static interfaces of the operations they may execute.However, little attention is
paid to the management of long-lasting interactions between the service providers and their
consumers. Although this is not an issue in the case of “one-shot” services, it challenges
the provision of services requiring the exchange of multiple messages between the business
partners.

In this paper, we present a conversation model supporting the management of long-
lasting interactions where several messages have to be exchanged before the service is
completed. Our model aims at facilitating the consumers during the service invocation
because in this way the establishment of short-term business relations can be simplified.
To this extent, we provide a computational framework that can be exploited to manage a
conversation between the consumer and the service provider. Our framework is inspired
from the research developed in Computational Linguistics and in the area of Multi-Agent
Systems to manage human-to-computer and agent-to-agent dialog. However, we employ
techniques suitable to comply with the emerging Web Servicestandards and with the scal-
ability requirements of the Internet.

keywords: Web Services, Web agents for producers and consumers

1

1 INTRODUCTION

As described in [Curbera et al., 2002a],“Web Services are emerging to provide a systematic
and extensible framework for application-to-applicationinteraction, built on top of existing
Web protocols and based on open XML standards.”Although Web Services are aimed at pro-
viding standard interfaces for the interoperation of legacy software in the Internet, they are
currently subject to several limitations that reduce theirapplicability to realistic cases. For in-
stance, the emerging service publication standards, such as WSDL [W3C, 2002b], support the
specification of the static interfaces of elementary services. However, the management of the
interaction between the consumer and the service provider is difficult, unless simple services
are requested, because these standards do not enable the service provider to specify the order
of the operations to be invoked by the consumer. Moreover, these standards only support the
invocation of operations characterized by very specific signatures with fixed parameter lists.
Although this is not a problem when the requirements for the service can be specified by the
consumer in a pre-determined way, it challenges the provision of highly interactive services,
such as those related to the customization of complex products, where the list of features to be
configured has to be decided at run time. As a matter of fact, the development of Web Services
with rich interaction capabilities is interesting becauseone could aim at:� Making a personalized service, such as a recommender system, available as a Web Ser-

vice. For instance, a movie recommender could be extended with a public interface that
enables digital personal assistants to invoke it on behalf of their users. Moreover, a bank
might offer a loan customization service that can be exploited by distributed commercial
applications to negotiate financial support for their customers.� Composing Web Services in a consumer application serving human users. For instance,
middle agents, such as real estate agents and car sellers, could develop Web-based appli-
cations supporting a completely automated interaction with the customer, from the selec-
tion of the good to be purchased to the contract definition; e.g., see [McIlraith et al., 2001].
Similar to the traditional scenario, populated by human operators, the middle agent would
manage a complex workflow, invoking and orchestrating different services, such as insur-
ance agencies, attorneys, banks and/or financial agencies.

The current work on workflow management is focused on the service composition in the Web
but the proposed approaches assume a very simple type of interaction with the suppliers. For
instance, BPEL4WS [Curbera et al., 2002b, Curbera et al., 2003] supports the specification of
complex service compositions. However, the management of the interaction between the provider
and the consumer mainly deals with low level communication issues such as transaction man-
agement; see [Cabrera et al., 2002]. In contrast, in order tomake the service fruition possible
even when the involved suppliers require complex interactions, the invocation has to be mod-
eled as a conversation where the participants may exchange several messages before the service
is completed; e.g., requirements acquisition, negotiation and other types of interaction. For
instance, during the interaction with a Web Service supporting the configuration of medium
complexity products, the specification of the item featuresmay require more than one step;
moreover, failures can occur and have to be repaired before the solution for the consumer can
be generated. Finally, in some cases, the Web Service may require to suspend the interaction,
e.g., waiting for a sub-supplier or a human operator to contribute to the generation of the so-
lution. Similarly, the consumer might suspend the interaction because it needs supplementary

2

Web Service1

Web Service3

Web Service2

service
composition conversation

 user
(customer)

personal
agent

Figure 1: Service composition and conversation.

information from the customer before choosing certain product features.
A loosely coupled approach to the management of the interaction is needed to support suc-

cessful business interactions and, in the meantime, enablethe consumers to suitably match
the provider’s conversation requirements to their own business logic. Moreover, the commu-
nication capabilities of service providers and consumers should be enhanced by means of a
lightweight approach, at least at the consumer side. In fact, the consumer may need to start sev-
eral e-business interactions with heterogeneous providers. Therefore, it should not be required
to manage tightly coupled interactions with each of them, especially when they are held outside
a well established B2B relationship.

In this paper, we present a conversation model for Web Services, aimed at supporting com-
plex interactions, where several messages have to be exchanged before the service is com-
pleted, and the conversation may evolve in different ways, depending on the states of the two
participants. We have defined our model by taking the speech-act theoretical model of dialog
management as a starting point [Searle, 1975, Cohen and Levesque, 1990]. However, we have
simplified it to take the emerging Web Service publication standards into account and to de-
velop an effective conversation management framework. Therest of this paper is organized as
follows: Section 2 describes the assumptions underlying our proposal and positions it in the
Web Services research. Section 3 describes a speech-act based representation of conversation
flow and Section 4 presents our conversation model. Section 5sketches our infrastructure for
the development of conversational Web Service providers and consumers. Section 6 compares
our proposal to the related work and Section 7 concludes the paper and outlines our future work.

2 PREMISES

A flexible conversation model is needed to support the dynamic invocation of Web Services and
the present paper contributes to the definition of this model. Before presenting our proposal, we
discuss three aspects required to understand our contribution.

First of all, we assume that the matching phase between service description and request has
been performed and we focus on the service execution phase. It should be noticed that we leave
out the matching phase because it represents an important task deserving separate treatment. On
the one hand, the identification of the service provider can be seen as a separate activity, to be
performed either directly, or by exploiting mediation agents; e.g., see [Kamamura et al., 2003].
On the other hand, after a provider is identified, an explicitand possibly complex binding activ-
ity has to be carried out by the consumer in order to associatethe operations to its own business
logic. This activity may require the intervention of a humanadministrator, who has to carefully
analyze the meaning of the operations and their arguments. The binding phase could lead the
consumer to conform to a portion of the domain ontology exploited by the Web Service.

3

Failure(S,C,SetData(S,nrGears,n))

Accept(S,C,InitConversation()) Request(C,S,SetData(S,nrGears,n))
Inform(S,C,
 done(SetData(S,nrGears,n)))

Request(C,S,InitConversation())
Reject(S,C,InitConversation())

1 2
3

4 5 6

Figure 2: Speech-act based interaction flow for a trivial product customization Web Service.

Second, the management of conversations should not be confused with the service composi-
tion handled by workflow engines, as these are complementaryto one another; the conversation
management enriches the flexibility in the invocation of theindividual suppliers whose services
are composed by the consumer. Figure 1 shows an application composing Web Services to
provide a complex service to the user. The depicted graph shows the partial order relations
between workflow states. Each state may include internal activities and invocations of external
Web Services. The dotted lines represent the interaction between the consumer and the suppli-
ers and may denote one-shot invocations of operations or complex conversations. The focus of
our work is on the possibly complex and asynchronous conversation between a module of the
application and the Web Service provider; see the highlighted area in the figure.

Third, our conversation model clearly separates the aspects concerning the internal imple-
mentation of a Web Service from the communication protocol defining the invocation of its op-
erations. As noticed in [W3C, 2002a], no knowledge about theimplementation of the providers
should be needed to invoke them.

3 A SPEECH-ACT BASED APPROACH

The development of dialog models supporting the managementof long-lasting communication
derives from the Computational Linguistics research. Although the results achieved in this area
were focused on the management of human-to-computer interaction, they provided a solid basis
for recent communication models developed by the Multi-Agent research community.

Traditionally, social behavior of human and software agents has been modeled by exploiting
speech-acts [Searle, 1975] that separate the illocutionary force of the agents’ messages from the
object-level actions underlying the execution of the conversation turns. In particular, Finite State
Automata (FSA) have been applied in the management of task-oriented interaction, in order to
specify the conversation roles to be filled in by the participants and the possible sequences
of turns that may be performed; see [Stein and Maier, 1994]. Moreover, hierarchical scripts
and plan-based approaches have been introduced to efficiently model goal-oriented behavior
[Cohen and Levesque, 1990] and to separate the management ofconversational behavior from
the domain-dependent activities carried out by the agents [Rich et al., 2002]. These approaches
assume that the agents play well defined conversation roles and they cooperate to a domain-level
activity. Their social behavior is aimed at coordinating the internal processes; e.g., questions
may be posed to verify the feasibility of the actions to be performed and notifications are made
to notify their (un)successful execution. The speech-act based conversation models are suitable
to describe communicative behavior at the conceptual leveland they have been applied to the
description of agent-to-agent communication as well; e.g., see KQML [Finin et al., 1995] and
FIPA ACL [FIPA, 2000]. Thus, they could be applied to specifythe conversation flow between
Web Services and their consumers. In particular, the messages to be exchanged during the
service fruition can be seen as conversational actions performed to carry out a task-oriented

4

dialog between entities filling the Service Provider and theConsumer roles.
As a concrete example for the specification of a conversationflow, we consider a trivial

product customization problem, where the consumer interacts with a Web Service to set the
number of gears of a bicycle. Figure 2 shows a FSA representing the admissible turn sequences
in this service. The states of the automaton represent the dialog states: the plain circles denote
the conversation states and the thick one (state 1) is the initial state. The thick dotted states (3,
6) are final dialog states. The speech acts are specified as labels of the arcs. Each speech act
represents a conversation turn to be performed by one of the participants and is named according
to the FIPA specifications. The first argument of a speech act represents the role filler that should
perform the act, i.e., the agent sending the message. The second argument denotes the recipient
and the third one represents the content of the speech act. The states having more than one
output arc represent mutually exclusive speech acts, i.e.,the agent is expected to perform only
one of them. The interaction starts with theRequestturn, where the consumerC asks the service
providerS to start the interaction (initConversation). The provider may accept to perform the
request (Accept(S, C, InitConversation())), or reject it (Reject(S, C, InitConversation())). In the
second case the interaction terminates. In the first one the consumer may request to set the
number of gears (Request(SetData(S, nrGears, n))). If the Web Service successfully performs
the operation, it acknowledges the consumer (Inform(S, C, done(SetData(S, nrGears, n)))) and
the interaction terminates.1 Otherwise, the Web Service notifies the failure of the operation and
enables the consumer to set the feature again; see the loop between states 4 and 5.

The FSA specifying the conversation flow of a service provider could be exploited by the
consumers to manage the turn-taking activity and to correctly invoke the operations on the
provider. However, this approach is not desirable for two main reasons: first, the imposition of
speech acts on Web Services, which now publish services by means of very simple languages
such as RPC invocations or WSDL operations, is not realistic. Second, in order to select the
admissible reactions to the provider’s turns, the consumerhas to maintain an internal represen-
tation of the interaction context that, at minimum, includes the active state of the automaton, i.e.,
the output state of the last speech act performed by the service provider. The second require-
ment is particularly problematic from the interoperability point of view because it imposes that
the consumer locally executes a copy of the conversation automaton employed by the provider.

4 OUR PROPOSAL

In order to support the management of lightweight and loosely coupled conversations, we pro-
pose to make the management of the interaction easier for theconsumer, charging the service
provider with the control of the invocation. More specifically, we propose that:� The provider publishes the services by specifying the operations in a standard language.

This is necessary to let the consumer bind the invocations ofoperations to its own business
logic, e.g., by associating the invocations to its internalprocesses.� The specification of the interaction flow is based on a flexiblebut simple representation
formalism supporting the specification of the correct sequence of turns without the over-
head of the pure speech-act model.

1Thedoneoperator was introduced by Cohen and Levesque to represent the state of the world after an action
is successfully performed [Cohen and Levesque, 1990].

5

SendM(S,C,Fault(res,comment),nextOps,ctx)

SendM(S,C,OK,nextOps,ctx)
SendM(C,S,SetData(nrGears,n))

SendM(S,C,OK(res),nextOps,ctx))

SendM(C,S,InitConversation()) SendM(S,C,KO(res))
1 2

3

4 5 6

Figure 3: Simplified conversation flow specification.� For each active conversation, the service provider maintains a local interaction context to
guarantee that at least one of the participants controls thedialog.� At each step, the provider enriches the messages it sends with contextual and turn man-
agement information in order to instruct the consumer abouthow to continue the con-
versation. The contextual information can be void in trivial interactions. The turn man-
agement information consists of the eligible turns (henceforth, next operations) that the
consumer may perform to carry the interaction one step forward.

The first two points are aimed at guaranteeing that the representation formalism employed for
the publication of services may be easily adopted by the suppliers. The other ones leverage the
interaction management at the consumer side, therefore making the engagement in interactions
with Web Services as seamless as possible.

4.1 SIMPLIFIED SPECIFICATION OF CONVERSATIONS

With respect to the approaches defined to manage agent-to-agent communication, we simplify
the specification of the interaction flow by modeling the interaction turns as generic conver-
sational activities where the performed speech act (Request, Inform, etc.) is omitted. This
is possible because all the turns are requests that the sender performs to trigger the execu-
tion of the invoked operations on the receiver. Moreover, weextend the interaction turns with
turn-management information needed to assist the consumerin the invocation of the operations
offered by the service provider. Each conversational action represents a simplified speech act,
where the sender asks the recipient to perform the operationspecified as an argument. The
conversational actions have the following arguments:� The sender of the message, which may be the consumerC, or the service providerS.� The recipient of the message (similar).� An operation that the sender invokes on the recipient. Notice that the actor of the re-

quested operation may be omitted because it coincides with the recipient of the message.� The list of the possible continuations of the conversation (nextOps). As the service
provider has the control of the interaction, this argument is only present in the messages
to be received by the consumer. The argument includes the setof alternative operations
offered by the provider which the consumer may invoke in the next conversation step.� A context argument, storing information about the interaction state (ctx). Similar to the
nextOpsargument,ctx one is only present in the messages directed to the consumer.

6

consumer provider

OK
KO
Suspend

Resume
....

SetData
ProposeProduct

Ok
KO

Fault
Suspend
Resume

Figure 4: Domain-level operations and communicative actions.

Figure 3 shows the simplified representation of the interaction flow in our product customiza-
tion service. The automaton has the same structure as the previous one, but the conversa-
tion turns are represented as send message activities (SendM). For instance,Request(C, S, Set-
Data(S, nrGears, n))in Figure 2 corresponds toSendM(C, S, SetData(nrGears, n)). Inform(S,
C, done(SetData(S, nrGears, n)))is replaced withSendM(S, C, OK(res), nextOps, ctx). More-
over, the positive and negative acknowledgments are simplified to genericOK andKO actions.
Two kinds of (object-level) operations may be the argumentsof a conversation turn:� Domain-level operations, such asSetData, representing domain-dependent operations

to be invoked during the service execution.� Communicative actions, such asInitConversation, OK, Fault, Suspend, Resume
andReceiveResult, that are independent of the domain and are invoked during the ser-
vice fruition to coordinate the behavior of the interactants.

Figure 4 shows the names of some object-level operations offered by a consumer application
and by a product customization Web service. We have depictedthe names of the domain-level
operations (specific of product customization) in boldfaceto distinguish them from the com-
municative actions, which are applicable across differentdomains. Being concerned with the
service execution, the domain-level operations are only offered by the service provider. In con-
trast, the communicative actions enable the interactions and thus they should be offered by the
provider as well as by the consumer. For instance, the consumer must offer theReceiveResult
action, which corresponds to the WSDLoutput messagessent by the service provider to ac-
knowledge the service execution and notify the results. Moreover, theSuspend andResume
actions are needed if the service execution has to be suspended to handle pauses and delays.

The proposed flow specification is not sufficient to characterize the conversation with highly
interactive service providers. For instance, consider a Web Service customizing the config-
uration of products. The operations to be performed can be clearly defined, e.g., specifying
the needed components and their features. However, the features whose values have to be set

SendM message:

Invoked action;

Next operations:
 Domain-level
 actions
 Communicative
 actions);

Context;

SendM message

Message: OK("")

Next operations:
 SetFeatures(nrOfGears);
 PostponeSet(nrOfGears);
 SuspendConversation(id);

Context:
 Current Focus:
 specify(gearBox)
 Achieved Activities:
 specify(frame)
 specify(handle)

Figure 5: Instructing the consumer about how to continue a conversation.

7

depend on the components required by the consumer. Therefore, the Web Service has to dy-
namically determine the correct invocation of operations during the exploration of the search
space, by taking contextual information about the interaction into account. As a solution, we
propose to relax the specification of the signatures of the operations by admitting generic ar-
guments instantiated with the actual parameters during theservice fruition. For instance, the
SetData(nrGears, n)operation would be generalized to aSetData(args)one, with theargs ar-
gument bound to the actual parameters at service invocationtime. Figure 5 sketches the format
of the messages sent by the provider to the consumer during the customization of a bicycle.� On the left side, the figure shows the abstract structure of the SendM messages. The

sender and receiver arguments are omitted because they are stored in the message header.� On the right side, a sample message is shown. This is a positive acknowledgment (OK)
generated by the provider to notify the successful execution of an operation. The provider
also specifies that the consumer may invokeSetData to set the number of gears,PostponeSet to postpone the setting to a later stage of the interaction, or it may sus-
pend the conversation. TheCurrent Focusspecifies that the execution of these operations
is aimed at carrying out the specification of the gearbox. Moreover, the frame and the
handle have already been specified (Achieved Activities).

The sample context object shown at the right side of Figure 5 (Context) sketches a possible
representation of the fulfillment state of a service. Duringthe interaction with a consumer, the
context is enriched to show the progress in the product customization. We introduced the con-
text argument to support the development of consumers displaying different levels of initiative
during the interaction with the Web Service, while maintaining the management of contex-
tual information at the service provider side. Although we cannot make any assumptions on
the consumer’s decision capabilities, the invocation of the operations can depend on contex-
tual information about the previous part of the interaction. For instance, the consumer might
condition the provision of the customer’s credit card data to the fact that the product has been
completely defined. The structure of the context argument depends on the application domain.
For instance, the object can be empty in simple and deterministic interactions, where the next
operation argument includes at most one element.

4.2 A USE CASE: CONFIGURATION OF PRODUCTS

In order to show the interaction requirements that can be satisfied by exploiting our conversa-
tion model, we focus on the configuration domain. The configuration use case is sufficiently
general to cover different application scenarios, among which the customization of products and
services, attracting a lot of attention in the CRM and e-commerce areas; e.g., see the research
about mass customization [Piller and Schaller, 2002].

The configuration of a product may require the selection of components to be included in the
product and the setting of the feature values. As the productfeatures may be related by complex
constraints, this activity is usually carried out by employing a configuration system; e.g., see
[Mailharro, 1998, ILOG, 2002]. In our work, we assume that the service provider, i.e. one of
the actors, has such a system and runs it during the interaction with the consumer (the other
actor) in order to elicit the information needed for the configuration process, step by step, and
return the results. The specification of the conversation flow is thus aimed at guaranteeing that

8

SendM(S,C,OK,
 nextOps,ctx)

SPECIFY_DATA

SendM(C,S,
 InitConversation())

SendM(S,C,KO(res))1 2
3

4 5 8
SendM(S,C,ReceiveResult(prod),
 nextOps,ctx)

SendM(C,S,KO(res)))

9

Request(C,S,Suspend)
SendM(C,S,Resume)

SendM(C,S,OK(res))
10

ProposeProduct

SuspendInteraction
ResumeInteraction

InitInteraction

Agreement

Refusal

Accept

7SendM(S,C,Fault(res,comment))
UnrecoverableError

Refusal1

4 5

SendM(C,S,SetData(args))

SetData

SendM(S,C,OK(res),nextOps,ctx)
Confirmation

Error

6

SendM(S,C,Resume,
 nextOps,ctx)

ResumeInteraction1

Request(S,C,Suspend)
SuspendInteraction1

ZOOM ON SPECIFY_DATA
SendM(S,C,Fault(res,comment),nextOps,ctx)

Figure 6: Conversation flow specification of a product customization Web Service. The portion
of automaton in the square is a zoom on the SPECIFYDATA arc.

the provider elicits the needed information from the consumer and that the consumer negotiates
configuration solutions until the proposed product meets the requirements.

Figure 6 shows the automaton representing the conversationflow specification of the config-
uration service. We have labeled the arcs with a boldface identifier to simplify the identification
of the conversation turns. The interaction starts with the consumer contacting the provider in
order to configure a product. The consumer might be the personal agent of a customer, or a
middle agent invoking different product configuration Web Services on behalf of a customer.
We omit the description of the initial part of the interaction, which is very similar to that of
Figure 3, and we start our description from state 4 of the automaton. If the provider accepts the
interaction, a data specification phase starts (SPECIFYDATAarc) that can end in two ways. An
unrecoverable error can be generated, e.g., if the set of features selected by the customer cannot
be provided in the same product. In alternative, the customization process succeeds and the ser-
vice continues the interaction by proposing the product (ProposeProduct). The consumer may
react in three different ways: it may accept the proposal (Accept), reject it (Refusal1), or suspend
the interaction. If the consumer rejects the proposal, another product has to be specified.

The data specification phase includes the provision of the customer’s data and of the re-
quirements on the product to be customized. This phase is a complex one and is characterized
by the portion of the automaton depicted in the zoom window. When the consumer sets some
data, e.g., some product features, the provider may react indifferent ways. For instance, it may:� Confirm the correct acquisition of the data (Confirmation arc) and enable another in-

vocation of theSetData operation.� Notify the consumer about a failure in the product customization process (Error) and
enable the selection of other values for the conflicting features.� Suspend the interaction (SuspendInteraction1) and resume it later on (ResumeInteraction1),
in order to manage possible delays in the invocation of its own sub-suppliers.

TheSetData operation has a formal parameter (args) that is bound to the actual list of features
to be set at each interaction step. As mentioned in Section 2 the selection of the feature values

9

Bank 1

Financial Agency 1

Bank 2

 middle agent
(service consumer)

Attorney 1

 user
(customer)

personal
agent

Figure 7: Interaction between a middle agent and some Web Services.

would not be possible without a binding phase, where the consumer analyzes the product struc-
ture specified in the Web Service ontology. Sharing the product ontology is thus necessary to
let the consumer understand the individual product features to be set.

We have selected the customization of loans as a sample application domain, within the
more general customization of products use case. This type of service is particularly interesting
because the features of the loans may be customized in ratherdifferent ways depending on the
customer’s characteristics (income, age, etc.) and the destination of the loan (type and features
of the good to be funded). With the enhancement of the communication capabilities offered
by our conversation framework, the customization of loans could be offered as a Web Service
invoked by middle agents that assit customers in the definition of loans by automatizing the con-
tacts with banks, funding agencies and attorneys. Depending on the customer’s requirements,
the middle agent could invoke different funding agencies and attorneys to propose and manage
the organization of a suitable loan. Figure 7 depicts this scenario.

Notice that the possibility of suspending and resuming the interaction offered by our model
guarantees that the middle agent and the invoked service providers perform their internal activ-
ities without blocking the business interaction in abnormal ways. For instance, if the customer
is trying to buy an apartment, the service provider might need to suspend the interaction to
evaluate the good. Similarly, after the loan is proposed, the consumer might need to contact the
customer to see whether the proposal can be accepted. In bothcases, the conversation must be
explicitly stopped to let the participants carry other activities out.

4.3 INTERACTION MANAGEMENT

In order to manage the conversation at both sides the participants should run, respectively, a
Conversation Managerand aConversation Clientmodule. The former is employed by the
provider to manage the interaction with the consumers, which would rely on the light Conver-
sation Client to parse the incoming messages and return the responses. The situation is shown

consumer Web server
WSDL service
description

Conversation
Manager

SOAP
Request

SOAP
Response

Web
Service
Servlet

Interaction
 Context-j

Interaction
 Context-i

Component
 A

Supplier

Conversation
Client

service provider

Figure 8: Interaction with a Web Service provider.

10

in Figure 8, that sketches the architecture of the proposed framework.
The Conversation Manager should exploit a conversation automaton, such as the one de-

picted in Figure 6, to control the service provider’s communicative behavior. For each in-
teraction session, the Conversation Manager of the provider should maintain the active state
of the interaction as a description of the contextual information concerning the conversation.
This information is needed to compute the next operations available to the consumer and to to
support other types of behavior, such as the suspension of a conversation and the subsequent
restart. When a consumer starts a conversation (initInteraction arc), the service provider’s
Conversation Manager should initialize the interaction context by setting the active state of the
conversation to the initial state of the automaton (state 2). Then, the provider should choose
the continuation path (Agreement orRefusal) and move the active state accordingly. During
the interaction, the active state should be updated depending on the messages that the provider
sends or receives. Each turn is an asynchronousSendM message that one of the participants
should send within time constraints. If the the message doesnot reach the recipient in time, the
interaction is suspended by its conversation module.

The Conversation Client has three responsibilities:� Facilitating the reception and interpretation of messagesat the consumer side.The Con-
versation Client manages the reception of messages and extracts the eligible continuations
of the interaction from the incoming message (whosenextOperations argument includes
the next operations that can be performed and their actual parameters). Given the list of
alternatives, the consumer is responsible for choosing themost convenient option and de-
ciding the details of the invocation, depending on its own business logic. For instance,
in the data specification phase, the Conversation Client instructs the consumer about the
product features that must be set; e.g., the amount of money to be funded, between 0 and
50000.00 EUR. Then, the consumer chooses the values to be set; e.g., 20000.00 EUR.� Supporting the correct invocation of the operations on the provider. The Conversation
Client assists the consumer when it sets the actual parameters of the operations to be in-
voked by performing type checks and other consistency checks aimed at guaranteeing that
the parameter values satisfy the existing constraints on the arguments of the operations.� Facilitating the management of the outbound messages to theprovider.When the details
about the invocation are provided, the Conversation Clientgenerates the invocation of the
operation on the provider and sends theSendM message.

The second item above plays a critical role in the enforcement of the correct invocation of the
provider. Indeed, the consumer might rely only on the specification of the admissible operations
and their actual parameters available asnextOperations information. However, the consumer
might make a mistake when binding the arguments of the object-level action to be invoked. For
instance, the consumer might invoke theSetData operation by specifying String parameters
where Integer ones are needed. Moreover, although the amount of money to be funded has to
be between 0.00 EUR and 50000.00 EUR, the consumer might invokeSetData by specifying
that it asks for 70000.00 EUR. In these cases, the provider should reply with a failure message
(Error arc in the zoom of Figure 6) and the consumer should repair theerror by invoking the
operation again, with different parameter values.

In order to minimize the message traffic due to constraint violations and type inconsisten-
cies, we propose to enrich the Conversation Client with communication capabilities that enable

11

the local error management. In this perspective, the Conversation Client becomes a representa-
tive of the Web Service to be downloaded by the consumer and interacts with it in decentralized
way. The Conversation Client works at the granularity levelof the individual parameters of
the operations to be invoked, checking the types of the values selected by the consumer and
the constraints between the parameters. It should be noticed that, although the local checks
support the repair to several problems within the consumer,they cannot prevent the failure of
the overall product customization, which might occur, for instance, if the overall set of selected
features is inconsistent (i.e., the consumer’s requirements cannot be jointly satisfied). This gen-
eral type of failure is detected at the service provider sideand is handled as specified in the
UnrecoverableErrortransition of the automaton depicted in Figure 6.

5 INTERACTION MANAGEMENT INFRASTRUCTURE

We are developing a set of Java libraries aimed at facilitating the development of a Conversa-
tion Manager and a Conversation Client modules supporting the communication between Web
Service providers and their consumers. These libraries support the engagement in long-lasting
interactions that may be suspended and resumed depending onthe needs of the participants.

A Java-based Conversation Manager module that enables the Web Service provider to keep
track of the asynchronous communication with the interacting consumer applications. The pro-
posed architecture of the Web Service Provider is shown in Figure 8: a Servlet supports the
(SOAP) HTTP-based communication with the consumer by catching the incoming requests
and forwarding them to the Conversation Manager for their management. The Conversation
Manager is the core of the Servlet listening to the incoming requests, invoking the appropriate
components to execute the services and sending the SOAP response messages to the consumer
applications; see Figure 8. The Conversation Manager may execute a conversation flow au-
tomaton for the management of the interaction sessions withthe consumers in order to compute
the possible continuations of each interaction. Figure 8 shows a situation where the Conversa-
tion Manager is handling two parallel interactions and thusmaintains two interaction contexts,i andj. Although an infrastructure supporting the definition of general purpose conversation
automata is not yet available, we have developed a prototypeConversation Manager that imple-
ments the FSA shown in Figure 6 and that can be easily customized to satisfy the interaction
requirements of different application domains.

Our framework also supports the consumer by offering a Java-based Conversation Client
that may be downloaded and run in order to handle the interaction with a Web Service. Similar
to the Conversation Manager, the execution of the Client hasthe prerequisite that the consumer
binds the invocation of the operations to its own business logic. The Conversation Client catches
the messages that the Web Service sends to the consumer and interprets them to identify the eli-
gible operations that may be invoked next. The Client also supports the generation of theSendM
messages to respond to the Web Service. The Conversation Manager and the Conversation
Client exploit the Sun Microsystem Web Service Developer Pack [Sun Microsystems, 2003]
and in particular the JAXP-RPC package.

The JWSDP allows the development of Java code that is automatically translated to SOAP
messages following the WSDL specification. In our work, we have exploited this feature to
support the interoperability of a Java-based Web Service with consumers developed in hetero-
geneous environments. More specifically, we enable the service provider running our Conversa-
tion Manager to handle inbound and outbound messages by applying the SOAP communication

12

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MyConversationService" targetNamespace="urn:Foo"

xmlns:tns="urn:Foo" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org..." xmlns:soap="http://schemas.xmlsoap....">

<types>
<schema targetNamespace="http://java.sun.com/jax-rpc-ri/internal"

xmlns:tns="http://java.sun.com/jax-rpc-ri/internal" ... ">
<import namespace= ... "/>
<complexType name="SendMArgs">
<sequence>
<element name="context" type="anyType"/>
<element name="convId" type="string"/>
<element name="currentOperation" type="string"/>
<element name="nextOperations" type="ns2:vector"/>

</sequence>
</complexType> ... DEFINITION OF OTHER COMPLEX TYPES ...

</schema>
</types>
<message name="Conversation_sendM">
<part name="SendMArgs_1" type="tns:SendMArgs"/>

</message> ... DEFINITION OF OBJECT-LEVEL OPERATIONS; e.g., SetData
<portType name="Conversation">
<operation name="sendM" parameterOrder="SendMArgs_1">
<input message="tns:Conversation_sendM"/>
<output message="tns:Conversation_sendMResponse"/></operation></portType>

<binding name="ConversationBinding" type="tns:Conversation">
<operation name="sendM">
<input><soap:body encodingStyle="http://schemas.xmlsoap.org.../></input>
<output> ... </output> ...

</operation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

</binding>
<service name="MyConversationService"> ... </service>
</definitions>

Figure 9: Portion of the WSDL specification of the loan customization service.

protocol to exchange Java-based messages. However, we alsoprovide a declarative representa-
tion of the format of theSendM messages, including the WSDL specification of the object-level
operations requested by means of theSendMmessages. Following the WSDL specification, the
schema defining datatypes and object-level operations, such asSetData, are generated, as well
as the ports and bindings needed to interpret WSDL messages.Thus, a generic consumer, which
does not exploit our Conversation Client, may invoke the Conversation Manager by conform-
ing to the WSDL specification of its services. Moreover, the consumer may be guided by the
provider in the correct invocation of services if it parses the incomingSendMmessages and
extracts thenextOperationsinformation. The infrastructure enforces the WS-I standards on
complex object type to ensure interoperability between WebService providers and consumers
developed in heterogeneous environments.

From our perspective, theSendM operation is a service offered by both service providers
and consumers and must be added to their WSDL specification. In fact, the consumer needs
to offer theSendM operation in order to receive messages from the provider. However, the

13

publication of theSendMoperation does not impose any overhead because it is automatically
generated by our framework. Figure 9 shows a portion of the WSDL declarations generated
to support the management ofSendMmessages and includes the specification of theSetData
object-level operation related to the customization of loans. For readability purposes we have
removed some information from the WSDL specification.2

6 RELATED WORK

The Semantic Web community is defining standards for the publication of Web Services aimed
at overcoming the main limitations of WSDL and of the emerging workflow management stan-
dards. The semantic approach differs from the pure XML-based ones because it specifies Web
Services at the application layer, describing“what a service can do, and not just how it does
it” [Web Services Coalition, 2002]. The description of a Web Service specifies the domain
ontology underlying the service, the meaning of the operations to be invoked and the service
choreography with the major advantage that the service offered by a provider may be unam-
biguously understood by the (UDDI) registries, therefore enhancing their capability to redirect
consumers to the most suitable providers; e.g., see [Kamamura et al., 2003]. Some recent work
also proposes prototype infrastructures for the run-time conversation management that rely on
the semantic representation of services to guide the interaction, e.g., by instructing the consumer
during the service invocation [Paolucci et al., 2003].

Although the semantic Web approach is a promising solution to the interoperability in the
Internet, the current proposals are too complex to be applied in real-world examples. These
approaches rely on sophisticated representations of the services to be invoked; although transla-
tion tools assist the binding to the consumers’ business logics, this remains a complex process.
Moreover, the selection of the operations to be invoked, depending on the service choreography,
is based on the exploitation of inference engines, such as rule-based ones, imposing significant
overhead on the interaction management. In our work we are deeply concerned with the scal-
ability and applicability constraints imposed by the Web. For this reason, we try to reduce the
complexity added by semantic information as much as possible, and to handle the interaction
between service consumer and provider in a lightweight fashion, at least at the consumer side.

The same considerations are useful to relate our work to the Multi-Agent Systems research,
where the interaction between distributed processes is regulated by defining coordination proto-
cols such as the FIPA Contract Net [FIPA, 2000], and JAFMAS conversations [Chauhan, 1997].
Unfortunately, these approaches are not directly applicable to the open environment of internet-
based applications because they require the agreement on specific communication languages,
such as FIPA ACL [FIPA, 2000] and interaction protocols, as done in the AgentCities project
[Agentcities, 2002]. Moreover, Web service providers and consumers may have different busi-
ness logics and the agreement on a conversation policy satisfying both of them is not trivial.

Other XML-based standards for the specification of e-business interactions with Web Ser-
vices are currently submitted as W3C standards. For instance, WSCL (Web Services Conversa-
tion Language [W3C, 2002a]) and WSCI (Web Services Choreography Interface
[Arkin et al., 2002]) introduce an explicit representationof Web Services interaction processes,
aimed at defining the admissible sequences of messages to be exchanged by the conversation
participants. To this purpose, WSCL exploits a sequence diagram model that the participants

2See http://www.di.unito.it/l̃iliana/appendix.txt for the complete representation of this portion of the service.

14

should interpret to handle the conversation, while WSCI introduces the notion of interaction
process, with the specification of timing constraints on theservice invocation. Moreover,
cpXML (IBM’s Conversation Support [Hanson et al., 2002]) introduces an explicit notion of
Conversational Policy as a machine readable specification of a pattern of message exchange in
a conversation, which can be used to make the interaction with complex Web Services easier
from the consumer application viewpoint.

Our interaction model differs from the previous ones because they assume that each partic-
ipant maintains an internal record of the conversation state. Instead, we propose that only the
service provider handles the conversation state. In particular, we simplify the implementation
of the consumer, which is supplied with the minimum amount ofinformation needed to inter-
act with the provider. At the same time, our approach does notimpose extra overhead on the
provider, for two reasons. First, the provider has to maintain the context for each interaction ses-
sion, otherwise, it would not be able to execute the service requests. Second, the provider knows
the details of the execution of its own services. Notice thatboth cpXML and our work aim at
decoupling the business logics of service providers and consumers by mediating their interac-
tion by means of the conversational activity. However, our model has the potential to separate
the consumer from the provider in a clearer way because it does not impose the execution of any
specific conversation policy. Moreover, our framework differs from WSCL and WSCI because
they conform to WSDL in the specification ofrequest-responseandsolicit-responseoperations;
thus, they cannot support a fine-grained specification of theconversation turns.

7 CONCLUSIONS

We have presented a conversation model supporting the interaction between Web Service providers
and consumers. Our approach is based on the idea that the following factors facilitate the ac-
cessibility of Web Services and the establishment of short-term business interactions:� The decoupling of the business logics by means of the conversational activity.� A flexible but simple conversation model supporting the exchange of several asynchronous

messages during the same interaction.� The server-side control of the interaction, aimed at minimizing the communication over-
head imposed on the consumer. The consumer does not need to know the conversation
flow because the interaction is driven by the provider.

Our proposal builds on the speech acts dialog model, that represents communicative behavior
as actions performed by an actor towards a recipient. However, our approach is simplified in
several aspects in order to address applicability requirements that can seriously affect the useful-
ness of the conversation model in real cases. For instance, our representation does not support
the specification of different types of speech acts, with their semantics. Nevertheless, it clearly
separates the conversational activity from the domain specific behavior that is represented as
object-level actions the partners “talk about”. The explicit representation of the interacting
processes and of their conversational activity supports the detailed and unambiguous specifica-
tion of the possible sequences of turns at the granularity level of the individual messages to be
exchanged.

As discussed in [Deo, 2002], the invocation of Web Services should be as seamless as pos-
sible. Although the current Web Service specification frameworks address this constraint by

15

providing stubs that can be run by consumers, we aim at providing interactivity between the
providers and consumers. Moreover, we take into account thefact that, during the service
fruition, the consumer has to be guided by the provider both in the identification of the opera-
tions to be invoked and in the selection of the parameter values. Thus, we propose a framework
enables the consumer to locally perform simple type checks and constraint propagation activi-
ties, aimed at enforcing the invocation of operations. Morespecifically, our framework offers:� The libraries for the specification and implementation of the conversation automaton held

by the service provider.� The libraries needed by the provider to generate the messages guiding the consumer in
the invocation of operations.� A Conversation Client that the consumer can download and runto interpret the service
provider’s messages and to handle the interaction with the Web Service.

Notice that our conversation model obviously introduces some overhead in the communication,
with respect to the basic WSDL approach. In fact, the messages between service provider
and consumers are more complex, as they include turn management and parameter binding
information. However, our approach has the following advantages: first of all, the definition
of operations having generic parameters dramatically reduces the number of WSDL operations
that should be published by the Web Service. Second, the dynamic selection of the eligible
conversation turns that the consumer may choose from supports the communication with highly
interactive Web Services. Third, the local management of type and constraint checks at the
consumer side significantly reduces the failures to be handled by the service provider, thus
reducing the overall number of messages to be exchanged.

In our future work, we want to investigate the behavioral properties of our conversation
model by exploiting formal models for the specification of process dynamics. Our goal is to
enable the designer of the Web Service conversation flow to check the correctness of the spec-
ified flow against abnormal situations, such as deadlocks, and revise the flow accordingly. We
also want to extend our framework to facilitate the integration of conversation and workflow
management. In fact, the business logic of a Web Service provider should be managed by em-
ploying a workflow engine (such as BPEL4J) that launches and coordinats the processes within
the Web Service. In order to flexibly interact with consumers, the engine should invoke the con-
versation modules, which would take care of managing the interaction context and generating
the conversation turns. At the moment, the workflow engine and the conversation modules have
to interact with one another as separate programs, but we would like to embed our framework
in the workflow engine, so that the conversation steps are managed as sub-processes of the main
engine execution.

Finally, our future work includes the management of transactional Web Services. Spe-
cial operations, such as reservations and payments, have tobe implemented as transactions
in order to cancel their effects if they cannot be successfully completed. As discussed in
[Curbera et al., 2003], internet-based transactions cannot be implemented by exploiting the lock-
ing techniques adopted in distributed systems, given the large number of concurrent processes
that might interact with the Web Service and its own suppliers. In alternative,
[Curbera et al., 2003] and [Benatallah et al., 2003] proposethecompensationapproach to han-
dle the failures in the execution of operations. Roughly speaking, a compensation is carried out
by invoking a specialized procedure devoted to restoring the state of the Web Service prior to the

16

invocation of the failed operation. Our framework can be extended with compensations without
major efforts because it explicitly manages failures at theconversation level. Depending on the
failed operation, a compensation procedure to be handled atthe workflow management level
can be invoked.

References

[Agentcities, 2002] Agentcities (2002). Agentcities network services. http://www.agentcities.net/.

[Arkin et al., 2002] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani,
S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., and Zimek, S. (2002). Web Service
Choreography Interface 1.0. http://ifr.sap.com/wsci/specification/wsci-specp10.html.

[Benatallah et al., 2003] Benatallah, B., Casati, F., Toumani, F., and Hamadi, R. (2003). Conceptual
modeling of Web Service conversations. InProc. Advanced Information Systems Engineering, 15th
Int. Conf., CAiSE 2003, Klagenfurt, Austria.

[Cabrera et al., 2002] Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D.,
Shewchuk, J., and Storey, T. (2002). Web Services Coordination (WS-Coordination). http://www-
106.ibm.com/developerworks/library/ws-coor/.

[Chauhan, 1997] Chauhan, D. (1997).JAFMAS: A Java-based Agent Framework for Multiagent Sys-
tems Development and Implementation. PhD thesis, University of Cincinnati, Stanford, CA.

[Cohen and Levesque, 1990] Cohen, P. and Levesque, H. (1990). Rational interaction as the basis for
communication. In Cohen, P., Morgan, J., and Pollack, M., editors, Intentions in communication,
221–255. MIT Press.

[Curbera et al., 2002a] Curbera, F., Duffler, M., Khalaf, R.,Nagy, W., Mukhi, N., and Weerawarana, S.
(2002a). Unraveling the Web Services Web.IEEE Internet computing, March-April.

[Curbera et al., 2002b] Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., and
Weerawarana, S. (2002b). Business process execution language for Web Services, version 1.0.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[Curbera et al., 2003] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S. (2003). The
next step in Web Services.Communications of the ACM, Special Issue on Service-Oriented Com-
puting, 46(10).

[Deo, 2002] Deo, H. (2002). The need for a dynamic invocationframework.

[Finin et al., 1995] Finin, T., Labrou, Y., and Mayfield, J. (1995). KQML as an agent communication
language. In Bradshaw, J., editor,Software Agents. MIT Press, Cambridge.

[FIPA, 2000] FIPA (2000). Foundation for Physical Intelligent Agents. http://www.fipa.org/.

[Hanson et al., 2002] Hanson, J., Nandi, P., and Levine, D. (2002). Conversation-enabled Web Ser-
vices for agents and e-Business. InProc. of the Int. Conf. on Internet Computing (IC-02), 791–796,
Las Vegas, Nevada.

[ILOG, 2002] ILOG (2002). ILOG JConfigurator. http://www.ilog.com/products/jconfigurator/.

17

[Kamamura et al., 2003] Kamamura, T., De Blasio, J., Hasegawa, T., Paolucci, M., and Sycara, K.
(2003). Preliminary report of public experiment of semantic service matchmaker with UDDI busi-
ness registry. InProc. Int. Conf. on Service-Oriented computing (ICSOC 2003), 208–224, Trento,
Italy.

[Mailharro, 1998] Mailharro, D. (1998). A classification and constraint-based framework for configu-
ration. AI in Engineering, Design and Manufacturing, 12:383–397.

[McIlraith et al., 2001] McIlraith, S., Son, T., and Zeng, H.(2001). Semantic Web Services.IEEE
Intelligent Systems, 16(2):46–53.

[Paolucci et al., 2003] Paolucci, M., Sycara, K., Nishimura, T., and Srinivasan, N. (2003). Toward a
Semantic Web e-commerce. InProc. of 6th Int. Conf. on Business Information Systems (BIS’2003),
Colorado Springs, Colorado.

[Piller and Schaller, 2002] Piller, F. and Schaller, C. (2002). Individualization-based collaborative
Customer Relationship Management: motives, structures, and modes of collaboration for Mass Cus-
tomization and CRM. Technical Report 29, Department of General and Industrial Management,
Technische Universität, München.

[Rich et al., 2002] Rich, C., McDonald, D., Lesh, N., and Sidner, C. (2002). COL-
LAGEN: Java middleware for collaborative agents services with multiple suppliers.
http://www.merl.com/projects/collagen.

[Searle, 1975] Searle, J. (1975). Indirect speech acts. In Cole, P. and Morgan, J., editors,Syntax and
Semantics: Speech Acts, volume 3, 59–82. Academic Press, New York.

[Stein and Maier, 1994] Stein, A. and Maier, E. (1994). Structuring collaborative information-seeking
dialogues. Knowledge-Based Systems, 8(2-3):82–93.

[Sun Microsystems, 2003] Sun Microsystems Inc. (2003). Java Web Services Development Pack 1.3.
http://java.sun.com/webservices/webservicespack.html/.

[W3C, 2002a] W3C (2002a). Web Services Conversation Language (WSCL).
http://www.w3.org/TR/wscl10.

[W3C, 2002b] W3C (2002b). Web Services Definition Language.http://www.w3.org/TR/wsdl.

[Web Services Coalition, 2002] Web Services Coalition (2002). DAML-S: Web Service description
for the Semantic Web. InInt. Semantic Web Conference, Chia Laguna, Italy.

8 List of CaptionsFigure1 : Service composition and conversation.Figure2 : Speech-act based interaction flow for a trivial product customization Web Service.Figure3 : Simplified conversation flow specification.Figure4 : Domain-level operations and communicative actions.Figure5 : Instructing the consumer about how to continue a conversation.Figure6 : Conversation flow specification of a product customization Web Service. The portion
of automaton in the square is a zoom on the SPECIFYDATA arc.Figure7 : Interaction between a middle agent and some Web Services.Figure8 : Interaction with a Web Service provider.Figure9 : Portion of the WSDL specification of the loan customization service.

18

