A CONVERSATIONAL APPROACH TO THE INTERACTION
WITH WEB SERVICES

LILIANA ARDISSONQ GIOVANNA PETRONE AND MARINO SEGNAN
Dipartimento di Informatica, Universitdi Torino
Corso Svizzera 185, 10149 Torino, Italy
Phone: +1 011 6706711
Fax: +1 011 751603

Abstract

The emerging standards for the specification of Web Sengapport the publication
of the static interfaces of the operations they may exectitewever, little attention is
paid to the management of long-lasting interactions batwilee service providers and their
consumers. Although this is not an issue in the case of “tig-services, it challenges
the provision of services requiring the exchange of mudtipkessages between the business
partners.

In this paper, we present a conversation model supportiagrthnagement of long-
lasting interactions where several messages have to barmyet before the service is
completed. Our model aims at facilitating the consumersnduthe service invocation
because in this way the establishment of short-term busiredations can be simplified.
To this extent, we provide a computational framework that loa exploited to manage a
conversation between the consumer and the service providlar framework is inspired
from the research developed in Computational Linguistits ia the area of Multi-Agent
Systems to manage human-to-computer and agent-to-agdag.diHowever, we employ
techniques suitable to comply with the emerging Web Serstaedards and with the scal-
ability requirements of the Internet.

keywords: Web Services, Web agents for producers and consumers

1 INTRODUCTION

As described in [Curbera et al., 2002&]Veb Services are emerging to provide a systematic
and extensible framework for application-to-applicatimeraction, built on top of existing
Web protocols and based on open XML standarddthough Web Services are aimed at pro-
viding standard interfaces for the interoperation of lggsgftware in the Internet, they are
currently subject to several limitations that reduce tlagiplicability to realistic cases. For in-
stance, the emerging service publication standards, sIg¥iSDL [W3C, 2002b], support the
specification of the static interfaces of elementary ses/idHowever, the management of the
interaction between the consumer and the service provedeifficult, unless simple services
are requested, because these standards do not enablevibe pesvider to specify the order
of the operations to be invoked by the consumer. Moreovegdlstandards only support the
invocation of operations characterized by very specifio@igres with fixed parameter lists.
Although this is not a problem when the requirements for #r@ise can be specified by the
consumer in a pre-determined way, it challenges the prvisf highly interactive services,
such as those related to the customization of complex ptegwbere the list of features to be
configured has to be decided at run time. As a matter of fagtidévelopment of Web Services
with rich interaction capabilities is interesting becaose could aim at:

e Making a personalized service, such as a recommender syastartable as a Web Ser-
vice. For instance, a movie recommender could be extendidanpublic interface that
enables digital personal assistants to invoke it on belfidtfear users. Moreover, a bank
might offer a loan customization service that can be exptbity distributed commercial
applications to negotiate financial support for their costcs.

e Composing Web Services in a consumer application servinggnwsers. For instance,
middle agents, such as real estate agents and car selleid develop Web-based appli-
cations supporting a completely automated interactioh thi€ customer, from the selec-
tion of the good to be purchased to the contract definitian; see [Mcllraith et al., 2001].
Similar to the traditional scenario, populated by humarrajoes, the middle agent would
manage a complex workflow, invoking and orchestrating bffie services, such as insur-
ance agencies, attorneys, banks and/or financial agencies.

The current work on workflow management is focused on theésEpomposition in the Web
but the proposed approaches assume a very simple type mddtite with the suppliers. For
instance, BPEL4WS [Curbera et al., 2002b, Curbera et a803R8upports the specification of
complex service compositions. However, the managemeheahteraction between the provider
and the consumer mainly deals with low level communicatgsués such as transaction man-
agement; see [Cabrera et al., 2002]. In contrast, in orderake the service fruition possible
even when the involved suppliers require complex intevasti the invocation has to be mod-
eled as a conversation where the participants may exchangeas messages before the service
is completed; e.g., requirements acquisition, negotiatind other types of interaction. For
instance, during the interaction with a Web Service suppgiihe configuration of medium
complexity products, the specification of the item featuresy require more than one step;
moreover, failures can occur and have to be repaired bdiersdlution for the consumer can
be generated. Finally, in some cases, the Web Service mayedq suspend the interaction,
e.g., waiting for a sub-supplier or a human operator to dounte to the generation of the so-
lution. Similarly, the consumer might suspend the intacgaicbecause it needs supplementary

2

_____ -~ conversati on™

A e

P

per sonal -7 - o
....... agent : TP Web Servi ce2
user . __i;:_ Vb Service3

(cust oner)

service

Figure 1: Service composition and conversation.

information from the customer before choosing certain pobdeatures.

A loosely coupled approach to the management of the inferast needed to support suc-
cessful business interactions and, in the meantime, ernlbleonsumers to suitably match
the provider’'s conversation requirements to their own mess logic. Moreover, the commu-
nication capabilities of service providers and consumbmikl be enhanced by means of a
lightweight approach, at least at the consumer side. In flaetconsumer may need to start sev-
eral e-business interactions with heterogeneous prauiddrerefore, it should not be required
to manage tightly coupled interactions with each of therpeemlly when they are held outside
a well established B2B relationship.

In this paper, we present a conversation model for Web Sesyaimed at supporting com-
plex interactions, where several messages have to be ey@thdrefore the service is com-
pleted, and the conversation may evolve in different wagpedding on the states of the two
participants. We have defined our model by taking the spaethheoretical model of dialog
management as a starting point [Searle, 1975, Cohen anddu@®e1990]. However, we have
simplified it to take the emerging Web Service publicaticemsiards into account and to de-
velop an effective conversation management framework.résieof this paper is organized as
follows: Section 2 describes the assumptions underlyirgpooposal and positions it in the
Web Services research. Section 3 describes a speech-adt lepsesentation of conversation
flow and Section 4 presents our conversation model. SectgkefEhes our infrastructure for
the development of conversational Web Service providetlscansumers. Section 6 compares
our proposal to the related work and Section 7 concludesapernand outlines our future work.

2 PREMISES

A flexible conversation model is needed to support the dynamocation of Web Services and
the present paper contributes to the definition of this mdBlelore presenting our proposal, we
discuss three aspects required to understand our combrnbut

First of all, we assume that the matching phase betweerceettesscription and request has
been performed and we focus on the service execution phageuld be noticed that we leave
out the matching phase because it represents an imporsérteaerving separate treatment. On
the one hand, the identification of the service provider casden as a separate activity, to be
performed either directly, or by exploiting mediation atgem®.g., see [Kamamura et al., 2003].
On the other hand, after a provider is identified, an expdied possibly complex binding activ-
ity has to be carried out by the consumer in order to assoitiateperations to its own business
logic. This activity may require the intervention of a hunaministrator, who has to carefully
analyze the meaning of the operations and their argumeties.bihding phase could lead the
consumer to conform to a portion of the domain ontology exgtbby the Web Service.

3

Request (C, S, I ni t Conversation())

Rej ect (S, C, I ni t Conversation()) _’ 3\

‘ 1 ; 2 ‘\“' .’6'0
Accept (S, G, Ii t Conversation()) \ ~)Reduest(C S SetData(S, nrGears,n)\ 5 I'nform(s, C \)
done(SetData(S, nrGears,n)))

Failure(S, C, Set Data(S, nrGears, n))

Figure 2: Speech-act based interaction flow for a triviatipied customization Web Service.

Second, the management of conversations should not bessahivith the service composi-
tion handled by workflow engines, as these are complemetdanye another; the conversation
management enriches the flexibility in the invocation ofitid#vidual suppliers whose services
are composed by the consumer. Figure 1 shows an applicatiopasing Web Services to
provide a complex service to the user. The depicted graptvsltive partial order relations
between workflow states. Each state may include internaditees and invocations of external
Web Services. The dotted lines represent the interactitwedes the consumer and the suppli-
ers and may denote one-shot invocations of operations oplexnaonversations. The focus of
our work is on the possibly complex and asynchronous coatiersbetween a module of the
application and the Web Service provider; see the highdidlarea in the figure.

Third, our conversation model clearly separates the asmecicerning the internal imple-
mentation of a Web Service from the communication protoedihihg the invocation of its op-
erations. As noticed in [W3C, 2002a], no knowledge aboutrtiementation of the providers
should be needed to invoke them.

3 A SPEECH-ACT BASED APPROACH

The development of dialog models supporting the manageaiénng-lasting communication
derives from the Computational Linguistics research. édiph the results achieved in this area
were focused on the management of human-to-computer atitemathey provided a solid basis
for recent communication models developed by the Multi-#tgesearch community.
Traditionally, social behavior of human and software agéais been modeled by exploiting
speech-acts [Searle, 1975] that separate the illocutydarse of the agents’ messages from the
object-level actions underlying the execution of the cosaBon turns. In particular, Finite State
Automata (FSA) have been applied in the management of taskted interaction, in order to
specify the conversation roles to be filled in by the partiaigs and the possible sequences
of turns that may be performed; see [Stein and Maier, 1994¢reldver, hierarchical scripts
and plan-based approaches have been introduced to effiaratiel goal-oriented behavior
[Cohen and Levesque, 1990] and to separate the managemeamwvarsational behavior from
the domain-dependent activities carried out by the ag&ith[et al., 2002]. These approaches
assume that the agents play well defined conversation notethay cooperate to a domain-level
activity. Their social behavior is aimed at coordinating thternal processes; e.g., questions
may be posed to verify the feasibility of the actions to bdgrened and notifications are made
to notify their (un)successful execution. The speech-asel conversation models are suitable
to describe communicative behavior at the conceptual ievdlthey have been applied to the
description of agent-to-agent communication as well; sge KQML [Finin et al., 1995] and
FIPA ACL [FIPA, 2000]. Thus, they could be applied to spectg conversation flow between
Web Services and their consumers. In particular, the mess@gbe exchanged during the
service fruition can be seen as conversational action®ipeeld to carry out a task-oriented

4

dialog between entities filling the Service Provider and@oasumer roles.

As a concrete example for the specification of a conversdlooy we consider a trivial
product customization problem, where the consumer intenath a Web Service to set the
number of gears of a bicycle. Figure 2 shows a FSA repreggtiteiadmissible turn sequences
in this service. The states of the automaton represent #tegdstates: the plain circles denote
the conversation states and the thick one (state 1) is thalisiiate. The thick dotted states (3,
6) are final dialog states. The speech acts are specified els laflthe arcs. Each speech act
represents a conversation turn to be performed by one o#tftieipants and is named according
to the FIPA specifications. The first argument of a speecteacésents the role filler that should
perform the act, i.e., the agent sending the message. Therdaoyument denotes the recipient
and the third one represents the content of the speech aet.stétes having more than one
output arc represent mutually exclusive speech actsth&agent is expected to perform only
one of them. The interaction starts with fRequesturn, where the consumérasks the service
providerS to start the interactionirfitConversatiol. The provider may accept to perform the
request Accept(S, C, InitConversation)))r reject it Reject(S, C, InitConversation)))in the
second case the interaction terminates. In the first onedhsuener may request to set the
number of gearsRequest(SetData(S, nrGears,)n)f the Web Service successfully performs
the operation, it acknowledges the consunteiofm(S, C, done(SetData(S, nrGears, hand
the interaction terminatésOtherwise, the Web Service notifies the failure of the openaand
enables the consumer to set the feature again; see the ltvopdrestates 4 and 5.

The FSA specifying the conversation flow of a service provieild be exploited by the
consumers to manage the turn-taking activity and to cdyréctoke the operations on the
provider. However, this approach is not desirable for twamn@asons: first, the imposition of
speech acts on Web Services, which now publish services lapsnaf very simple languages
such as RPC invocations or WSDL operations, is not reali@gcond, in order to select the
admissible reactions to the provider’s turns, the consumasito maintain an internal represen-
tation of the interaction context that, at minimum, inclsdee active state of the automaton, i.e.,
the output state of the last speech act performed by theceepvovider. The second require-
ment is particularly problematic from the interoperaliloint of view because it imposes that
the consumer locally executes a copy of the conversatimnzaton employed by the provider.

4 OUR PROPOSAL

In order to support the management of lightweight and lgoselipled conversations, we pro-
pose to make the management of the interaction easier faoth&umer, charging the service
provider with the control of the invocation. More speciflgalve propose that:

e The provider publishes the services by specifying the djperain a standard language.
This is necessary to let the consumer bind the invocatioap@fations to its own business
logic, e.g., by associating the invocations to its inteprakesses.

e The specification of the interaction flow is based on a flexihiesimple representation
formalism supporting the specification of the correct segeeof turns without the over-
head of the pure speech-act model.

1The doneoperator was introduced by Cohen and Levesque to reprdseatdte of the world after an action
is successfully performed [Cohen and Levesque, 1990].

OSendN(G, S, I nit Conversati on())/z-\ SendM'S, C K((res)) _:, 3)
1 > »

Nt ‘.,6.0)
4]'SendMC, S, Set Data(nr Gears, n)) | S T
SendM'S, C, O, next Ops, ct x) SendM S, C, OK(r es) , next Ops, ct x))V a®

SendM S, C, Faul t (res, comment), next Ops, ct x)

Figure 3: Simplified conversation flow specification.

e For each active conversation, the service provider maigtaiocal interaction context to
guarantee that at least one of the participants controlditteg.

e At each step, the provider enriches the messages it senldgaevitextual and turn man-
agement information in order to instruct the consumer abowt to continue the con-
versation. The contextual information can be void in tiliwderactions. The turn man-
agement information consists of the eligible turns (heoitbf next operations) that the
consumer may perform to carry the interaction one step fatwa

The first two points are aimed at guaranteeing that the reptason formalism employed for
the publication of services may be easily adopted by thelsrppThe other ones leverage the
interaction management at the consumer side, thereforexqtile engagement in interactions
with Web Services as seamless as possible.

4.1 SIMPLIFIED SPECIFICATION OF CONVERSATIONS

With respect to the approaches defined to manage agenetda-egmmunication, we simplify
the specification of the interaction flow by modeling the iat¢ion turns as generic conver-
sational activities where the performed speech Reqlest, Informetc.) is omitted. This
is possible because all the turns are requests that therspaderms to trigger the execu-
tion of the invoked operations on the receiver. Moreoverewtend the interaction turns with
turn-management information needed to assist the consurtier invocation of the operations
offered by the service provider. Each conversational aatpresents a simplified speech act,
where the sender asks the recipient to perform the operapenified as an argument. The
conversational actions have the following arguments:

e The sender of the message, which may be the consGimarthe service provides.
e The recipient of the message (similar).

¢ An operation that the sender invokes on the recipient. Matat the actor of the re-
guested operation may be omitted because it coincides hethecipient of the message.

e The list of the possible continuations of the conversatioex(Op$. As the service
provider has the control of the interaction, this argumsrdrily present in the messages
to be received by the consumer. The argument includes thef séfernative operations
offered by the provider which the consumer may invoke in e gonversation step.

¢ A context argument, storing information about the intamacstate ¢tx). Similar to the
nextOpsargumentctx one is only present in the messages directed to the consumer.

Figure 4: Domain-level operations and communicative astio

Figure 3 shows the simplified representation of the intesadtow in our product customiza-
tion service. The automaton has the same structure as th®yseone, but the conversa-
tion turns are represented as send message actidgesl). For instanceRequest(C, S, Set-
Data(S, nrGears, n)in Figure 2 corresponds t8endM(C, S, SetData(nrGears,.nnform(S,
C, done(SetData(S, nrGears, nig)replaced witltsendM(S, C, OK(res), nextOps, ctkjore-
over, the positive and negative acknowledgments are diegbto generic) K and K O actions.
Two kinds of (object-level) operations may be the argumehgsconversation turn:

e Domain-level operationssuch asSetData, representing domain-dependent operations
to be invoked during the service execution.

e Communicative actionssuch aslinitConversation, OK, Fault, Suspend, Resume
and Receive Result, that are independent of the domain and are invoked duregéeh
vice fruition to coordinate the behavior of the interactant

Figure 4 shows the names of some object-level operatiorsenffoy a consumer application
and by a product customization Web service. We have depibtedames of the domain-level
operations (specific of product customization) in boldfezelistinguish them from the com-
municative actions, which are applicable across diffedamains. Being concerned with the
service execution, the domain-level operations are origred by the service provider. In con-
trast, the communicative actions enable the interactiadglaus they should be offered by the
provider as well as by the consumer. For instance, the coamsomast offer theReceiveResult
action, which corresponds to the WSDiutput messagesent by the service provider to ac-
knowledge the service execution and notify the results. ddeer, theSuspend and Resume
actions are needed if the service execution has to be suspémtiandle pauses and delays.
The proposed flow specification is not sufficient to chargehe conversation with highly
interactive service providers. For instance, consider & Bervice customizing the config-
uration of products. The operations to be performed can éarlgl defined, e.g., specifying
the needed components and their features. However, theadsawhose values have to be set

SendM nessage: SendM nessage
I nvoked acti on; Message: OK("")
Next operations: Next operations;
Domal n- 1 evel . Set Feat ur es(nr O Gear s
. actions Post poneSet (nr Of Gear s
Conmuni cat i ve SuspendConversatl on(l d)
actions);
Cont e
Current Focus
i fy(gear Box)
Cont ext ; Achi eved Act fvitie s
specify(fra
speu fy ha I)

Figure 5: Instructing the consumer about how to continuera@sation.

depend on the components required by the consumer. Therefe Web Service has to dy-
namically determine the correct invocation of operationsrdy the exploration of the search
space, by taking contextual information about the intéoadito account. As a solution, we
propose to relax the specification of the signatures of tleraimns by admitting generic ar-
guments instantiated with the actual parameters duringéhéce fruition. For instance, the
SetData(nrGears, npperation would be generalized t&atData(argspne, with theargs ar-
gument bound to the actual parameters at service invocatnen Figure 5 sketches the format
of the messages sent by the provider to the consumer duengugtomization of a bicycle.

e On the left side, the figure shows the abstract structure®fttmd)M messages. The
sender and receiver arguments are omitted because thepeae s the message header.

¢ On the right side, a sample message is shown. This is a poaitknowledgment{K)
generated by the provider to notify the successful exeowti@n operation. The provider
also specifies that the consumer may invak& Data to set the number of gears,
PostponeSet to postpone the setting to a later stage of the interactioit, may sus-
pend the conversation. Ti@&urrent Focusspecifies that the execution of these operations
is aimed at carrying out the specification of the gearbox. édwer, the frame and the
handle have already been specifiddlfieved Activities

The sample context object shown at the right side of Figur€dn{exj sketches a possible
representation of the fulfillment state of a service. Dutimg interaction with a consumer, the
context is enriched to show the progress in the product ougagion. We introduced the con-
text argument to support the development of consumersajisy different levels of initiative
during the interaction with the Web Service, while maintagnthe management of contex-
tual information at the service provider side. Although vemmot make any assumptions on
the consumer’s decision capabilities, the invocation ef dperations can depend on contex-
tual information about the previous part of the interactiéior instance, the consumer might
condition the provision of the customer’s credit card datéhe fact that the product has been
completely defined. The structure of the context argumepéxgs on the application domain.
For instance, the object can be empty in simple and detestidnnteractions, where the next
operation argument includes at most one element.

4.2 A USE CASE: CONFIGURATION OF PRODUCTS

In order to show the interaction requirements that can hsfeat by exploiting our conversa-
tion model, we focus on the configuration domain. The confiian use case is sufficiently
general to cover different application scenarios, amonighvine customization of products and
services, attracting a lot of attention in the CRM and e-c@m® areas; e.g., see the research
about mass customization [Piller and Schaller, 2002].

The configuration of a product may require the selection afponents to be included in the
product and the setting of the feature values. As the prddattires may be related by complex
constraints, this activity is usually carried out by emphgya configuration system; e.g., see
[Mailharro, 1998, ILOG, 2002]. In our work, we assume tha fervice provider, i.e. one of
the actors, has such a system and runs it during the intenagith the consumer (the other
actor) in order to elicit the information needed for the cguafation process, step by step, and
return the results. The specification of the conversatiom isothus aimed at guaranteeing that

. . -y
Olnltlnteractlon - Ref usal _/3\
1) SendMC S, (2 SendM S, C, KO(r es ’
I ni t Conver sation()) MS, G Kd(res)) \."
Agr eenent Ref usal 1
SendM S, C, &K,
next Qps, ct x) SendM C S, K((res))) .
SPECI FY_DATA /7 "\ Pr oposePr oduct g }_Accept /10\
SendM C, S, G((res)f'-\]
.t

Suspendl nt eraction
Request (C, S, Suspend)

"\ >/ sendMs, ¢, Recei veResul t (prodg ,
next Ops, ct x

Unr ecover abl eError /" Resunel nteracti o

SendM S, C, Faul t (res, comment))s 5)] SendM C, S, Resune)
o , S,

Nt

Set Dat a
SendM C, S, Set Dat a(args)) Suspend| nt er acti onnl
:) _Request (S, C. Suspend),
4)L Confirmation 5] 6
SendM S, C, OK(r es), next Ops, ctx) J, Resumelnteractionl
SendM S, C, Resune,
Error next Ops, ct x)
SendM S, C, Faul t (res, corment), next Ops, ct X)

ZOOM ON SPECI FY_DATA

Figure 6: Conversation flow specification of a product custation Web Service. The portion
of automaton in the square is a zoom on the SPECIATA arc.

the provider elicits the needed information from the consuand that the consumer negotiates
configuration solutions until the proposed product meetgéquirements.

Figure 6 shows the automaton representing the converdbtwspecification of the config-
uration service. We have labeled the arcs with a boldfaa#iitkr to simplify the identification
of the conversation turns. The interaction starts with thiescamer contacting the provider in
order to configure a product. The consumer might be the parsment of a customer, or a
middle agent invoking different product configuration Wedn&ces on behalf of a customer.
We omit the description of the initial part of the interactiovhich is very similar to that of
Figure 3, and we start our description from state 4 of theraaton. If the provider accepts the
interaction, a data specification phase st&8RBHCIFYDATAarc) that can end in two ways. An
unrecoverable error can be generated, e.g., if the settirésaselected by the customer cannot
be provided in the same product. In alternative, the custatiain process succeeds and the ser-
vice continues the interaction by proposing the prodBebposeProdugt The consumer may
react in three different ways: it may accept the proposetépj, reject it Refusal}, or suspend
the interaction. If the consumer rejects the proposal,fergiroduct has to be specified.

The data specification phase includes the provision of tls¢oower’'s data and of the re-
quirements on the product to be customized. This phase imples one and is characterized
by the portion of the automaton depicted in the zoom windoweWthe consumer sets some
data, e.g., some product features, the provider may reddfenent ways. For instance, it may:

¢ Confirm the correct acquisition of the datddn firmation arc) and enable another in-
vocation of theSet Data operation.

¢ Notify the consumer about a failure in the product custotoraprocess Error) and
enable the selection of other values for the conflictinguiess.

¢ Suspend the interactio§(spendInteractionl) and resume it later omesumelnteractionl),
in order to manage possible delays in the invocation of its sub-suppliers.

TheSet Data operation has a formal parameter ¢s) that is bound to the actual list of features
to be set at each interaction step. As mentioned in Sectibe 2dlection of the feature values

—
per sonal
"""" agent :
» H

user V| el N
(cust oner) m ddl e agent
(service consumer

Figure 7: Interaction between a middle agent and some Wahc8sr

would not be possible without a binding phase, where thelwroes analyzes the product struc-
ture specified in the Web Service ontology. Sharing the prbdntology is thus necessary to
let the consumer understand the individual product featioée set.

We have selected the customization of loans as a samplecappii domain, within the
more general customization of products use case. This fygeraice is particularly interesting
because the features of the loans may be customized in diffezent ways depending on the
customer’s characteristics (income, age, etc.) and thendésn of the loan (type and features
of the good to be funded). With the enhancement of the comeation capabilities offered
by our conversation framework, the customization of loamdd be offered as a Web Service
invoked by middle agents that assit customers in the defindf loans by automatizing the con-
tacts with banks, funding agencies and attorneys. Depgratirthe customer’s requirements,
the middle agent could invoke different funding agencias atorneys to propose and manage
the organization of a suitable loan. Figure 7 depicts thesmado.

Notice that the possibility of suspending and resuming miteraction offered by our model
guarantees that the middle agent and the invoked serviegers perform their internal activ-
ities without blocking the business interaction in abndrmays. For instance, if the customer
is trying to buy an apartment, the service provider mightdngesuspend the interaction to
evaluate the good. Similarly, after the loan is proposeglctinsumer might need to contact the
customer to see whether the proposal can be accepted. Icdégehl, the conversation must be
explicitly stopped to let the participants carry otheratgs out.

43 INTERACTION MANAGEMENT

In order to manage the conversation at both sides the paatits should run, respectively, a
Conversation Manageand aConversation Clienmodule. The former is employed by the
provider to manage the interaction with the consumers, vivould rely on the light Conver-

sation Client to parse the incoming messages and returregipemses. The situation is shown

ffConversati on Conponent \
Manager A

OAP /\
R Vb
: quest Servi ce| %’O
Conversation | Sarvl et : ,
dient ﬁeOL\P .
sponse 1A i Aerac 5
consuner g it epan €X1 7L Suppl i er
- Viéb server | Eﬁon{ g\ﬁ._r;,.
WEDL service R
description S J

service provider

Figure 8: Interaction with a Web Service provider.

10

in Figure 8, that sketches the architecture of the propaseddwork.

The Conversation Manager should exploit a conversatioonaaton, such as the one de-
picted in Figure 6, to control the service provider's commsative behavior. For each in-
teraction session, the Conversation Manager of the prowdeuld maintain the active state
of the interaction as a description of the contextual infation concerning the conversation.
This information is needed to compute the next operatioagable to the consumer and to to
support other types of behavior, such as the suspension af\esation and the subsequent
restart. When a consumer starts a conversatioit [nteraction arc), the service provider’s
Conversation Manager should initialize the interactionteat by setting the active state of the
conversation to the initial state of the automaton (stateT2)en, the provider should choose
the continuation path4greement or Re fusal) and move the active state accordingly. During
the interaction, the active state should be updated depgma the messages that the provider
sends or receives. Each turn is an asynchrortous/M message that one of the participants
should send within time constraints. If the the message doeseach the recipient in time, the
interaction is suspended by its conversation module.

The Conversation Client has three responsibilities:

¢ Facilitating the reception and interpretation of messagethe consumer sidd.he Con-

versation Client manages the reception of messages amdesxine eligible continuations
of the interaction from the incoming message (whesetOperations argumentincludes
the next operations that can be performed and their actuwahyaers). Given the list of
alternatives, the consumer is responsible for choosingitbst convenient option and de-
ciding the details of the invocation, depending on its ownsibess logic. For instance,
in the data specification phase, the Conversation Clietructs the consumer about the
product features that must be set; e.g., the amount of maney tunded, between 0 and
50000.00 EUR. Then, the consumer chooses the values to;l@ege20000.00 EUR.

e Supporting the correct invocation of the operations on theviger. The Conversation
Client assists the consumer when it sets the actual paresyatthe operations to be in-
voked by performing type checks and other consistency chaioked at guaranteeing that
the parameter values satisfy the existing constraints @arijuments of the operations.

¢ Facilitating the management of the outbound messages tortveder. When the details
about the invocation are provided, the Conversation Cienkrates the invocation of the
operation on the provider and sends the:.d M message.

The second item above plays a critical role in the enforceéroktihe correct invocation of the
provider. Indeed, the consumer might rely only on the spzatifin of the admissible operations
and their actual parameters availablewastOperations information. However, the consumer
might make a mistake when binding the arguments of the clgget action to be invoked. For
instance, the consumer might invoke tkiet Data operation by specifying String parameters
where Integer ones are needed. Moreover, although the @mmbaroney to be funded has to
be between 0.00 EUR and 50000.00 EUR, the consumer mighkerfia Data by specifying
that it asks for 70000.00 EUR. In these cases, the providmrigheply with a failure message
(Error arc in the zoom of Figure 6) and the consumer should repaiettee by invoking the
operation again, with different parameter values.

In order to minimize the message traffic due to constrain&timns and type inconsisten-
cies, we propose to enrich the Conversation Client with camoation capabilities that enable

11

the local error management. In this perspective, the Csatien Client becomes a representa-
tive of the Web Service to be downloaded by the consumer aachicts with it in decentralized
way. The Conversation Client works at the granularity lesethe individual parameters of
the operations to be invoked, checking the types of the sade¢éected by the consumer and
the constraints between the parameters. It should be datha, although the local checks
support the repair to several problems within the consuthey, cannot prevent the failure of
the overall product customization, which might occur, fistance, if the overall set of selected
features is inconsistent (i.e., the consumer’s requirésnmeannot be jointly satisfied). This gen-
eral type of failure is detected at the service provider sidé is handled as specified in the
UnrecoverableErrotransition of the automaton depicted in Figure 6.

5 INTERACTION MANAGEMENT INFRASTRUCTURE

We are developing a set of Java libraries aimed at facitidggtine development of a Conversa-
tion Manager and a Conversation Client modules supportiagommunication between Web
Service providers and their consumers. These librariegstithe engagement in long-lasting
interactions that may be suspended and resumed dependihg needs of the participants.

A Java-based Conversation Manager module that enablesahéS®@fvice provider to keep
track of the asynchronous communication with the intergotionsumer applications. The pro-
posed architecture of the Web Service Provider is showngur€i 8: a Servlet supports the
(SOAP) HTTP-based communication with the consumer by @agcthe incoming requests
and forwarding them to the Conversation Manager for theinagament. The Conversation
Manager is the core of the Servlet listening to the incomeguests, invoking the appropriate
components to execute the services and sending the SOAbheEsmessages to the consumer
applications; see Figure 8. The Conversation Manager magut a conversation flow au-
tomaton for the management of the interaction sessionstiétbonsumers in order to compute
the possible continuations of each interaction. Figure®vsta situation where the Conversa-
tion Manager is handling two parallel interactions and timagntains two interaction contexts,
i andj. Although an infrastructure supporting the definition ohgel purpose conversation
automata is not yet available, we have developed a prot@gpeersation Manager that imple-
ments the FSA shown in Figure 6 and that can be easily custahti satisfy the interaction
requirements of different application domains.

Our framework also supports the consumer by offering a baged Conversation Client
that may be downloaded and run in order to handle the inferaaiith a Web Service. Similar
to the Conversation Manager, the execution of the Clientt@aprerequisite that the consumer
binds the invocation of the operations to its own businegi€lolrhe Conversation Client catches
the messages that the Web Service sends to the consumetenpddts them to identify the eli-
gible operations that may be invoked next. The Client algpetis the generation of tfgendM
messages to respond to the Web Service. The Conversatioagdiaand the Conversation
Client exploit the Sun Microsystem Web Service DevelopaskH&un Microsystems, 2003]
and in particular the JAXP-RPC package.

The JWSDP allows the development of Java code that is auiwatiptranslated to SOAP
messages following the WSDL specification. In our work, weehaxploited this feature to
support the interoperability of a Java-based Web Servitle edansumers developed in hetero-
geneous environments. More specifically, we enable thecggpvovider running our Conversa-
tion Manager to handle inbound and outbound messages byiagphe SOAP communication

12

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="M/ConversationService" targetNanespace="urn: Foo"
xm ns:tns="urn: Foo" xm ns="http://schemas. xm soap. org/ wsdl /"

xm ns: xsd="http://www. w3.0rg..." xnl ns:soap="http://schemas. xm soap....">
<types>
<schemm t arget Namespace="http://java.sun.com jax-rpc-ri/internal"
xmns:tns="http://java.sun.comjax-rpc-ri/internal” ... ">
<i nport nanespace= ... "/>
<conpl exType nanme="SendMAr gs" >
<sequence>

<el enent name="context" type="anyType"/>
<el ement name="convld" type="string"/>
<el ement name="current Qperation" type="string"/>
<el enent nanme="next Operati ons" type="ns2:vector"/>
</ sequence>
</ conpl exType> ... DEFIN TION OF OTHER COVPLEX TYPES ...
</ schema>
</types>
<nmessage name="Conversati on_sendM >
<part name="SendMArgs_1" type="tns: SendMArgs"/ >
</ message> ... DEFI N TI ON OF OBJECT- LEVEL OPERATIONS; e.g., SetData
<port Type nanme="Conversation">
<oper ati on name="sendM' paraneter O der="SendMArgs_1">
<i nput nessage="tns: Conversati on_sendM'/ >
<out put nessage="tns: Conversati on_sendMResponse"/></ oper ati on></ port Type>
<bi ndi ng name="Conver sati onBi ndi ng" type="tns: Conversation">
<operation nane="sendM >
<i nput ><soap: body encodi ngStyl e="http://schemas. xm soap. org.../></input >
<output> ... </output> ..
</ oper ati on>
<soap: bi ndi ng transport="http://schemas. xm soap. org/ soap/ http" style="rpc"/>
</ bi ndi ng>
<servi ce nanme="MConversationService"> ... </service>
</definitions>

Figure 9: Portion of the WSDL specification of the loan cugtzation service.

protocol to exchange Java-based messages. However, waralsde a declarative representa-
tion of the format of th&end M messages, including the WSDL specification of the objecttle
operations requested by means of #@dMmessages. Following the WSDL specification, the
schema defining datatypes and object-level operationk, asféetData are generated, as well
as the ports and bindings needed to interpret WSDL messabas, a generic consumer, which
does not exploit our Conversation Client, may invoke thev@osation Manager by conform-
ing to the WSDL specification of its services. Moreover, tbasumer may be guided by the
provider in the correct invocation of services if it parske incomingSendMmessages and
extracts thenextOperationgnformation. The infrastructure enforces the WS-I staddawn
complex object type to ensure interoperability between Bletvice providers and consumers
developed in heterogeneous environments.

From our perspective, theend M operation is a service offered by both service providers
and consumers and must be added to their WSDL specificatiofact, the consumer needs
to offer theSendM operation in order to receive messages from the providexveder, the

13

publication of theSendMoperation does not impose any overhead because it is autathat
generated by our framework. Figure 9 shows a portion of théW8&eclarations generated
to support the management 8&EndMmessages and includes the specification of3btbata
object-level operation related to the customization oh&aFor readability purposes we have
removed some information from the WSDL specificatfon.

6 RELATED WORK

The Semantic Web community is defining standards for theigatibn of Web Services aimed
at overcoming the main limitations of WSDL and of the emeggiorkflow management stan-
dards. The semantic approach differs from the pure XML-th@asees because it specifies Web
Services at the application layer, describfmgnat a service can do, and not just how it does
it” [Web Services Coalition, 2002]. The description of a Webviger specifies the domain
ontology underlying the service, the meaning of the openatito be invoked and the service
choreography with the major advantage that the serviceeauffby a provider may be unam-
biguously understood by the (UDDI) registries, therefarhancing their capability to redirect
consumers to the most suitable providers; e.g., see [Kamesetal., 2003]. Some recent work
also proposes prototype infrastructures for the run-tiorezersation management that rely on
the semantic representation of services to guide the gttera e.g., by instructing the consumer
during the service invocation [Paolucci et al., 2003].

Although the semantic Web approach is a promising solutbaihé interoperability in the
Internet, the current proposals are too complex to be appheeal-world examples. These
approaches rely on sophisticated representations of thiesg to be invoked; although transla-
tion tools assist the binding to the consumers’ businegsdothis remains a complex process.
Moreover, the selection of the operations to be invokededdjmg on the service choreography,
is based on the exploitation of inference engines, suchlasased ones, imposing significant
overhead on the interaction management. In our work we aplgleoncerned with the scal-
ability and applicability constraints imposed by the Webr this reason, we try to reduce the
complexity added by semantic information as much as passand to handle the interaction
between service consumer and provider in a lightweightdaslat least at the consumer side.

The same considerations are useful to relate our work to thlid-Mgent Systems research,
where the interaction between distributed processes idategl by defining coordination proto-
cols such as the FIPA Contract Net [FIPA, 2000], and JAFMASeosations [Chauhan, 1997].
Unfortunately, these approaches are not directly apgkdalthe open environment of internet-
based applications because they require the agreementeoifisgommunication languages,
such as FIPA ACL [FIPA, 2000] and interaction protocols, asalin the AgentCities project
[Agentcities, 2002]. Moreover, Web service providers aadstimers may have different busi-
ness logics and the agreement on a conversation policyysagidoth of them is not trivial.

Other XML-based standards for the specification of e-bissmeteractions with Web Ser-
vices are currently submitted as W3C standards. For insfANSCL (Web Services Conversa-
tion Language [W3C, 2002a]) and WSCI (Web Services Choagadyr Interface
[Arkin et al., 2002]) introduce an explicit representatmiNVeb Services interaction processes,
aimed at defining the admissible sequences of messages kuienged by the conversation
participants. To this purpose, WSCL exploits a sequencgraim model that the participants

2See http://www.di.unito.ifiliana/appendix.txt for the complete representatiorhis portion of the service.

14

should interpret to handle the conversation, while WSQiothtices the notion of interaction
process, with the specification of timing constraints on s¢kevice invocation. Moreover,
cpXML (IBM’'s Conversation Support [Hanson et al., 2002]jroduces an explicit notion of
Conversational Policy as a machine readable specificafiarpattern of message exchange in
a conversation, which can be used to make the interactidnagitnplex Web Services easier
from the consumer application viewpoint.

Our interaction model differs from the previous ones beedhey assume that each partic-
ipant maintains an internal record of the conversatioresthistead, we propose that only the
service provider handles the conversation state. In pdaticwe simplify the implementation
of the consumer, which is supplied with the minimum amouninédrmation needed to inter-
act with the provider. At the same time, our approach doesmpbse extra overhead on the
provider, for two reasons. First, the provider has to mairttae context for each interaction ses-
sion, otherwise, it would not be able to execute the ser@qaests. Second, the provider knows
the details of the execution of its own services. Notice bwth cpXML and our work aim at
decoupling the business logics of service providers andwners by mediating their interac-
tion by means of the conversational activity. However, oodel has the potential to separate
the consumer from the provider in a clearer way because # doempose the execution of any
specific conversation policy. Moreover, our frameworkel#f from WSCL and WSCI because
they conform to WSDL in the specification rfquest-responsendsolicit-responseperations;
thus, they cannot support a fine-grained specification ofdtmeersation turns.

7/ CONCLUSIONS

We have presented a conversation model supporting thaatien between Web Service providers
and consumers. Our approach is based on the idea that tbeifajl factors facilitate the ac-
cessibility of Web Services and the establishment of stavry business interactions:

e The decoupling of the business logics by means of the coatrensl activity.

¢ Aflexible but simple conversation model supporting the exade of several asynchronous
messages during the same interaction.

e The server-side control of the interaction, aimed at miming the communication over-
head imposed on the consumer. The consumer does not needviata conversation
flow because the interaction is driven by the provider.

Our proposal builds on the speech acts dialog model, tha¢septs communicative behavior
as actions performed by an actor towards a recipient. Howeue approach is simplified in
several aspects in order to address applicability req@rgsthat can seriously affect the useful-
ness of the conversation model in real cases. For instancegpresentation does not support
the specification of different types of speech acts, witlir themantics. Nevertheless, it clearly
separates the conversational activity from the domainispdehavior that is represented as
object-level actions the partners “talk about”. The expliepresentation of the interacting
processes and of their conversational activity suppoeslétailed and unambiguous specifica-
tion of the possible sequences of turns at the granulansl l&f the individual messages to be
exchanged.

As discussed in [Deo, 2002], the invocation of Web Servitesikl be as seamless as pos-
sible. Although the current Web Service specification framorés address this constraint by

15

providing stubs that can be run by consumers, we aim at prayicteractivity between the
providers and consumers. Moreover, we take into accountaittethat, during the service
fruition, the consumer has to be guided by the provider botieé identification of the opera-
tions to be invoked and in the selection of the parameteregllihus, we propose a framework
enables the consumer to locally perform simple type cheoklscanstraint propagation activi-
ties, aimed at enforcing the invocation of operations. Magecifically, our framework offers:

¢ The libraries for the specification and implementation ef¢bnversation automaton held
by the service provider.

e The libraries needed by the provider to generate the mesgageing the consumer in
the invocation of operations.

e A Conversation Client that the consumer can download andounterpret the service
provider’s messages and to handle the interaction with tele 8érvice.

Notice that our conversation model obviously introduceasoverhead in the communication,
with respect to the basic WSDL approach. In fact, the messhgaveen service provider
and consumers are more complex, as they include turn marmageand parameter binding
information. However, our approach has the following adagas: first of all, the definition
of operations having generic parameters dramaticallyaesithe number of WSDL operations
that should be published by the Web Service. Second, thentigngelection of the eligible
conversation turns that the consumer may choose from stgihpercommunication with highly
interactive Web Services. Third, the local management pé tgnd constraint checks at the
consumer side significantly reduces the failures to be leahdy the service provider, thus
reducing the overall number of messages to be exchanged.

In our future work, we want to investigate the behavioralpamies of our conversation
model by exploiting formal models for the specification obgess dynamics. Our goal is to
enable the designer of the Web Service conversation floweolcthe correctness of the spec-
ified flow against abnormal situations, such as deadlocktrarse the flow accordingly. We
also want to extend our framework to facilitate the inteigrabf conversation and workflow
management. In fact, the business logic of a Web Servicageoshould be managed by em-
ploying a workflow engine (such as BPEL4J) that launches anddinats the processes within
the Web Service. In order to flexibly interact with consum#re engine should invoke the con-
versation modules, which would take care of managing thexaction context and generating
the conversation turns. At the moment, the workflow engirtetha conversation modules have
to interact with one another as separate programs, but wé&like to embed our framework
in the workflow engine, so that the conversation steps areagexhas sub-processes of the main
engine execution.

Finally, our future work includes the management of tratisaal Web Services. Spe-
cial operations, such as reservations and payments, hdve implemented as transactions
in order to cancel their effects if they cannot be succelysttdmpleted. As discussed in
[Curbera et al., 2003], internet-based transactions ddreionplemented by exploiting the lock-
ing techniques adopted in distributed systems, given tige laumber of concurrent processes
that might interact with the Web Service and its own supplier In alternative,
[Curbera et al., 2003] and [Benatallah et al., 2003] propgbseompensatiompproach to han-
dle the failures in the execution of operations. Roughlyagp®y, a compensation is carried out
by invoking a specialized procedure devoted to restoriagtate of the Web Service prior to the

16

invocation of the failed operation. Our framework can beeagied with compensations without
major efforts because it explicitly manages failures atcihreversation level. Depending on the
failed operation, a compensation procedure to be handldteavorkflow management level
can be invoked.

References

[Agentcities, 2002] Agentcities (2002). Agentcities netwservices. http://www.agentcities.net/.

[Arkin et al., 2002] Arkin, A., Askary, S., Fordin, S., Jekalv., Kawaguchi, K., Orchard, D., Pogliani,
S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovi¢,ahd Zimek, S. (2002). Web Service
Choreography Interface 1.0. http://ifr.sap.com/wseéifsfication/wsci-specp10.html.

[Benatallah et al., 2003] Benatallah, B., Casati, F., Tanim@., and Hamadi, R. (2003). Conceptual
modeling of Web Service conversations. Hroc. Advanced Information Systems Engineering, 15th
Int. Conf., CAISE 200Xlagenfurt, Austria.

[Cabrera et al., 2002] Cabrera, F., Copeland, G., FreunI&in, J., Langworthy, D., Orchard, D.,
Shewchuk, J., and Storey, T. (2002). Web Services Coordm@tvVS-Coordination). http://www-
106.ibm.com/developerworks/library/ws-coor/.

[Chauhan, 1997] Chauhan, D. (1997)JAFMAS: A Java-based Agent Framework for Multiagent Sys-
tems Development and ImplementatioPhD thesis, University of Cincinnati, Stanford, CA.

[Cohen and Levesque, 1990] Cohen, P. and Levesque, H. (198@tional interaction as the basis for
communication. In Cohen, P., Morgan, J., and Pollack, Mitoex] Intentions in communication
221-255. MIT Press.

[Curbera et al., 2002a] Curbera, F., Duffler, M., Khalaf, IRagy, W., Mukhi, N., and Weerawarana, S.
(2002a). Unraveling the Web Services WellEEE Internet computingMarch-April.

[Curbera et al., 2002b] Curbera, F., Goland, Y., Klein, Jkytann, F., Roller, D., Thatte, S., and
Weerawarana, S. (2002b). Business process executiondgedior Web Services, version 1.0.
http://www-106.ibm.com/developerworks/webservidbsdry/ws-bpel/.

[Curbera et al., 2003] Curbera, F., Khalaf, R., Mukhi, N.i, ®, and Weerawarana, S. (2003). The
next step in Web Services.Communications of the ACM, Special Issue on Service-@uike@bm-
puting 46(10).

[Deo, 2002] Deo, H. (2002). The need for a dynamic invocatiamework.

[Finin et al., 1995] Finin, T., Labrou, Y., and Mayfield, J9@5). KQML as an agent communication
language. In Bradshaw, J., edit@oftware AgentdMIT Press, Cambridge.

[FIPA, 2000] FIPA (2000). Foundation for Physical Intedligf Agents. http://www.fipa.org/.

[Hanson et al., 2002] Hanson, J., Nandi, P., and Levine, D0Z2 Conversation-enabled Web Ser-
vices for agents and e-Business. Aroc. of the Int. Conf. on Internet Computing (IC-0291-796,
Las Vegas, Nevada.

[ILOG, 2002] ILOG (2002). ILOG JConfigurator. http://wwtag.com/products/jconfigurator/.

17

[Kamamura et al., 2003] Kamamura, T., De Blasio, J., HasagalW, Paolucci, M., and Sycara, K.
(2003). Preliminary report of public experiment of semasgérvice matchmaker with UDDI busi-
ness registry. IiProc. Int. Conf. on Service-Oriented computing (ICSOC 20088-224, Trento,
Italy.

[Mailharro, 1998] Mailharro, D. (1998). A classificationdinonstraint-based framework for configu-
ration. Al in Engineering, Design and Manufacturing2:383-397.

[Mcllraith et al., 2001] Mcllraith, S., Son, T., and Zeng, {2001). Semantic Web ServiceslEEE
Intelligent Systemdl6(2):46-53.

[Paolucci et al., 2003] Paolucci, M., Sycara, K., NishimuFa and Srinivasan, N. (2003). Toward a
Semantic Web e-commerce. Rioc. of 6th Int. Conf. on Business Information Systems'2B(&),
Colorado Springs, Colorado.

[Piller and Schaller, 2002] Piller, F. and Schaller, C. (200 Individualization-based collaborative
Customer Relationship Management: motives, structuresnades of collaboration for Mass Cus-
tomization and CRM. Technical Report 29, Department of Garend Industrial Management,
Technische Universitat, Minchen.

[Rich et al., 2002] Rich, C., McDonald, D., Lesh, N., and %ign C. (2002). COL-
LAGEN: Java middleware for collaborative agents servicesth wmultiple suppliers.
http://www.merl.com/projects/collagen.

[Searle, 1975] Searle, J. (1975). Indirect speech acts. ole,®. and Morgan, J., editorSyntax and
Semantics: Speech Act®lume 3, 59-82. Academic Press, New York.

[Stein and Maier, 1994] Stein, A. and Maier, E. (1994). Suing collaborative information-seeking
dialogues. Knowledge-Based Systend$2-3):82—93.

[Sun Microsystems, 2003] Sun Microsystems Inc. (2003). aJ&eb Services Development Pack 1.3.
http://java.sun.com/webservices/webservicespack.htm

[W3C, 2002a] W3C (2002a). Web Services Conversation Laggua (WSCL).
http://iwww.w3.0rg/TR/wscl10.

[W3C, 2002b] W3C (2002b). Web Services Definition Languadetp://www.w3.org/TR/wsdl.

[Web Services Coalition, 2002] Web Services Coalition @00 DAML-S: Web Service description
for the Semantic Web. Imt. Semantic Web Conferendehia Laguna, Italy.

8 List of Captions

Figurel : Service composition and conversation.

Figure2 : Speech-act based interaction flow for a trivial product@umszation Web Service.
Figure3 : Simplified conversation flow specification.

Figure4 : Domain-level operations and communicative actions.

Figureb : Instructing the consumer about how to continue a convensati

Figure6 : Conversation flow specification of a product customizati@b\8ervice. The portion
of automaton in the square is a zoom on the SPECIDATA arc.

FigureT : Interaction between a middle agent and some Web Services.

Figure8 : Interaction with a Web Service provider.

Figure9 : Portion of the WSDL specification of the loan customizatiervge.

18

