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A CONVERSE OF THE BOREL FORMULA
BY

RONALD M. DOTZEL

Abstract. When an elementary Abelian /»-group acts on a Zp-homology
sphere (/» a prime), it is known that the Borel formula must hold. Here we
ask that the Borel formula hold and determine how this restricts, homologi-
cally, the type of space which can occur, assuming spherical fixed sets and
connectedness. This is done by constructing a linear model of the action and
an equivariant map to the model, the mapping cone of which yields certain
homological information.

1. Introduction. If an elementary Abelian p-group G, p a prime, acts on a
Zp-homology sphere X, it is well known that the Borel formula holds (see [1,
p. 175]). Thus if H < G, and XH is a Z^-homology «(//)-sphere, one has

n - «(G) =2 (n(H) - n(G))
where the sum runs over all subgroups H of index p (i.e. H has corank 1 in
G).

We prove here the following converse.

Theorem 1. Let X be a finite CW-complex with a cellular action of
G = (ZpY, such that each XH (H J= 0) is a Zp-homology sphere. Suppose,
moreover, that there exists an « such that H¡(X; Zp) = 0, / ¥= n, and so that if p
is odd, « — n(G) is even. Also assume the Borel formula holds for this action,
i.e.

«-«(G) =£(«(//)-«(G))

where the sum runs over all corank 1 subgroups of G.
Then H„(X; Zp) = Zp® F, with F free over Zp[G).

Remark. Assuming « — «(G) even is a restriction only when r = 1.
In §2 we indicate how the theorem follows from the existence of a linear

"model" of the action S", and an equivariant map <f>: A'—» S" which induces
Zp homology isomorphisms on all XH (H =£ 0), and is itself a Zp homology
epimorphism.

In §3 we show that such a map <J> exists and relegate the discussion of its
homological properties to §4.

Received by the editors December 7, 1977 and, in revised form, April 7, 1978.
AMS (MOS) subject classifications (1970). Primary 55C35; Secondary 55B25.

© 1979 American Mathematical Society
0002-9947/79/0000-0263/$04.2S

275

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 R. M. DOTZEL

This paper is the major part of my doctoral dissertation written at Rutgers
University under G. E. Bredon. I wish to acknowledge my gratitude to him
for suggesting this problem and for his generous advice and assistance.

2. We begin this section with the following lemma.

Lemma 1. Let X, G and n be as in the statement of Theorem 1. Then there is
a linear G-action on S" such that for H <\G,if (S")H = Sm then m = n(H),
where XH is a mod-p n(H)-sphere.

Proof. If H is any corank 1 subgroup of G, the exact sequence
0^//^G-»G///^0

allows the formation of a 1-dimensional real nontrivial representation of G if
p = 2, or complex nontrivial if p i= 2, with H acting trivially in either case.
Let <bH denote this representation.

For any representation $, \pm denotes the representation \¡/ © \p © . . . ffi \p
(m times). 1 denotes the trivial real 1-dimensional representation. Consider,
now, the real representations

v = i"<G> + 2 (<M"<")~n(G)     (UP = 2)
or

V = I"«?) + 2 (^)("(W)-',(G))/2       (if p + 2).

The sums are over all corank 1 subgroups H of G. In either case
dimR V = n(G) + 2 ("(H) - n(G)) - «

with the sum as above. Letting a = 2 if p ^ 2 and a = 1 if p = 2, one notes
that for K <\ G

yK m  in(G) + V (A   \(»(»)-»(G))/«

This sum runs over AK = [H < G\K < H, H corank 1 in G}. Thus dimjjK*
= n(K). Compacting V at one point yields the desired S".   □

From now on we will assume each of the spheres 5""(//) is 1-connected and
that A' is a suspended G-space (suspending X is harmless homologically, and
achieves the former condition).

We will complete this section by indicating how Theorem 1 follows from
the existence of a G-map <b: X -» S".

<í> is expected to induce a Zp -homology isomorphism on fixed sets for
H ¥= 0 and a Zp -homology epimorphism for H = 0.

We will need

Lemma 2. Let X be a finite CW-complex with an action of a p-group P, such
that all XH (H < P, H ^ 0) are Zp-acyclic. Suppose there is an integer « > 0
so that H¡(X; Zp) = 0 for i =é n.

Then Hn(X; Zp) is a free Zp[P¡-module.
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Proof. Let X = (J {A^O =£ H < P}. By Mayer-Vietoris and induction,
X is Z^-acyclic. Then H„(X/X; Zp) = H„(X; Zp); H,(X/X) consists of
torsion prime top for i ¥= n. Let m ( > n) be the cellular dimension of X.

Consider any surjection/: Z[P] -» A, where A is a Z[F]-module of torsion
prime to p, and/ is a Z[F ]-homomorphism. It follows from [4, p. 236, 2.5]
and [6, 4.12] that ker/is Z[F]-projective (see [5, Lemma 3]).

Now by suspending, if necessary, we may assume X/X is 1-connected and
so we may attach free orbits of cells to X/X to obtain a semifree F-space Y
with one fixed point. Y is /«-dimensional, (« — l)-connected and further,
H„(Y) = Hn(X/X) © N, where N is a projective Z[F]-module. If m = «
then Y satisfies the hypothesis of [5, Lemma 3] and so Hn(Y) is Z[F]-projec-
tive, which implies that Hn(X/X) is also Z[F]-projective.

If m > n, add free orbits of (« + l)-cells to kill off N. This produces a
complex X0 with H„(X0) = Hn(X/X), Hn+l(X0) - //„+,(*/*) © N0 (where
Wo is Z[F]-projective), and H¡(X0) = Ht(X/X) for i > « + 1.

Add free orbits of (n + l)-cells to X0 to kill off Hn(X/X). This creates an
«-connected complex (of dimension m) Yn, so that H¡( Yn) — H¡(X/X),
i > n + 1 ; but we have

0->Hn+x(X0)^Hn+x(Yn)^keTdn+l^O, (•)

where 3n+, : Hn+x( Yn, XQ) -^   Hn(X0) = Hn(X/X).
Now if m = « + 1, it follows that //n+I(Ar0) = W0 (since Hn+x(X; Zp) = 0)

and since Y„ is (« + l)-dimensional (this case), «-connected, by [5, Lemma 3],
Hn+X(Y„) is Z[F]-projective. Therefore H„(X/X) has finite projective
dimension and by [6, 4.12], actually has projective dimension < 1.

Now if m > n + 1, step 3 is as follows. To Y„, add free orbits of (« + 2)-
cells to kill off Hn+x(X0) (see sequence (*)). This produces a complex Y'n+X
with //n+I(r„'+1) = ker tf„+1 and Hn+2(Y¿+X) = //n+2(X0) ffi Nx, where AT, is
Z[F]-projective.

Now add free orbits of (« + 2)-cells to Y^+x to form the complex Yn+X and
to kill off kerdn+1. Note that Yn+X is (« + l)-connected, w-dimensional.
Furthermore we have the exact sequence

Hn + 2 (Yn+\> Yn+ l) ~* Hn+\ ( Yn + \> Xo)   ~+>     Hn (X0 ) = Hn (XIX )'
where the left-hand map is the composition

iWï'.+i.'rç+i) ^ ^+i(^'+i)«ker3n+1^//n+1(yn'+1,A-0).
We also have the exact sequence

°->Hn + 2(Yñ+\)^> Hn + 2(Yn+\)^>Hn+2(Yn+\> Yñ+l)   ~+*     Hn+l(Yn+l)-
Now if m = « + 2, it follows that //n+2(^«'+i) = ^i» a Z[F]-projective,

because Hn+2(X; Zp) = 0. Since Yn+X is, in this case, (« + 2)-dimensional,
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278 R. M. DOTZEL

and (« + l)-connected, Hn+2(Yn + x) is Z[F]-projective by [5, Lemma 3]. Thus
Hn(X/X)   has   finite   projective   dimension   (simply   link   the   sequences
together). By [6,4.12], it has projective dimension < 1.

If m > « + 2, then we have the exact sequence
0-> #„+2(X'+i)-tf„+2(*»+i)-~  kerd„+2.

Since Hn+2(Y^+X) = Hn+2(X0) ffi Nx, step 3 may be repeated until Ym_x is
reached. The same argument, above, shows that Hn(X/X) has finite projec-
tive dimension over Z[P], and hence has projective dimension < 1.

So, for suitable projectives R, S over Z[P],

0^>R^S-*Hn(X/X)^0
is an exact sequence. Since Hn(X/X) has nop-torsion,

0^ R ®z Zp -> S ®z Zp -> Hn(X/X; Zp)^0
is exact over Zp[P\. By [6,3.5], R ®z Zp is injective (as well as free) and so
Hn(X/X; Zp), a summand of the free Zp[P] module S ®z Zp, is free by
[6,3.5]. Since H„(X/X; Zp) = H„(X; Zp), Hn(X; Zp) is free.   □

Lemma 3. Given G, X, S" as above. Suppose $: X -* S" is a G-map which
induces a Zp-homology isomorphism <f>H for H =£ 0 and an epimorphism for
H = 0, where <t>H: XH -* (Sn)H.

Then Hn(X; Zp) = Zp® F where F is a free Zp[G] module.

Proof. C^, the mapping cone of <f>, inherits a G-action and (C^)H = C^h
for H < G. Thus each (C^)" is Z^-acyclic.

A Mayer-Vietoris argument on C^ produces

... -> Ht (X) 4. //,. (S" ) - H, (C„ )-#,_, (A") -»...,
Zp-coefficients throughout. Now H¡(C^; Zp) = 0, i' ̂  « + 1, and so by
Lemma 2, Hn+x(C^; Zp) is Z^fP] free, hence also injective. Consequently

0^ Hn+X (C>; Z,) -» //„(A"; Z,) -> //n(5"; Z,) ->0
splits over Z,[F].   Q

3. We now will show that the equivariant map mentioned in Lemma 3
exists. In order to do this we use the equivariant obstruction theory of Bredon
[3, Chapter 2] to show that the map constructed in the following lemma may
be extended equivariantly.

Lemma 4. If G, X, S" are as above, then there is a map <b: Xa -» SG inducing
a Zp-homology isomorphism.

Proof. Let K[Zp, n(G)] be an Eilenberg-Mac Lane complex whose «(G)-
skeleton is S"(G). Corresponding to a generator of Hn(G\XG; Zp) « Zp is a
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cellular map <b: XG -> K[Zp, «(G)]. From the commutative diagram (vertical
maps are inclusions)

XG X      K[Zp,n(G)}
î Î
(xGfG)     -    S«<G>

it follows that <j>: (ArG)n(G) -* S*(G\ the restriction of </> to the «(G)-skeleton is
a Zp-homology epimorphism. By classical obstruction theory and a Universal
Coefficient Theorem one finds that any obstructions to extending 4> to all of
XG have finite order, prime top. This is a minor impediment; for, suppose <$>:
(XGfm) -> SG and an obstruction to extending <j> to (ArG)(m+1), [CJ, has order
k, withp } k. Replace <#> by the map

4<:(XG)(m)^(XGfm)V-- ■ V(A-G)(m)^SGV •• VSG^SG

where the second and third terms are A>fold wedges and the middle map is
A:-copies of </>. Since we are assuming A" is a suspension, so are all its fixed
sets; and then the first map is cogroup addition while the last is a collapse. By
homotopy addition one checks that the obstruction to extending \p (corre-
sponding to Cq), namely C^, is kC^ = 0. Also, in homology with Zp
coefficients, i/^ = u4>„ where u is a unit in Zp, so \pt will also be an
epimorphism. Notice that once </> is extended, <f>„ will be an isomorphism.   □

Now suppose we have an equivariant map <f>: X(k) u A"G -» S".
Obstructions to extending <i> equivariantly to Ar(*+1) he in HG + 1(X, XG;
£}k(S")), the equivariant classical cohomology group with coefficient system
ùk(S") (see Bredon [3, Chapter 2]). Because all of the 5" are 1-connected, we
can assume </> is extended to <#>: A"(2) u A"G -^ S".

The same argument as in Lemma 4 shows that if the obstruction, [CJ, in
H¿+\X, Xa; ¿bk(S")) has finite order prime top, we may replace the G-map
<t> by the G-map </>. ̂ will have the same Zp-homological properties, and
[C^] = 0, as before.

The remainder of this section will be devoted to showing that the groups
H¿+1(X, XG; ük(S")) have finite order, prime top, or are zero. This done, </>
can be extended.

We first consider a special case.

Lemma 5. Let X be a finite CW-complex with the Zp-homology of an
n-sphere. Suppose G = Zp acts cellularly on X. Let <j>: XG -*(S")G induce a
Zp-homology isomorphism. Assume (without loss) that n(G) = dim(S")G > 2.
Then all of the obstruction groups HG + ,(X, XG; ¿¡k(S")) are of finite order,
prime to p, or zero.
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280 R. M. DOTZEL

Proof. Assume <b has been extended to A"(r_l) u Xa, equivariantly.
Obstructions to extending <b to X(r) u XG are represented by cochains
residing in

CG (X, Xe; <br_x(S" )) « Hom(Cr(A-, A"0; Z), ¿br_x(S" )).

(Horn used here refers to natural transformations between the two contra-
variant functors Cr(X, XG; Z) (see [3, p. 1.20] for the definition) and
ûr_x(Sn); the isomorphism is a chain isomorphism (also see [3, p. 1.9]). All
such transformations form an Abelian group [3, p. 1.9].)

Now for any r-cell o, not in A'G, G„, the isotropy subgroup of G, is 0 and so

Cr(A-,A"G;Z)(G/G0) = Cr(X,XG;Z).

Also, ¿Jr_,(5"')(G/Gff) = trr_x(Sn). If r < «, it follows that

Hom(Cf(A-, A"G; Z); ûr_x(S")) &KomZG(Cr(X, XG; Z),mr_x(Sn)) = 0,

so we may assume <f>: X{n) u XG —> S" is an equivariant extension of <f>:
XG^SG.

Obstructions to extending <j> to A'("+1) are represented by cochains in
Hom(Cn+x(X, XG), <bn(S")). Each element of this group is a diagram

C„ + 1(A-,A-G)     ->    „„(S»)

T T
0 -»     Trn{(S"f)

where the horizontal maps are ZG-homomorphisms. Thus

Hom(Cn+, (A", A-G ), ¡>„(S" )) « HomZG(C„+1 (X, XG; Z), -nn(S" )),

and also

HG + i (X,XG; ¡b(S")) « //"+1 (HomZG(c+(A\A-G; Z), trn(Sn ))).

Now consider HomZG(C^(X, XG; Z), Zp), which by [4, p. 30, 3'] (and using
that Cm(X, XG; Z) is a free ZG complex) is chain isomorphic to
HomZpG(C,(A-, A"6; Zp), Zp).

If m is the cellular dimension of X and Bn(X, XG; Zp) the relative
«-boundaries mod p, then the sequence

0^Cm(X,XG;Zp)^->Cn+1(A-,A-G;Z,)^fi„(A\A-G;Z,)^0

is exact because H,(X, XG; Zp) = 0 if / > n. Thus Bn(X, XG; Zp) has finite
projective dimension over ZpG and by [6, 3.5], Bn(X, XG; Zp) is projective.
Thus for any k > 2,

H"+k (Hom4C(Ct(X, XG; Zp), Zp)) = Ext*.^1 (B„(X, Xg; Zp), Zp) = 0.
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Using that B„(X, XG; Zp) is ZpG injective, one also has

//"+1 (HomZpG(c,(X, XG; Zp), Zp)) = 0.

Corresponding to the coefficient sequence

O^Z^Z^Zp-^O
there is the long exact sequence

... -» Hn+k (Homzc(C,(*, Xa; Z), z))

L,Hn+k ^iomZG(Ct(X, XG; Z), z)) -h>0

for k > 1. Since Hn+k(HomZG(C,(X, XG; Z), Zp)) = 0, it follows that

Hn+k (HomZG(c*(X, XG; Z),z)^,       k> 1,

has torsion prime top (if p = 2, Z may have a nontrivial action).
In order to examine HG+k(X, XG; ü„+k_x(Sn)) for k > 2 we first note, as

above, that it is isomorphic to Hn+k(UomZG(C,(X, XG; Z), irn+k_x(S"))).
Since if ir„ + k-X(S") is infinite it must have form Z ffi A (A finite) by [8, p.
516], it follows from the sequence of ZG-modules

O^A -^Z BA^Z^O
that it suffices to consider only H"+k(HomZG(Ct(X, XG; Z), A)), where A is
a finite ZG-module. Moreover it is quite clear that one need only consider
Hn+k(HomZG(Ci(X, XG; Z), P)) where P is the p-sylow subgroup of A.
Thus whether or not H"+k(rlomZG(C,(X, XG; Z), irn+k_x(S"))) is torsion
prime top depends entirely on the behavior of //"+/c(HomZG(C<t(A', A"G; Z),
P)). In case F = Zp, from above, this latter group is 0. If F is a vector space
over Zp, by [7, p. 80] the automorphism a on F induced by the G action has a
proper invariant subgroup. If F is not a Z^-vector space then the proper
subgroup V(P) of all elements of order p in F is an invariant subgroup. In
any case then, let H be some invariant subgroup of F. Using the Bockstein
sequence from

0^H^P^P/H^0
and induction on the order of F, the conclusion that

H"+k (HomZG(c,(A\ A-G; Z), P)) = 0

follows. So //n+A:(HomZG(C<1(A', XG; Z), irn+k_x(S"))) is torsion prime top,
and this proves the lemma.    □

Now the general problem of extending <j>: Xm u XG -+ S" equivariantly,
with G = Zp, brings us to possible obstructions lying in HG+1(X, XG;
ük(S")) and, as remarked above, it suffices to show that these groups have
finite order prime top.
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Now for convenience, if A is an abelian group, let A and pA denote the
elements of order p in A and the image of multiplication by p, respectively.
We want to define several contravariant coefficient systems. Contravariant
coefficient systems are contravariant functors on the category of coset spaces
G/H and equivariant maps (with respect to left translation) G/H -» G/K.
These are (ük(S"))p, puk(S") and àk(S") ® Zp, defined on objects G/H by
(ùk(S"))p(G/H) = (irk(SH))p, pwk(S")(G/H) = ptrk(SH) and («*($") <8>
Zp)(G/H) = 7Tk(SH) ® Zp respectively, and obvious values on morphisms. It
is easy to check that these are contravariant coefficient systems. The follow-
ing lemma is routine.

Lemma 6. There are two short exact sequences in CG (the Abelian category of
contravariant coefficient systems):

0^(¿bk(S"))pX¿bk(S") Xpük(S")^0,

0^pük(S")X<bk(S")^ük(S")®Zp-*0.

Remark, i and y are "inclusion" natural transformations, and it is defined
by the commutative (for G/H^G/K equivariant) diagram and the desire
that m is not (generally) zero:

ÎW) ÎW) ® i
■*(**)      ">     -nk(SK)®Zp

Proof. One must check exactness in the categorical sense, but this is not
more difficult than for Abelian groups.

The two short exact sequences give rise to a pair of long exact sequences

. . . -tf*+1 (X,XG; S>k(S°)) C//*+1 (X,XG;p<bk(S»))

^//*+2(A\A'G;(¿,(S'')g^...

...^HG+i(X,XG;pük(S»))^HG + i(X,XG;u>k(S"))

^HG + '(X,XG;¡bk(Sn)®Zp)^...   -

The composition

Hk+l (X,XG; «fc(S»)) P^Hk+l (X,XG;pük(S»))

^Hk+l(X,XG;¿bk(Sn))

is multiplication by p on Hk+l(X, XG; ûk(Sn)). In order for HG+1(X, XG;
¿bk(S")) to be of finite order prime top, it suffices, from the above sequences,
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A CONVERSE OF THE BOREL FORMULA 283

that
Hk+2 (X, XG; (wk(S" ))p) = 0=Hk+l (X, XG; ¿bk(S" ) ® Zp).

This brings us to the following lemma.

Lemma 7. HG(X, XG; (ùk(S"))p) = 0 = HG(X, XG; <bk(S") ® Zp) for j >
k+ 1.

Proof. Consider the following sequence of G-spaces:

X - X0 2 Xx 3    • • D Xr = A"G,
where A, is the set of all points in X whose isotropy subgroup has rank / or
greater.

We prove this lemma by induction on i. From the triple (X¡_x, A,, A"0), and
assuming the lemma for the pair (A,, XG), the inductive step will follow if we
show the lemma to be true for the pair (A,_„ A,). When / = r note that this
also resolves the initial step of the induction.

First of all, it is easy to check that for any coefficient system M,

Hom(C,(A',._I, A,; Z), M) « © HomzlG/H](c,(XH, X»; Z), M (G/H)),

with the sum taken over {// < G\H has rank i — 1 in G}. This uses, for
instance, the characterisation of equivariant maps G///-» G/K given in [3,
p. 1.8]. For the particular coefficient systems above, one has

#¿ (*;_,, j^ûfevS»)),)

= e W (Homz[G/„](C,(A-", X»; Z), irk(SH ) J)

and

HG(Xi_x,Xi;ô,k(S")®Zp)

= © W (HomzlG/H](c.(XH, X»; Z), wk(SH)® Zp))

with the sums over {// < G\H has rank / - 1 in G}. It will be shown that
each of the summands above is zero. First, as in Lemma 5 and because
CÍA-", XXH; Z) is a free Z[G/H] complex, HomZ[G/H](C.(XH, XXH; Z), Zp)
is chain isomorphic to HomZ[G/H](Ct(XH, Xx; Zp), Zp). The fact that this
latter complex is acyclic in dimensions j will follow. The assertion about the
summands above, then, is immediate by an induction on the order of the
p-groups trk(SH)p and trk(SH) ® Zp, just as in the proof of Lemma 5. Note
that we may as well assume k > «(//).

Lemma 8. HJ(HomZp[G/HX(Cn(XH, X»; Zp), Zp)) - Oforj > k + 1.

Proof. If m is the cellular dimension of XH we have the sequence,
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0 - Cm {X ", XXH; Zp ) --> Ck+, (**, Af ; Z, )

^Q(A^Ar;Z,)^Q(*"'*";Zp) ^0
^ ''      Bk(X»,X»;Zp)

where Bk(XH, XXH; Zp) are the relative ^-boundaries. If this sequence were
exact then the Z^G/Z/J-module Ck(XH,Xx"; Zp)/Bk(XH,XxH; Zp) would
have finite projective dimension and so be projective over Zp[G/H]. The
result is then immediate since the cohomology we seek is just

Vrf£flGtHi(Ck(X*,X?; Zp)/Bk(XH,X»; Zp); Zp) = 0.
So, it suffices to show that Hj(XH, XXH; Zp) = 0, if y > n(H), to which end

we now devote our attention.
In what follows, all homology will be with Zp-coefficients, suppressed. The

argument is a double induction on the rank of H and on the number of
entries in the union XXH = U XK, running over {K < G\K/H = Zp}. To
begin with, the assertion is certainly true if H = G or the union is empty.
Now suppose there exists some M0 > H such that M0/H = Zp with n(M0) <
n(H). Let AMq = {M > H\M/H = Zp, M ^ M0}. Considering the triple
(XH, XXH, U XM), where the union runs over AM , one has

...^Hj(x",    \JXM)^Hj(X»,X»)^Hj_x{x»,    U*")-*....

The left-hand group is zero by induction because the union has fewer terms.
Concentrating on the right-hand group, and by excision,

Hj-X(x»,   UxM) = Hj^(xMo,  Lk^nA-"»)),

with unions over AM . Now let K be any subgroup of G containing M0 such
that K/M0 = Zp. Let g0 = g0 + M0 generate K/M0 and consider M, =
(//, g0), the subgroup generated by H and g0. Clearly Mx ^ A/0, and XMl n
XM" = XK, since K = (M0, g0). So (XM°, U (XM n XM°)) = (XM°, Xf»),
with union over AM¡¡. Since y - 1 > n(M0) the inductive assumption applies
and Hj_ X(XM°, X?*) = 0, so that Hj(XH, XXH) = 0.

Now if no M > H with M/H = Zp has the property n(M) < n(H), we
claim this forces «(//) = «(G). In order to see this, we examine the Borel
formula for the G/M action on XM and the G/H action on XH, where
M/H = Zp. These state that

n(M) - n(G) = *2(n(K) - «(G))       and

n(H)-n(G) = 2(n(K')-n(G)) (1)
where each of the sums is over {K > M (resp. K' > H)\K (resp. K') has
rank r — I}. Now n(M) = n(H) implies the two sums are equal, and after
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cancellation of common terms, one has

0 = 2(n(*')-«(G)), (2)
where this sum runs over {K' > H\K' > M and K' has rank r — 1}. Thus
for all K' appearing in equation (2), «(A"') = «(G). Let K' be any group
appearing in the first equation of (1). K' has corank 1 in G, so let g = g + K'
generate G/K'. Considering Mx = (H, g), it is clear that K' > Mx. So, K'
appears in equation (2) for M = Mx. Hence n(K') = «(G) and K' arbitrary
shows n(H) = «(G). Now M/H acts on XH and if n(M) = n(H), the
inclusion XM -» XH induces a Zp-homology isomorphism. This fact and an
obvious induction and relative Mayer-Vietoris argument shows that
(XH, XXH) is an acyclic pair (if n(H) = «(G)). So Hj(XH, XXH) = 0 if / >
«(//). D

This completes the discussion of the obstructions to producing the map <f>.

4. We now suppose we have a G-map <j>: X -» S" such that </>G: Xa -» SG
induces a Zp-homology isomorphism. It will be seen that, in fact, for H < G,
H ^ 0, <j>H: XH -> SH induces a Zp-homology isomorphism and an
epimorphism if H = 0. The vital fact is the following lemma.

Lemma 9. Suppose X is a finite CW-complex with a G — Zp cellular action
such that XG is a Zp-homology r-sphere. Also suppose there is an « > 0 so that
H,(X; Zp) = 0, i =£ n, and let <j>: X ^ S" be G-equivariant with <f>G: XG ̂ >
(S")G inducing a Zp-homology isomorphism.

Then <i> induces a Zp-homology epimorphism

^:Hn{X;Zp)^Hn{S";Zp).

Proof. We will use the notation of [2, Chapter 3].
If r = «, it is well known that /: (S")G -* S" induces a Zp-homology

isomorphism. The following commutative diagram (Zp-coefficients
throughout)

Hn(XG)      A     Hn(X)
W A*.
Hn(SG)      -*     H„(S")>.

shows that <f>m must be an epimorphism.
Now suppose r < « and consider the standard Smith diagram (Zp-

coefficients)
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^Hr+x(X)^Hr°+](X) ^HÏ(X)®Hr(XG)^ H,(X)-+
i*, i*: 1*1       k i*.      (3)

-» H, +, (5" ) -» H,'+, (S" ) -* //; (5" ) © ff, (SG ) -> ff, (5" ) ->
Because rank //'/(S") + 2/>r rank //,(SG) < 2i>r rank //,(£") we have
H?(S") = 0. The same inequality with X replacing 5" and r replaced by m
(> n) shows that (i > «) H°(X) = 0 = H,T(A"). Similarly for S". Some other,
easily established facts we will need (see [2, Chapter 3]) are that H°(Sn) =
Hn(S/G, SG)= Zp if r = n - 1 and for r < n - 2, H¿(Sn) = Zp =
W-X(Sn).

Now suppose r = n — 1 (and p = 2, necessarily). Then the Smith diagram
becomes, after simplifying,

<>-»//;(*) - //„(a-) -> //„»(A-) ->#;_,(*) ©//„_,(A-G)^o
I*; K i*: ±<f>,c

0^H;(S")-+Hn(S»)^HZ(S")-> Hn_x(SG) ^0
where some of the facts listed above have been used. A diagram chase verifies
that <#>£: H°(X)^H^(Sn) is an epimorphism. Writing down the dual
diagram to the one above (i.e. with the roles of a and r reversed), one has

o^h;(x) ^ Hn(X) -+ H¿(X) ^ H;_X(X) ® Hn_x(XG)^0

O^HZ(Sn)^Hn(S»)^H;(S")-*HZ_l(S'>)(BHn_x(SG)^0',

Since H¿(S") = Zp, im is an isomorphism; this and the surjectivity of <f>l
are enough to ensure that <#>„ is onto.

Now if r < « - 2, the Smith diagram (3) simplifies to

0^Hr°+x(X)      -»    VW)® Hr(XG) ->0

o-»//;+l(S")    -* //,(sG)       ->o

It follows that </>° is an epimorphism and, from the dual of this diagram (in
the sense above), <j>l is also an epimorphism.

Now consider

Hr+2(X) -* Hr\2(X) -» //;+1(A") ®Hr+x(XG)^  Hr+x(X)
l*, l*; i*i        % !♦? I*.

//,+2(5- ) -* //;+2 (5- ) -> //;+, (5- ) © Hr+, (5G ) -» //r+, (s» )
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Since Hr+X(XG) = 0, this simplifies to

Hr+2(x)    -*   h;+2(X)    -»    h;+ï(X)->o
I*. IK iK

Hr+2(s-)   ->   h;+2(S*)   -»   h;+i(s»)->o
If r + 2 < «, we immediately get that </>°: Hr"+2(X) -> Hr°+2(S") is an epimor-
phism and, by considering the dual, we see that <j>l: HrT+2(X)—> HJ+2(S") is
an epimorphism. We continue in this way (i.e. deducing that various maps are
onto) until we arrive at

o->h;(x)     ->    h„(x)    -»   //;(A")     -»    //;_,(a-)^o
4*: i*. 4*; 4*;

o-#;(,s»)    ^   //„(5n)    -,   h;(S")    ?   JSC,(5r-)-*o
The isomorphisms have already been noted, and so it follows that 4>J:

//„T(A") -» H¿(S") is surjective. Now we write down the diagram (dual to this
last one)

o^h;(x)     ->    //„(A-)    -,    h;(x)    -*    //;_,(*) ^o
¿♦: 4*. 4*: 4«>:

o^//;(5")    ¡j   //n(5")    -*   //;(S")    ¡j   #;_,(s»)->o
The surjectivity of ft: /ïnT(Ar) -> H¿(S") and the isomorphism //;(Sn) ->

H„(S") (in case r < « — 2) shows that d>^ is an epimorphism.   □
Applying this lemma to the action of G/H on XH where H has corank 1 in

G, one gets that <j>H: X" -» S" induces a Zp-homology isomorphism.
Continuing in this way, one deduces that if H <3 G, // ^ 0, then </>w:
Ar// -» S" is a Zp-homology isomorphism while <j>: X -» S" is a Zp-homology
epimorphism.
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