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A CONVERSE THEOREM ON h-STABILITY VIA

IMPULSIVE VARIATIONAL SYSTEMS

Sung Kyu Choi and Namjip Koo

Abstract. In this paper we develop useful relations which estimate the
difference between the solutions of nonlinear impulsive differential sys-
tems with different initial values. Then we obtain the converse h-stability
theorem of Massera’s type for the nonlinear impulsive systems by employ-
ing the t∞-similarity of the associated impulsive variational systems and
relations.

1. Introduction

The qualitative properties of solutions of differential equations with impulse
effects have been developed by a large number of mathematicians due to the
wide application of these systems to the control theory, biology, electronics, etc
(see e.g. [2, 3, 13]).

Simeonov and Bainov [20] studied the exponential stability of the solutions
for impulsive differential equations by using the comparison method and piece-
wise continuous auxiliary functions which are analogues to Lyapunov’s func-
tions. Also, Kulev and Bainov [12] introduced the notions of various types
of uniform Lipschitz stability for impulsive differential systems and obtained
sufficient conditions for these notions and their relations.

Pinto [17] introduced the notion of h-stability for differential systems without
impulse effect with the intention of obtaining results about stability for weakly
stable differential systems under some perturbations. The various notions of h-
stability given in [17, 18] include several types of known stability properties as
uniform stability, exponential asymptotic stability [15] and uniform Lipschitz
stability [9].

Choi et al. [5, 6] studied h-stability for the linear impulsive differential equa-
tions by means of the notions of similarity, t∞-similarity, and impulsive integral
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inequality. In [4], we proved that two concepts of h-stability and h-stability
in variation for nonlinear impulsive differential systems are equivalent via t∞-
similarity of the associated variational impulsive systems and impulsive integral
inequalities. Also, we characterized h-stability for nonlinear impulsive differ-
ential systems by using the notions of piecewise continuous auxiliary functions
and impulsive differential inequalities. Many authors [2, 3, 5, 12, 13, 16, 20]
have studied the various types of stability of solutions for impulsive differential
equations. However, to the best of our knowledge, there are no papers pub-
lished on the converse h-stability theorem for nonlinear impulsive differential
systems.

Motivated by the above discussion, we develop useful relations which esti-
mate the difference between the solutions of nonlinear impulsive differential
systems with different initial values. Then we obtain the converse h-stability
theorem of Massera’s type for the nonlinear impulsive systems by employing
the t∞-similarity of the associated impulsive variational systems and relations.

2. Preliminary notes and definitions

Let R+ = [0,∞) and Rn be the n-dimensional Euclidean space with a con-
venient vector norm | · |. We consider the impulsive differential system with
impulses at fixed times

{

x′ = f(t, x), t 6= τk,

∆x = Ik(x), t = τk, k = 1, 2, . . . ,
(2.1)

where ∆x(t) = x(t+0) − x(t−0). Assume that the following basic conditions
hold:

(A1) {τk} is an unbounded increasing sequence satisfying 0 ≤ t0 = τ0 <
τ1 < τ2 < · · · and limk→∞ τk = ∞.

(A2) The function f : R+ × Rn → Rn is continuous and has a continuous

partial derivative fx = ∂f
∂x

in (τk−1, τk]×Rn, k = 1, 2, . . . , and f(t, 0) =
0 for each t ∈ R+.

(A3) For any x ∈ Rn and any k = 1, 2, . . . , the functions f and fx have finite
limits as (t, y) → (τk, x), t > τk.

(A4) Each function Ik : Rn → Rn is continuously differentiable in Rn and
there exist nonnegative constants lk such that

|Ik(x)− Ik(y)| ≤ lk|x− y|, k ∈ N, x, y ∈ R
n,

and Ik(0) = 0, k = 1, 2, . . ..
(A5) The solution x(t, t0, x0) of system (2.1) which satisfies the initial con-

dition x(t0+0, t0, x0) = x0 is defined in the interval (t0,∞), and is left
continuous. And at the moments τk the following relations hold

x(τk−0) = x(τk), ∆x(τk) = x(τk+0)− x(τk−0).
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Then it follows from the condition (A5) that the solution x(t, t0, x0) of system
(2.1) through the initial value (t0, x0) is described as follows:

x(t, t0, x0) =































x(t, t0, x0), t0 ≤ t ≤ τ1,

x(t, τ1, x
+
1 ), τ1 < t ≤ τ2,

· · ·
x(t, τk, x

+
k ), τk < t ≤ τk+1,

· · · ,

where x+
k = xk + Ik(xk) and xk = x(τk). For global existence of solutions for

system (2.1), see [21]. The basic notions and important theory for system (2.1)
were described in detail in [2, 3, 13].

Together with system (2.1), we consider the associated impulsive variational
systems











v′ = fx(t, 0)v, t 6= τk,

∆v = ∂Ik(0)
∂x

v, t = τk, k ∈ N,

v(t0 + 0) = v0

(2.2)

and










z′ = fx(t, x(t, t0, x0))z, t 6= τk,

∆z = ∂Ik(x(τk))
∂x

z, t = τk, k ∈ N,

z(t0 + 0) = z0.

(2.3)

It follows from [13, Theorem 2.4.1] that the fundamental matrix solution
Φ(t, t0, 0) of system (2.2) is given by

Φ(t, t0, 0) =
∂x(t, t0, 0)

∂x0
, t 6= τk

and the fundamental matrix solution Φ(t, t0, x0) of system (2.3) is given by

Φ(t, t0, x0) =
∂x(t, t0, x0)

∂x0
, t 6= τk.(2.4)

Let Mn(R) be the set of all n× n matrices over R and let PC(R+,Mn(R))
denote the class of piecewise continuous functions from R+ to Mn(R) with
discontinuities of the first kind only at t = τk, k ∈ N.

We consider two linear homogeneous impulsive systems

(2.5)

{

x′ = A(t)x, t 6= τk,

∆x = Akx, t = τk, k ∈ N,

and

(2.6)

{

y′ = B(t)y, t 6= τk,

∆y = Bky, t = τk, k ∈ N,

under the assumption that the following conditions hold:
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(B1) A,B ∈ PC(R+,Mn(R)).
(B2) Ak, Bk ∈ Mn(R), det(E +Ak) 6= 0, and det(E +Bk) 6= 0, k ∈ N.

Then it follows from [2, p. 7] that the solutions of system (2.5) can be written
in the form

x(t, t0, x0) = X(t, t0)x0,(2.7)

where X(t) is a fundamental matrix of system (2.5) and the Cauchy matrix
X(t, t0) [2, 13] is given by

X(t, t0)

=











Uk(t, t0), 0 ≤ t0 ≤ t ≤ τk,

Uk+1(t, τ
+
k )(E +Ak)Uk(τk, t0), t0 ≤ τk < t ≤ τk+1,

Uk+1(t, τ
+
k )

∏k

j=1(E +Aj)Uj(τj , τ
+
j−1), t0 = τ+0 ≤ τ1 < τk < t ≤ τk+1.

Here Uk(t, s)(k ∈ N, t, s ∈ (τk−1, τk]) is the Cauchy matrix for the linear differ-
ential system

x′ = A(t)x, t ∈ (τk−1, τk], k = 1, 2, . . . .(2.8)

Denote by S the set of all matrix functions S : R+ → Mn(R) which belong
to PC(R+,Mn(R)) and are bounded in R+ together with their inverse S−1(t).
Let M be the set of the linear homogeneous impulsive systems as follows

M := {(A,Ak) |A∈ PC(R+,Mn(R)), Ak∈ Mn(R), det(E +Ak) 6= 0, k ∈ N}.
We recall the notion of t∞-similarity with impulse effect in M which is

analogue to the concept of t∞-similarity introduced by Conti [8].

Definition 2.1 ([3]). We say that (A,Ak) ∈ M is t∞-similar to (B,Bk) ∈ M
if there exists a matrix-valued function S ∈ S such that

S′(t)−A(t)S(t) + S(t)B(t) ≡ F0 ∈ L1, t 6= τk,(2.9)

∆S(τk)−AkS(τk) + S(τ+k )Bk ≡ Fk ∈ l1, t = τk, k ∈ N,(2.10)

where ∆S(τk) = S(τ+k ) − S(τk). We say that system (2.5) is t∞-similar to
system (2.6) if (A,Ak) ∈ M is t∞-similar to (B,Bk) ∈ M for each k ∈ N.
Note that the relation (A,Ak) ∼ (B,Bk) : S is an equivalence relation.

Remark 2.2. The notion of t∞-similarity preserves various concepts of stability:
stability, uniform stability, uniform asymptotic stability and strict stability (see
[3, Theorem 10.3]). In the case when F0 = 0 in (2.9) and Fk = 0 in (2.10) for
each k ∈ N, then t∞-similarity reduces to kinematical similarity for impulsive
linear equations [1].

Definition 2.3 ([20]). We say that the function V : R+ × Rn → Rn belongs
to the class υ0 if

(i) V is continuous in Gk = {(t, x) ∈ R+ × Rn : τk−1 < t < τk} for each
k ∈ N and V (t, 0) = 0 for each t ∈ R+;
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(ii) for any k ∈ N and x ∈ Rn there exist the finite limits

V (τk − 0, x) = lim
(t,y)→(τ

k
,x)

t<τ
k

V (t, y), V (τk + 0, x) = lim
(t,y)→(τ

k
,x)

t>τ
k

V (t, y)

and the equality V (τk − 0, x) = V (τk, x) holds.

We note that if t 6= τk, then V (t+ 0, x) denotes V (t, x).

Definition 2.4 ([20]). The function V ∈ v0 belongs to the class v1 if it is
continuously differentiable in G = ∪∞

k=1Gk.

Remark 2.5 ([22]). For (t, x) ∈ G we define the derivative of the function V ∈ v1
with respect to system (2.1) by

V̇(2.1)(t, x) =
∂V (t, x)

∂t
+

∂V (t, x)

∂x
f(t, x)

and the upper right derivative of the function V ∈ v0 with respect to the
solutions of system (2.1) by

D+
(2.1)V (t, x) = lim

s→0+
sup

1

s
[V (t+ s, x(t+ s, t, x))− V (t, x)].

We note that if the function V ∈ v0 is locally Lipschitz continuous with
respect to x ∈ Rn, then for (t, x) ∈ Gk we have

D+
(2.1)V (t, x) = lim

s→0+
sup

1

s
[V (t+ s, x+ sf(t, x))− V (t, x)].

We recall some notions of various types of h-stability for the zero solution
of system (2.1). For nonlinear differential systems without impulse effect, this
notion was introduced by Pinto [17, 18].

Definition 2.6. The zero solution of system (2.1) is said to be
(hS) h-stable if there exist a positive bounded left-continuous function h :

R+ → R, δ > 0, and a constant c ≥ 1 such that

|x(t, t0, x0)| ≤ c|x0|h(t)h(t0)−1, t ≥ t0

for |x0| ≤ δ(here h(t)−1 = 1
h(t) );

(GhS) globally h-stable if system (2.1) is h-stable for every x0 ∈ D, where
D ⊂ Rn is a region which includes the origin;

(hSV) h-stable in variation if system (2.3) is h-stable;
(GhSV) globally h-stable in variation if system (2.3) is globally h-stable.

The various notions of h-stability given by Definition 2.6 include several
notions of well-known stability such as uniform stability, uniform asymptotic
stability, uniform Lipschitz stability, exponential stability, and non-uniform
stability. For linear impulsive differential systems, we note that the notions of
various types of the above h-stability are equivalent.
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3. Main results

In this section we develop a useful inequality which estimates the difference
between the solutions of nonlinear impulsive systems with different initial values
by using fundamental solutions of the associated impulsive variational systems.
Then we obtain the converse h-stability theorem of Massera’s type for the
nonlinear impulsive systems by employing the t∞-similarity of the associated
impulsive variational systems and an inequality.

To do this, we need the following lemma for differential systems.

Lemma 3.1 ([14, Theorem 1.2.9]). Let g ∈ C(R+ × Rn,Rn), and gy exist

and be continuous on R+ ×Rn. Assume that y(t, t0, x0) and ŷ(t, t0, y0) are the

solutions of differential system of the following form

y′ = g(t, y)(3.1)

through (t0, x0) and (t0, y0), respectively, existing for t ≥ t0, such that x0 and

y0 belong to a convex subset of Rn. Then

y(t, t0, x0)− ŷ(t, t0, y0) =

∫ 1

0

Ψ(t, t0, y0 + s(x0 − y0))ds · (x0 − y0)

holds for t ≥ t0, where Ψ(t, t0, x0) =
∂y(t,t0,x0)

∂x0
.

We need some lemmas to obtain the converse h-stability theorem for system
(2.1). We obtain the following result which estimates the difference between
the solutions of nonlinear impulsive system (2.1) with different initial values
in terms of the fundamental solutions of the associated impulsive variational
systems.

Lemma 3.2. Suppose that D ⊂ Rn is a convex subset and each map Ik in

condition (A4) is Lipschitzian in x with nonnegative constants lk, i.e.,

|Ik(x)− Ik(y)| ≤ lk|x− y|, k ∈ N.(3.2)

Then, for t ≥ t0,

|x(t, t0, x0)− x̂(t, t0, y0)|

≤ sup
η∈D

|Φ(t, τ+k , η)|
k
∏

i=1

(1 + li)|Φ(τi, τ+i−1, η)||x0 − y0|, τk < t ≤ τk+1, k ∈ N,

where x(t, t0, x0) and x̂(t, t0, y0) are the solutions of system (2.1) through (t0, x0)
and (t0, y0), respectively, existing for t ≥ t0, such that x0 and y0 belong to a

convex subset of Rn and τ+0 = t0. Moreover, Φ(t, t0, x0) is the fundamental

matrix solution of system (2.3) given by (2.4).

Proof. If t0 ≤ t ≤ τ1, then it follows from Lemma 3.1 that

(3.3) x(t, t0, x0)− x̂(t, t0, y0) =

∫ 1

0

Φ(t, t0, y0 + s(x0 − y0))ds · (x0 − y0).
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Thus, we have

|x(t, t0, x0)− x̂(t, t0, y0)| ≤
∫ 1

0

|Φ(t, t0, y0 + s(x0 − y0))|ds|x0 − y0|(3.4)

≤ sup
η∈D

|Φ(t, t0, η)||x0 − y0|, t0 ≤ t ≤ τ1,

where D is a convex subset of Rn containing x0 and y0.
If τ1 < t ≤ τ2, then it follows from Lemma 3.1 and (3.3) that

x(t, τ1, x(τ
+
1 ))− x̂(t, τ1, x̂(τ

+
1 ))

=

∫ 1

0

Φ(t, τ+1 , p1(s))ds[x(τ
+
1 )− x̂(τ+1 )]

=

∫ 1

0

Φ(t, τ+1 , p1(s))ds[

∫ 1

0

Φ(τ1, t0, p0(s))ds(x0 − y0) + I1(x(τ1))− I1(x̂(τ1))],

where p0(s) = y0 + s(x0 − y0) and p1(s) = x̂(τ+1 ) + s(x(τ+1 ) − x̂(τ+1 )) and
0 ≤ s ≤ 1. In view of (3.2) and (3.4), we obtain
(3.5)

|x(t, τ1, x(τ+1 ))− x̂(t, τ1, x̂(τ
+
1 ))|

≤
∫ 1

0

|Φ(t, τ+1 , p1(s))|ds[
∫ 1

0

|Φ(τ1, t0, p0(s))|ds|x0 − y0|+ |I1(x(τ1))

− I1(x̂(τ1))|]

≤
∫ 1

0

|Φ(t, τ+1 , p1(s))|ds[
∫ 1

0

|Φ(τ1, t0, p0(s))|ds|x0 − y0|+ l1|x(τ1)− x̂(τ1)|]

≤
∫ 1

0

|Φ(t, τ+1 , p1(s))|ds
∫ 1

0

|Φ(τ1, t0, p0(s))|ds|x0 − y0|(1 + l1)

≤ sup
η∈D

|Φ(t, τ+1 , η)|(1 + l1)|Φ(τ1, t0, η)||x0 − y0|, τ1 < t ≤ τ2,

where p0(s) = y0 + s(x0 − y0) and p1(s) = x̂(τ+1 ) + s(x(τ+1 ) − x̂(τ+1 )) and
0 ≤ s ≤ 1.

If τ2 < t ≤ τ3, then it follows from Lemma 3.1 that

x(t, τ2, x(τ
+
2 ))− x̂(t, τ2, x̂(τ

+
2 )) =

∫ 1

0

Φ(t, τ+2 , p2(s))ds[x(τ
+
2 )− x̂(τ+2 )]

=

∫ 1

0

Φ(t, τ+2 , p2(s))ds[x(τ2)− x̂(τ2) + I2(x(τ2))− I2(x̂(τ2))],

where p2(s) = x̂(τ+2 ) + s(x(τ+2 ) − x̂(τ+2 )) and 0 ≤ s ≤ 1. In view of (3.2) and
(3.5), we have

|x(t, τ2, x(τ+2 ))− x̂(t, τ2, x̂(τ
+
2 ))|

≤
∫ 1

0

|Φ(t, τ+2 , p2(s))|ds[|x(τ2)− x̂(τ2)|+ |I2(x(τ2))− I2(x̂(τ2))|]
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≤
∫ 1

0

|Φ(t, τ+2 , p2(s))|ds[|x(τ2)− x̂(τ2)|+ l2|x(τ2)− x̂(τ2)|]

≤
∫ 1

0

|Φ(t, τ+2 , p2(s))|ds(1 + l2)|x(τ2)− x̂(τ2)|

≤
∫ 1

0

|Φ(t, τ+2 , p2(s))|ds(1 + l1)(1 + l2)

∫ 1

0

|Φ(τ2, τ+1 , p1(s))|ds
∫ 1

0

|Φ(τ1, t0, p0(s))|ds|x0 − y0|

≤ sup
η∈D

|Φ(t, τ+2 , η)|ds(1 + l1)(1 + l2)|Φ(τ2, τ+1 , η)||Φ(τ1, t0, η)||x0 − y0|,

where τ2 < t ≤ τ3, p0(s) = y0+s(x0−y0) and pi(s) = x̂(τ+i )+s(x(τ+i )−x̂(τ+i )),
i = 1, 2 and 0 ≤ s ≤ 1.

It follows from mathematical induction that

x(t, τk, x(τ
+
k ))− x̂(t, τk, x̂(τ

+
k )) =

∫ 1

0

Φ(t, τ+k , pk(s))ds[x(τ
+
k )− x̂(τ+k )]

=

∫ 1

0

Φ(t, τ+k , pk(s))ds[x(τk)− x̂(τk) + Ik(x(τk))− Ik(x̂(τk))],

where τk < t ≤ τk+1, k ∈ N, pk(s) = x̂(τ+k ) + s(x(τ+k ) − x̂(τ+k )), 0 ≤ s ≤ 1.
Thus it follows from (3.2) that

|x(t, τk, x(τ+k ))− x̂(t, τk, x̂(τ
+
k ))|

≤
∫ 1

0

|Φ(t, τ+k , pk(s))|ds[|x(τk)− x̂(τk)|+ |Ik(x(τk))− Ik(x̂(τk))|]

≤
∫ 1

0

|Φ(t, τ+k , pk(s))|ds(1 + lk)|x(τk)− x̂(τk)|

≤ sup
η∈D

|Φ(t, τ+k , η)|
k
∏

i=1

(1 + li)|Φ(τi, τ+i−1, η)||x0 − y0|, τk < t ≤ τk+1, k ∈ N,

where pk(s) = x̂(τ+k ) + s(x(τ+k ) − x̂(τ+k )), 0 ≤ s ≤ 1, and τ+0 = t0. This
completes the proof. �

As a consequence of Lemma 3.2, we easily obtain the following result.

Corollary 3.3 ([4]). Let Ik(x) = dkx in condition (A4), and let dk be con-

stants. Assume that x(t, t0, x0) and x̂(t, t0, y0) are the solutions of system (2.1)
through (t0, x0) and (t0, y0), respectively, existing for t ≥ t0, such that x0 and

y0 belong to a convex subset of Rn. Then,

x(t, t0, x0)− x̂(t, t0, y0)

=

∫ 1

0

Φ(t, τ+k , pk(s))ds

k
∏

i=1

(1 + di)

∫ 1

0

Φ(τi, τ
+
i−1, pi−1(s))ds · (x0 − y0),
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holds for τk < t ≤ τk+1, t ≥ t0, where p0(s) = y0 + s(x0 − y0), pi(s) =
x̂(τ+i ) + s(x(τ+i )− x̂(τ+i )), i = 1, . . . , k, 0 ≤ s ≤ 1, and τ+0 = t0.

We can obtain the following relation between the solution x(t, t0, x0) of sys-
tem (2.1) and Φ(t, t0, x0) given by (2.4).

Corollary 3.4. Assume that x̂(t, t0, y0) = 0 and y0 = 0 in Corollary 3.3.

Then,

x(t, t0, x0) =

∫ 1

0

Φ(t, τ+k , sx(τ+k ))ds

k
∏

i=1

(1 + di)

∫ 1

0

Φ(τi, τ
+
i−1, sx(τ

+
i−1))ds · x0,

holds for τk < t ≤ τk+1, k ∈ N, t ≥ t0, where τ0 = t0.

Remark 3.5. Assume that Ik(x) = 0, k ∈ N, in condition (A4). From Corollary
3.3 and the uniqueness of solutions, it follows that

x(t, t0, x0) =

∫ 1

0

Φ(t, t0, sx0)ds · x0, t ≥ t0.

From Theorems 3.9 and 3.11 in [4], we can show that two notions of hS and
hSV for system (2.1) are equivalent.

Lemma 3.6 ([4, Theorem 3.11]). Assume that impulsive variational system

(2.2) is t∞-similar to impulsive variational system (2.3) and supk∈N

h(τk)

h(τ+
k
)
is

bounded. Then, the zero solution of system (2.3) is h-stable provided the zero

solution of system (2.1) is h-stable.

To prove our main result, we need the following stability criterion for linear
impulsive systems which is adapted from Lemma 1 in [18]. We state the result
of [4, Lemma 3.7] without its proof.

Lemma 3.7. Suppose that the zero solution of system (2.3) is h-stable. Then,

there exist a constant c ≥ 1 and a positive bounded left-continuous function h
defined on R+ such that for every x0 ∈ Rn,

(3.6) |Φ(t, t0, x0)| ≤ ch(t)h(t0)
−1, t ≥ t0 ≥ 0,

where Φ(t, t0, x0) is the fundamental matrix solution of system (2.3).

Choi and Koo [4] provided some sufficient conditions for h-stability of solu-
tions of system (2.1) by using the comparison method and piecewise continuous
auxiliary functions which are analogues to Lyapunov functions. In order to ob-
tain the main result (Theorem 3.8), Lemma 3.2 and the notion of t∞-similarity
of the associated impulsive variational systems are used. Now, we can ob-
tain the converse h-stability theorem of Massera’s type for nonlinear impulsive
differential systems which guarantee the existence of piecewise continuous Lya-
punov’s functions with certain properties. It is adapted from Lemma 3 in [20]
and Theorem 15.3 in [2].
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Theorem 3.8. Assume that (fx(t, 0),
∂Ik(0)
∂x

) ∈ M is t∞-similar to

(fx(t, x(t, t0, x0)),
∂Ik(x(τk))

∂x
) ∈ M

and
∑∞

k=1 lk < ∞ for nonnegative constants lk of each map Ik in the condition

(A4). Suppose further that the zero solution of system (2.1) is globally h-stable
such that h′(t) exists and is continuous on R+. Then, there exist a positive

constant c and a function V : R+ × Rn → R+ such that

(i) V ∈ v0 and V (t, x) is Lipschitzian in x with Lipschitz constant L for

each t ∈ R+;
(ii) |x| ≤ V (t, x) ≤ c|x|, (t, x) ∈ R+ × Rn;

(iii) D+
(2.1)V (t, x) ≤ h′(t)

h(t) V (t, x), t 6= τk;

(iv) V (τ+k , x+ Ik(x)) ≤ V (τk, x), x ∈ Rn, k ∈ N,

where L = c exp(
∑∞

i=1 li).

Proof. Since the zero solution of system (2.1) is globally h-stable, there exist
a constant c ≥ 1 and a positive bounded continuous function h : R+ → R such
that

|x(t, t0, x0)| ≤ c|x0|h(t)h(t0)−1, t ≥ t0, x0 ∈ R
n.

Define the function V : R+ × Rn → R+ by

V (t, x) = sup
τ≥0

|x(t+ τ, t, x)|h(t+ τ)−1h(t), t 6= τk,

V (τk, x) = V (τ−k , x), k = 1, 2, . . . ,

where x(t+τ, t, x) is a solution of system (2.1) through (t, x) ∈ R+×Rn. Then,
we obtain

|x| = |x(t, t, x)| ≤ sup
τ≥0

|x(t + τ, t, x)|h(t+ τ)−1h(t)

and

V (t, x) ≤ c|x|h(t+ τ)h(t)−1h(t+ τ)−1h(t) = c|x|.
Thus the property (ii) is proved for t 6= τk for each k ∈ N.

From the definition of hS and uniqueness of solutions of system (2.1), it
follows that V (t, x) is defined on R+ × Rn.

We show that V (t, x) is Lipschitzian in x for each t ∈ R+. Let (t, x), (t, y) ∈
R+ × Rn. From Lemmas 3.2, 3.6 and 3.7, we have

|V (t, x)− V (t, y)|(3.7)

≤ | sup
τ≥0

|x(t+ τ, t, x)|h(t+ τ)−1h(t)− sup
τ≥0

|x(t+ τ, t, y)|h(t+ τ)−1h(t)|

≤ sup
τ≥0

|x(t + τ, t, x)− x(t+ τ, t, y)|h(t+ τ)−1h(t)

≤ |x− y| sup
η∈D

|Φ(t+ τ, τ+k , η)|
k
∏

i=1

(1 + li)|Φ(τi, τ+i−1, η)|h(t+ τ)−1h(t)
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≤ |x− y|c
∞
∏

i=1

(1 + li)h(t+ τ)h(t)−1h(t+ τ)−1h(t)

≤ |x− y|c exp(
∞
∑

i=1

li)

≤ L|x− y|, τk < t+ τ ≤ τk+1,

where D is a convex subset of Rn containing x and y, and L = c exp(
∑∞

i=1 li).
This implies that V (t, x) is Lipschitzian in x for each t ∈ R+. Let x, y ∈
Rn, τk−1 < t < τk and δ > 0 be such that t+ δ < τk. Then we have

|V (t+ δ, x)− V (t, y)| ≤ |V (t+ δ, x)− V (t+ δ, y)|(3.8)

+ |V (t+ δ, y)− V (t+ δ, x(t+ δ, t, y))|
+ |V (t+ δ, x(t+ δ, t, y))− V (t, y)|.

In view of (3.7) and limδ→0 |y − x(t + δ, t, y)| = 0 for t 6= τk, then the first
two terms in the right-hand side of estimate (3.8) are small if |x− y| and δ are
small.

Denote a(δ) = supτ>δ |x(t+ τ, t, y)|h(t+ τ)−1h(t). The function a(δ) is non-
increasing for δ ≥ 0 and limδ→0+ a(δ) = a(0) since |x(t+ τ, t, x)|h(t+ τ)h(t)−1

is a bounded and piecewise continuous function for τ ≥ 0 and is continuous in
some neighborhood of τ = 0.

Then, for the third term in (3.8), we obtain

|V (t+ δ, x(t+ δ, t, y))− V (t, y)|
(3.9)

= | sup
s>0

|x(t+ δ + s, t+ δ, x(t+ δ, t, y))|h(t+ δ + s)−1h(t+ δ)

− sup
τ>0

|x(t+ τ, t, y)|h(t+ τ)−1h(t)|

= | sup
τ>δ

|x(t+ τ, t, y)|h(t+ τ)−1h(t+ δ)− sup
τ>0

|x(t+ τ, t, y)|h(t+ τ)−1h(t)|

= |a(δ)h(t)−1h(t+ δ)− a(0)| → 0 as δ → 0+,

since h(t) is continuous. Hence V (t, x) is continuous for x ∈ Rn and t 6= τk.
Let x ∈ Rn, t ∈ R+, t 6= τk and δ > 0. Then

D+
(2,1)V (t, x)

= lim
δ→0+

sup
1

δ
[V (t+ δ, x(t+ δ, t, x))− V (t, x)]

= lim
δ→0+

sup
1

δ
[sup
τ>0

|x(t+ δ + τ, t+ δ, x(t+ δ, t, x))|h(t+ δ + τ)−1h(t+ δ)

− sup
τ>0

|x(t+ τ, t, x)|h(t+ τ)−1h(t)]

≤ lim
δ→0+

sup
1

δ
[sup
τ>δ

|x(t+ τ, t, x)|h(t+ τ)−1h(t+ δ)
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− sup
τ>0

|x(t+ τ, t, x)|h(t+ τ)−1h(t)]

≤ lim
δ→0+

sup
1

δ
[sup
τ>0

|x(t+ τ, t, x)|h(t+ τ)−1h(t)(h(t+ δ)h(t)−1 − 1)]

≤ lim
δ→0+

[sup
1

δ
[h(t+ δ)h(t)−1 − 1]V (t, x)

≤ h′(t)

h(t)
V (t, x), t 6= τk.

Since, for small δ > 0 and t 6= τk,

|V (t+ δ, x+ δf(t, x))− V (t, x)|
≤ |V (t+ δ, x+ δf(t, x))− V (t+ δ, x(t+ δ, t, x))|

+ |V (t+ δ, x(t+ δ, t, x))− V (t, x)|
≤ L|x+ δf(t, x)− x(t + δ, t, x)|+ |V (t+ δ, x(t+ δ, t, x))− V (t, x)|,

it follows that

D+
(2.1)V (t, x) ≤ h′(t)

h(t)
V (t, x), t 6= τk.

Thus, the property (iii) is proved for t 6= τk for each k ∈ N.
Let τk ∈ R+ and x ∈ Rn be fixed and ti ∈ (τk, τk+1), xi ∈ Rn for i = 1, 2.

Then

|V (t1, x1)− V (t2, x2)| ≤ |V (t1, x1)− V (t1, x(t1, τk, x))|(3.10)

+ |V (t2, x2)− V (t2, x(t2, τk, x))|
+ |V (t1, x(t1, τk, x))− V (t2, x(t2, τk, x))|.

Since V (t, x) and f(t, x) are locally Lipschitz continuous, we obtain

|V (ti, xi)− V (ti, x(ti, τk, x))| ≤ c|xi − x(ti, τk, x)|
≤ c|xi − x|+ c|x− x(ti, τk, x)|
→ 0 as xi → x, ti → τk, i = 1, 2,

where limti→τkx(ti, τ
+
k , x) = x for i = 1, 2. Also, we obtain

|V (t1, x(t1, τ
+
k , x)) − V (t2, x(t2, τ

+
k , x))|

= sup
s>0

|x(t1 + s, t1, x(t1, τ
+
k , x))|h(t1 + s)−1h(t1)

− sup
s>0

|x(t2 + s, t2, x(t2, τ
+
k , x))|h(t2 + s)−1h(t2)|

= |a(t1 − τk)h(τ
+
k )h(t1)

−1 − |a(t2 − τk)h(τ
+
k )h(t2)

−1| → 0 as ti → τk, i = 1, 2,

since a(δ) = supτ>δ |x(t+ τ, t, y)|h(t+ τ)−1h(t) is non-increasing for δ ≥ 0 and

limδ→0− a(δ) = a(0). This implies that the limit V (τ+k , x) exists. From the

similar manner, we have the existence of limit V (τ−k , x). From the equality of
V (τ−, x) = V (τk, x), we have V ∈ v0.
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Let η(t, t0, x0) be the solution of the initial value problem

dη

dt
= f(t, η), η(t0) = x0.

In fact that the relation x(s, µ, η(µ, τk, x + Ik(x))) = x(s, λ, η(λ, τk , x)) holds
for τk−1 < λ < τk < µ < τk+1 and s > µ, we obtain

V (µ, η(µ, τk, x+ Ik(x))) ≤ V (λ, η(λ, τk , x)).

Passing to the limit as µ → τ+k and λ → τ−k yields

V (τ+k , x+ Ik(x)) ≤ V (τ−k , x) = V (τk, x).

This completes the proof of theorem. �

Remark 3.9. (i) In the case where system (2.1) has no impulses, i.e., all Ik
are identically zero, then Theorem 3.8 reduces to Theorem 2.4 in [7].

(ii) Note that the convergence of the series
∑∞

k=1 lk is equivalent to the
convergence of the infinite product

∏∞
k=1 lk.

(iii) The questions about known stability properties of the solutions of vari-
ous classes of differential systems with impulse effect have been studied
in [2, 10, 11, 12, 16, 19, 20]. We improved well-known results on the
converse Lyapunov theorems on various types of stability of solutions
for system (2.1).

We can obtain the followingMassera type converse theorem for the uniformly
exponential asymptotic stability of impulsive differential equations as a special
case of Theorem 3.8.

Corollary 3.10. Assume that (fx(t, 0),
∂Ik(0)
∂x

) ∈ M is t∞-similar to

(fx(t, x(t, t0, x0)),
∂Ik(x(τk))

∂x
) ∈ M.

Suppose further that the zero solution of system (2.1) is globally h-stable with

h(t) = e−λt for a nonnegative constant λ. Then, there exist a positive constant

c and a function V : R+ × Rn → R+ such that

(i) V ∈ v0 and V (t, x) is Lipschitzian in x with Lipschitz constant L for

each t ∈ R+;
(ii) |x| ≤ V (t, x) ≤ c|x|, (t, x) ∈ R+ × Rn;
(iii) D+

(2.1)V (t, x) ≤ −λV (t, x), t 6= τk;

(iv) V (τ+k , x+ Ik(x)) ≤ V (τk, x), k ∈ N, x ∈ Rn.

4. Examples

In this section we give two examples which illustrate some results from the
previous section.
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Example 4.1 ([5, Example 2.10]). To illustrate Lemma 3.7, we consider the
linear impulsive differential equation

{

x′ = a(t)x, t 6= τk,

∆x = akx, t = τk, k ∈ N,
(4.1)

where a ∈ PC(R+,R), ak ∈ R, and det(1 + ak) 6= 0, k ∈ N. Suppose that
∫∞
t0

|a(s)|ds < ∞ and
∑

t0≤τk≤∞ |ak| < ∞ for each t0 ∈ R+. Then the solution

x(t, t0, x0) of equation (4.1) given by

x(t, t0, x0) =
∏

t0≤τk<t

(ak + 1) exp(

∫ t

t0

a(s)ds)x0

satisfies

|x(t, t0, x0)| = |
∏

t0≤τk<t

(ak + 1) exp(

∫ t

t0

a(s)ds)||x0|

≤ |x0| exp(
∫ t

t0

|a(s)|ds+
∑

t0≤τk<t

|ak|)

≤ c|x0|h(t)h(t0)−1, t ≥ t0,

where c = 1 and h : R+ → R is a positive bounded left-continuous function
given by

h(t) =











exp(
∫ t

0
|a(s)|ds), t0 ≤ t ≤ τ1,

· · · ,
exp(

∫ t

0
|a(s)|ds+∑

t0≤τk<t |ak|), τk < t ≤ τk+1, k ∈ N.

Hence the zero solution of equation (4.1) is h-stable.

Example 4.2 ([7, 11]). To illustrate Theorem 3.8, we consider the Ricatti
scalar equation with impulse effect











x′ = f(t, x) = λ(t)(−x + x2), t 6= τk,

∆x = Ik(x) = dkx, t = τk, k = 1, 2, . . . ,

x(t+0 ) = x0,

(4.2)

where λ : R+ → R+ is a continuous function on [τk−1, τk], k = 1, 2, . . . , with
points of discontinuity of first kind at t = τk, and det(dk + 1) 6= 0, k ∈ N.
Assume

∫∞
t0

λ(s)ds < ∞ for each t0 ∈ R+ and
∑∞

k=1 |dk| < ∞. Then the

solution x(t, t0, x0) of equation (4.2) with x0 ∈ D ⊂ R is given by

x(t) =































x0

x0+(1−x0) exp(
∫

t

t0
λ(s)ds)

, t0 ≤ t ≤ τ1,

(d1+1)x0

exp(
∫

t

t0
λ(s)ds)+x0[(d1+1)−exp(

∫
t

t0
λ(s)ds−d1 exp(

∫
t

τ1
λ(s)ds]

, τ1 < t ≤ τ2,

· · · ,
∏

k

i=1(di+1)x0

e

∫
t
t0

λ(s)ds
+x0g(t,k)

, τk < t ≤ τk+1, k = 2, 3, . . . ,
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where

g(t, k) =

k
∏

i=1

(di + 1)− e
∫

t

t0
λ(s)ds − d1e

∫
t

τ1
λ(s)ds − · · · − dk

k−1
∏

i=1

(di + 1)e
∫

t

τ
k

λ(s)ds
.

Then, we obtain the associated impulsive variational systems for equation (4.2)
along the solution x(t, t0, x0) of equation (4.2) as the following:











v′ = fx(t, 0)v = −λ(t)v, t 6= τk,

∆v = ∂Ik(0)
∂x

v = dkv, t = τk, k ∈ N,

v(t0 + 0) = v0

(4.3)

and










z′ = fx(t, x(t, t0, x0))z = λ(t)[−1 + 2x(t, t0, x0)]z, t 6= τk,

∆z = ∂Ik(x(τk))
∂x

z = dkz, t = τk, k ∈ N,

z(t0 + 0) = z0.

(4.4)

Then we have

|Φ(t, t0, 0) =
∂x(t, t0, x0)

∂x0
| = |

∏

t0≤τk<t

(dk + 1) exp(−
∫ t

t0

λ(s)ds)|

≤ exp(

∫ t

t0

λ(s)ds+
∑

t0≤τk<t

|dk|)

≤ ch(t)h(t0)
−1, t ≥ t0,

where h(t) = exp(−
∫ t

0
λ(s)ds) and c = exp(

∑

t0≤τk≤∞ |dk|). Thus the zero

solution of equation (4.3) is h-stable. Also, there exist F0 ∈ L1 with t 6= τk and
Fk ≡ 0 ∈ l1, k ∈ N, such that

S′(t)− fx(t, 0)S(t) + S(t)fx(t, x(t, t0, x0)) ≡ F0 ∈ L1, t 6= τk,

∆S(τk)− dkS(τk) + S(τ+k )dk ≡ Fk ∈ l1, t = τk, k ∈ N,

where ∆S(τk) = S(τ+k )− S(τk) and S(t) = 1, since
∫ ∞

0

|F0(s)|ds =

∫ ∞

0

|fx(s, x(s, t0, x0))− fx(s, 0)|ds

=

∫ ∞

0

|2λ(s)x(s, t0, x0)|ds

≤ 2|
k
∏

i=1

(di + 1)||x0|
∫ ∞

0

| λ(s)

e
∫

s

t0
λ(τ)dτ

+ x0g(s, k)
|ds

≤ |x0|2 exp(
∞
∑

k=1

|dk|)
∫ ∞

0

λ(s) exp(−
∫ s

t0

λ(τ)dτ)ds < ∞,
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where the limit limk→∞ x0g(t, k) exists and 0 < limk→∞ x0g(t, k) ≡ C(x0).
Furthermore, we have

∆S(τk)− dkS(τk) + S(τ+k )dk = 0 ≡ Fk ∈ l1, t = τk, k ∈ N.

Thus (fx(t, 0), dk) ∈ M is t∞-similar to (fx(t, x(t, t0, x0)), dk) ∈ M for each
k ∈ N. Therefore, the zero solution of equation (4.4) is also h-stable by Lemma
3.6.

Finally, all assumptions of Theorem 3.8 are satisfied, then there exist a
positive constant c and a function V : R+ × I → R with I ⊂ R which satisfies
conditions (i)-(iv) of Theorem 3.8.
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