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Abstract

We describe a convex relaxation for a family of problems of minimal perimeter parti-

tions. The minimization of the relaxed problem can be tackled numerically, we describe

an algorithm and show some results. In most cases, our relaxed problem finds a correct

numerical approximation of the optimal solution: we give some arguments to explain why

it should be so, and also discuss some situation where it fails.

1 Introduction

1.1 Contribution

We present an approach which allows to numerically compute solutions to the minimal par-

tition problem and to a few related problems. The considered optimization problems arise

in many fields of science. Motivated by image analysis applications like image segmentation,

they have been the subject of extensive study in the beginning of the 90s [42, 8, 40, 53], in

connection to the celebrated Mumford-Shah [43] segmentation problem.

After a first (unpublished) version of this paper [19] had been written and a conference

version [45] had been published, several approaches were proposed in the image processing

literature for tackling this problem. See, for instance, [56, 36, 17, 7]. However, it seems that

most of them solve a problem which is quite “far” (at least, further than the approaches we

will discuss here) from the original problem so that we still believe that our contribution is

useful and, to some extent, helps clarifying what seems possible and what is not.

The problem of (numerically) finding a partition of a set Ω ⊂ R
d, which minimizes the

(d− 1)-dimensional measure of the total interface, plus either boundary conditions, or some

external field particular to each set, is a challenging task. Its discrete version, known as

the “Potts’ model” [48] (an extension of the ferromagnetic Ising model [33]), is described
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by an energy whose minimization is NP-hard. What we propose here is to derive some

convexification of the problem, which is close enough to the convex envelope (in fact, it is the

closest in a particular, reasonably large class), but, also, seems to be numerically tractable, at

least when the number of labels is not too high. Then, minimizing numerically this envelope,

we experience that in general, at least when d = 2, the minimizer is actually a minimal

partition. Figure 1 shows an example where the proposed method is applied to solve a

piecewise constant Mumford-Shah model with 10 regions.

Figure 1: Color input image and segmentation obtained by minimizing the piecewise constant

Mumford-Shah functional with 10 regions.

We point out that related experiments first appeared in a paper by K. Brakke of 1995 [16],

and that it was known since that time that in some cases, the problem was indeed convex,

see also [35]. We will describe both representations of [16] and [19]. Although both are

equivalent up to a change of variable, strangely enough, results which are not obvious in one

representation are sometimes much simpler in the other, and vice versa.

It came as a surprise to us that the method works in many cases. Nevertheless, we also

provide as a numerical counterexample a situation where it does not work. The goal of this

paper is to describe our setting, and explain how we perform the minimization. Then, we

provide arguments to explain why it works in many cases, and why it shouldn’t in other cases.

In some sense, our approach is related to similar relaxations in discrete optimization (and

in particular optimization of Markov Random Fields or MRFs), such as LP-relaxation or roof

duality relaxation. The point of view closest to ours in the discrete literature seems to be roof

duality [30], indeed, we also look for a convex relaxation of our problem which is local in some

sense, and is obtained as the supremum of affine functions which satisfy local constraints.

Let us mention however that we also use representations of the problem in which our

relaxation is, in a precise sense, optimal. Then, we base our analysis on the concept of

“calibrations”, which may be seen as the continuous counterpart of roof duality, and was

developed independently for the study of minimal surfaces in the 70’s and 80’s [16, 35, 2].

Our extension to the continuous setting and the representation follow the spirit of [46]

where two of the authors of this paper were extending recent approaches in MRFs optimization

to the continuous setting. This is crucial, in particular, if one wants to reproduce precisely

specific surface energies, and in particular isotropic interfacial energies.
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Another point of view similar to ours is found in a recent paper of C. Zach et al. [56]. It

is also written in a continuous setting although, there again, the interaction potentials are

eventually chosen anisotropic. See also [36] for a variant. In fact, we show that with the

anisotropy chosen in [56], both approaches boil down to the same representation, while in

general, we claim that ours is better (meaning, a tighter relaxation, closer to the original

problem).

Eventually, we must point out that what we propose is quite different from approaches

based on phase-field approximations or level-sets (see for instance [21]). These do not aim

at computing a global minimizer of the problem. Furthermore, the latter mentioned cannot

approximate very general interfacial energies, or even uniform ones.

1.2 Two representations for multi-label problems

The generic problem we will address here is of the form

min
{Ei}ki=1

1

2

k∑

i=1

Per(Ei; Ω) +

k∑

i=1

∫

Ei

gi(x) dx (1)

where {Ei}ki=1 is a partition of an open set Ω ⊂ R
d, d ≥ 2, into k sets: Ei ∩ Ej = 0 of i 6= j,

and
⋃k

i=1Ei = Ω (up to Lebesgue-negligible sets).

Here, gi are “potentials” (which in practice will take various forms). Since the optimiza-

tion problem is clearly invariant to replacing all functions gi by gi + g with an arbitrary

integrable function g, we will assume without loss of generality that all gi are nonnegative,

more specifically that gi ∈ L1(Ω;R+).

The first term in (1) is half the sum of the perimeters of the sets Ei, i = 1, . . . , k, which

will be defined precisely in Section 2.2. It is the same as the surface of the total interface⋃
i<j ∂Ei ∩ ∂Ej (as the common surface between Ei and Ej is counted twice in the sum of

the perimeters) and defines what is called the total perimeter of the partition {Ei}ki=1.

The most classical way to represent — and relax — this problem is to introduce the

characteristic functions vi = χEi
associated with each set Ei. These satisfy

vi(x) ≥ 0, i = 1, . . . , k, for a.e. x ∈ Ω (2)
k∑

i=1

vi(x) = 1, a.e. x ∈ Ω (3)

vi(x) ∈ {0, 1}, i = 1, . . . , k, a.e. x ∈ Ω (4)

Then, since by definition (see Section 2.2), the perimeter of Ei in Ω is the total variation∫
Ω |Dvi| of its characteristic function, the energy in (1) can be rewritten

E(v) =
1

2

k∑

i=1

∫

Ω
|Dvi| +

k∑

i=1

∫

Ω
vi(x)gi(x) dx (5)

Then, the most straightfoward relaxation of the problem, considered for instance by

Zach et al. in [56] (but this is also the standard approach in discrete optimization, see
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the pages on multiway cut problems in [1]), consists in minimizing E on the convex set of BV

functions with values in the simplex S = {z ∈ R
k
+ :

∑k
i=1 zi = 1}:

S =

{
v = (v1, . . . , vk) ∈ BV (Ω; [0, 1]k) : vi ≥ 0 ,

k∑

i=1

vi = 1 a.e. in Ω

}
. (6)

That is, we have kept the constraints (2-3), and relaxed (4) into vi ∈ [0, 1] for each i.

This is essentially what is also done in [17, 7]. It turns out that this approach can

give wrong results. In Section 5, we will show both theoretically and experimentally that

this happens more often than for the method presented in this paper — see Fig. 13 and

Proposition 5.1.

Another, different representation of the problem is proposed in [46] and was adopted in

the previous version of this paper [19]. It consists in using, instead of v = (v1, . . . , vk), the

variables u = (u1, . . . , uk−1) defined by

ui = 1−
i∑

j=1

vj , i = 1, . . . , k − 1 (7)

which satisfy the monotonicity constraint

1 ≥ u1(x) ≥ · · · ≥ uk−1(x) ≥ 0 , for a.e. x ∈ Ω . (8)

Letting by convention (which is coherent with (7) and will be implicit in the rest of the paper)

u0 ≡ 1 and uk ≡ 0, we recover v from u by the change of variable

vi = ui−1 − ui , i = 1, . . . , k. (9)

Linear (TV) Potts Truncated TV

Figure 2: Various popular interaction potentials.

The function ui is also the characteristic function of the upper level set {ι(x) > i} of the

label ι(x) = {i : vi(x) = 1} ∈ {1, . . . , k}, defined for a.e. x ∈ Ω.

The u representation makes more sense than the previous one whenever the labels form

an ordered set (for instance, it they correspond to disparity measurements in stereo recon-

struction [56]). In particular, we will also consider interfacial energies σi,j (which penalize

the surface of the interfaces ∂Ei ∩ ∂Ej) which are different from 1 and can depend on (i, j),

and this representation is particularly well suited for penalizations of the form σ(i− j), such
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as the total variation |i − j| (linear interaction potential, see Fig. 2, left), or the “truncated

total variation” min{|i− j|, T} (truncated linear potential, Fig. 2, right).

On the other hand, the v representation is more justified when the labels have an arbitrary

meaning (such as potatoes, tomatoes, other...) and the interaction energy is unrelated to their

values, such as in the minimal partition problem (1) (or the “Pott’s” model), see Fig. 2,

middle.

In the discrete setting, the u representation has been first introduced in the seminal

works of Ishikawa and Geiger [32, 31]. It was then adapted to continuous problems of image

reconstruction in [46].

1.3 Outline

The paper is organized as follows: a preliminary section gives the definition and some basic

facts about functions with bounded variation and finite-perimeter partitions. In Section 3 we

formalize the minimal partition problem and introduce first its convex, lower-semicontinuous

envelope by means of Legendre-Fenchel conjugation. This abstract approach, however, does

not in general lead to a problem which is computationally tractable: for this reason, we

introduce a notion of “local” convex envelope, which is less tight but easier to implement. We

show (Prop. 3.3) that the tightest “local” convex envelope reduces to the duality approach

through “paired calibrations,” which were introduced in [35, 16] in order to provide optimality

conditions for the partition problem (or more general minimal surfaces problems). From the

theoretical point of view, one of the main contributions of this paper are the bounds (32),

which, in regards of the bounds (22) for the global convex envelope, show that the local convex

envelope is close to optimality. This can be related to similar estimates for the discrete Potts

model (see for instance [1]).

In Section 4 we present a simple numerical approximation of the minimal partition prob-

lem. We use a simple yet provably convergent primal-dual algorithm to solve the arising

convex problem (which we first described in [45]). In Section 4.3, we present a number of

promising experimental results on a variety of segmentation and geometric inpainting prob-

lems which show the potential and limitations of our approach.

In Section 5, we compare our approach to the convexifications proposed in the recent

papers [56] and [36]. Another important contribution of this paper is the proof, not only ex-

perimental, that the envelope studied in this paper is, in general, strictly higher (Prop. 5.1).

Nevertheless, the latter are simpler (and [56] is, in fact, equivalent to our approach in 1D

as well as some anisotropic cases). In Section 6, we consider generalizations of the parti-

tion problem by assigning weights to respective label transitions. This allows to tackle, for

instance, the case of truncated linear potentials. We show experimental comparisons of dif-

ferent models. An important result in that section is Prop. 6.1, where we show that in the

representation (7), one can get rid of some constraints and solve a simpler problem, and yet

recover the correct solution. This is what was experimentally observed in [46].

A few technical appendices follow, where we explain how to perform practically the pro-
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jections on some of the convex sets introduced throughout the paper, and how to compute the

value of our convexification in the 3-labels case — while there is no closed form in general. Of

particular interest is Appendix A.3, where we show that in many cases the problem, locally,

behaves like a problem with fewer phases (in practice, the saturated phases, which are 2 or 3

in dimension 2).
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2 Preliminaries

2.1 Functions with bounded variation

We recall here some results on functions with bounded variations, see [3, 29, 26, 58] for more

details.

Let d, k ≥ 1, and Ω be an open subset of R
d. Given a function v = (v1, . . . , vk) ∈

L1(Ω;Rk), we define its total variation as

sup
{
−
∫

Ω

k∑

i=1

vi div ξi : ξ ∈ C1
c (Ω;R

d)k , |ξ(x)|2 =
k∑

i=1

|ξi|2 ≤ 1 ∀x ∈ Ω
}
. (10)

We say that v has bounded variation whenever the value of (10) is finite. In this case, one

shows (using Riesz’ representation theorem) that the distributional derivativeDv is a bounded

(Rk×d-valued) Radon measure, whose total mass
∫
Ω |Dv| is precisely the value of (10).

We denote byBV (Ω;Rk) the space of (k-dimensional vector valued) functions with bounded

variation. Endowed with the norm ‖v‖BV = ‖v‖L1(Ω;Rk) +
∫
Ω |Dv|, it is a Banach space. We

use the notation BV (Ω) whenever k = 1, and BV (Ω;K) for functions v such that v(x) ∈ K

a.e., where K is a closed, convex subset of Rk.

The distributional derivative Dv has the decomposition [27, 55]:

Dv = ∇v dx + Cv + (v+ − v−)⊗ νv Hd−1 Jv . (11)

Here, ∇v dx is the part of Dv which is absolutely continuous with respect to the Lebesgue

measure. The approximate gradient ∇v(x) is a L1 vector field, which corresponds to the
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weak gradient whenever v ∈ W 1,1. The jump set Jv is the sets of points x ∈ Ω where there

exist v−(x) 6= v+(x) ∈ R
k and νv(x) ∈ S

d−1 such that

(y 7→ v(x+ εy))
L1(B(0,1);Rk)−→

(
y 7→ χ{y·νv(x)>0}v+(x) + χ{y·νv(x)>0}v−(x)

)

as ε→ 0. Of course, here, we could replace the triplet (v+,v−, νv) with (v−,v+,−νv): when
k = 1, the convention is to choose u+ > u−, if k > 1, we can for instance choose that the

component with the lowest index i such that (v+)i 6= (v−)i satisfies (v+)i > (v−)i. Then, the

tensor product (v+ − v−) ⊗ νv is the k × d matrix ((v+ − v−)i(νv)j)i=1,...,k,j=1,...,d. The set

Jv is shown to be a (d− 1)-dimensional set which is rectifiable in the sense of Federer (that

is, can be covered by countably many C1 hypersurfaces, up to a set which is negligible for

the (d− 1)-dimensional Hausdorff measure, Hd−1). In particular, νv coincides Hd−1-a.e. with

a normal to Jv. Eventually, the cantor part Cv is the part of the measure which, essentially,

has dimension between d and d− 1: it is singular with respect to the Lebesgue measure, but

also satisfies |Cu|(A) = 0 for any set A with Hd−1(A) < +∞.

Given a convex, continuous function Ψ : Ω×R
k×d → [0,+∞), one can define the integral∫

ΩΨ(x,Dv) as follows: one introduces the recession function

Ψ(x,p) = lim
t→0

tΨ(x,p/t) (12)

which is a convex, one-homogeneous function (possibly taking the value +∞). Then, [13, 49]

∫

Ω
Ψ(x,Dv) =

∫

Ω
Ψ(x,∇v(x)) dx

+

∫

Ω
Ψ
(
x, Cv

|Cv|

)
d|Cu| +

∫

Jv

Ψ(x, (v+(x)− v−(x))⊗ νv(x)) dHd−1(x). (13)

Moreover, if Ψ∗(x, ·) is the Legendre-Fenchel conjugate [25, 50] of Ψ(x, ·) (w.r. the “p”

variable), one also have the dual representation
∫

Ω
Ψ(x,Dv) = sup

{∫

Ω
v(x) · div ξ(x) − Ψ∗(x, ξ(x)) dx : ξ ∈ C∞

c (Ω;Rk×d)

}
(14)

(here div ξ is the vector (
∑d

j=1(∂(ξi)j/∂xj))
k
i=1).

We have the following approximation result, whose proof follows Meyers-Serrin’s classical

proof for Sobolev functions and is found for instance in [29]:

Theorem 2.1. For any v ∈ BV (Ω;Rk), there exists a sequence (vn)n≥1 of functions in

C∞(Ω;Rk) such that vn → v in L1(Ω;Rk) and

lim
n→∞

∫

Ω
|∇vn(x)| dx = |Dv|(Ω). (15)

Combining this result with a celebrated theorem of Reshetnyak [3, Theorem 2.39], we get

in addition that, if Ψ is a convex, continuous and one-homogeneous function over Rk×d,

lim
n→∞

∫

Ω
Ψ(∇vn(x)) dx =

∫

Ω
Ψ(Dv) . (16)
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2.2 Caccioppoli sets

If E ⊂ Ω is a measurable set, then its perimeter in Ω is defined as the total variation (10)

of χE . A Caccioppoli set, or set with finite perimeter, is a set such that χE ∈ BV (Ω): then

we let Per(E,Ω) :=
∫
Ω |DχE |. In this case, the (rectifiable) jump set JχE

is also called the

“reduced boundary” of E, denoted by ∂∗E, and is equal, up to a set of Hd−1 measure zero,

to Ω \ (E1 ∪E0), where E1, resp., E0, are the points where E has Lebesgue density 1, resp.,

0. The normal vector νχE
(as defined in the previous section), which we also denote by νE ,

is the inner normal vector to ∂∗E, defined Hd−1-a.e. on the boundary.

A Caccioppoli partition of Ω is a (finite or countable) sequence of subsets of Ω, (Ei)i≥1

such that |Ei ∩ Ej | = 0 if i 6= j, |Ω \ ⋃iEi| = 0 (equivalently,
∑

i χEi
= 1 a.e. in Ω), and∑

i Per(Ei,Ω) < +∞. The total perimeter of the partition is half the sum of the perimeters

of the sets, since in the latter sum each interface between two sets Ei and Ej is counted twice.

We recall eventually that if u ∈ BV (Ω) is a scalar-valued BV function, it enjoys the

co-area formula: ∫

Ω
|Du| =

∫ +∞

−∞
Per({u > s}; Ω) ds . (17)

That is, the total variation of a function is recovered as the total sum of the surfaces of its

level sets.

In the next section, we introduce a class of variational problem whose unknown is a

Caccioppoli partition, with a fixed, maximal number of sets k.

3 Minimal partitions

3.1 The convex envelope of the minimal partition problem

Let us first, to simplify, focus on the problem of computing a minimal partition of Ω, bounded

open subset of Rd. We will generalize the problem afterwards. We assume we want to find

a partition of a set Ω into k (at most) sets E1, . . . , Ek, which solves problem (1), for given

functions g1, . . . , gk ∈ L1(Ω;R+).

As already mentioned, the first term in energy (1) is the total length of the boundaries of

the partition: the weight 1/2 is there to take into account that each interface between to sets

Ei and Ej is contained twice in the sum, as the boundary of each set.

The existence of a solution to (1) is a straightforward result of calculus of variations

(which follows from Rellich’s theorem and the lower-semicontinuity of the total variation, see

for instance [3]), and we will only focus on the problem of actually finding it.

If we introduce the functions vi = χEi
, then a partition is a vector v = (v1, . . . , vk) ∈

BV (Ω; {0, 1}k) which satisfies conditions (3). Then, the interfacial energy of the partition

is nothing else as Hd−1(Jv), and, as mentioned in the introduction, it coincides with F(v)

where the convex, one-homogeneous function F : BV (Ω;Rk) → [0,+∞) is defined as

F(v) =
1

2

k∑

i=1

∫

Ω
|Dvi|
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and extended to L2(Ω;Rk) by letting F(v) = +∞ if v 6∈ BV (Ω;Rk).

We therefore define J : L2(Ω;Rk) → [0,+∞] by

J (v) =




F(v) if v ∈ BV (Ω; {0, 1}) ,∑k

i=1 vi = 1 a.e. ,

+∞ else.

Then, problem (1) can be written equivalently

min
v∈L2(Ω;Rk)

J (v) +

∫

Ω
v(x) · g(x) dx (18)

where g = (g1, . . . , gk) ∈ L1(Ω;Rk
+) (in fact, we should require g ∈ L2 in order for the last

integral to make sense, but observe that even for g ∈ L1 is this integral a continuous functional

of v on the domain of J , which is the set where it is finite. We will not bother about these

details, since in practice these functions are bounded...)

Problem (18) is nonconvex since, although F is convex, the domain of J , defined as the

set domJ = {v ∈ L2(Ω;Rk) : J (v) < +∞}, which clearly is the set

S0 =

{
v = (v1, . . . , vk) ∈ BV (Ω; {0, 1}k) : vi ≥ 0 ,

k∑

i=1

vi = 1 a.e. in Ω

}
, (19)

is not convex. However, as we already observed, it is standard that (18) admits a solution.

How could we compute this solution? A first, natural idea would be to identify the convex

envelope of J (and hence of (18), since the other term in the problem is linear). Indeed, if

we let, for w ∈ L2(Ω;Rk)

J ∗(w) = sup
v∈L2(Ω;Rk)

∫

Ω
v(x) ·w(x) dx − J (v)

be the Legendre-Fenchel conjugate of J (see [25, 50]) and then, again, for v ∈ L2(Ω;Rk)

J ∗∗(v) = sup
w∈L2(Ω;Rk)

∫

Ω
v(x) ·w(x) dx − J ∗(w)

be the Legendre-Fenchel conjugate of J ∗, it is well known [25, 50] that J ∗∗ is the convex,

lower-semicontinuous envelope of J , and, as well, that the minimizers of (18) are also mini-

mizers of

min
v∈L2(Ω;Rk)

J ∗∗(v) +

∫

Ω
v(x) · g(x) dx . (20)

Conversely, minimizers of (20) can only be convex combinations of minimizers of the original

problem (18) (in case of non uniqueness, of course, it might be impossible to identify a

minimizer of the latter from a minimizer of the former).
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However, we do not know any explicit form of J ∗∗, and believe there is none in general.

It is standard that another way to compute J ∗∗ is through the formula

J ∗∗(v) = inf

{
lim inf
n→∞

Nn∑

α=1

θnαJ (vn
α) :

Nn ≥ 1 , θnα ≥ 0 ,

Nn∑

α=1

θnα = 1 ,

Nn∑

α=1

θnαv
n
α → v as n→ ∞

}

which proves useful in some special cases (for instance, if vi = ci = constant for each i, with

ci ≥ 0 and
∑

i ci = 1, we easily deduce J ∗∗(v) = 0), but does not help in general.

Still, we can compute the domain of J ∗∗ and provide some useful estimates:

Proposition 3.1. The domain of J ∗∗ is domJ ∗∗ = S, given by (6). We have J ∗∗(v) =

J (v) whenever v ∈ S0 = domJ , and for each v ∈ S,

F(v) ≤ J ∗∗(v) ≤ (k − 1)F(v) . (21)

If, moreover, (k− 2)/(k(k− 1)) ≤ vi ≤ 2/k a.e. in Ω, for each i = 1, . . . , k, then the estimate

is improved:

F(v) ≤ J ∗∗(v) ≤ 2
k − 1

k
F(v) . (22)

The last condition expresses the fact that v lies close to the “mixture” (1/k, . . . , 1/k) where

all k phases are uniformly spread in the domain: more precisely, v = θw+(1−θ)(1/k, . . . , 1/k)
for some w ∈ S and θ ∈ [0, 1/(k − 1)].

Observe that for k = 2, the estimates are optimal and just show that J ∗∗ = F : it is

well-known in that case that, thanks to the co-area formula (17), the problem of finding a

partition into two sets is essentially convex, and is relaxed by minimizing (5) over S. Then,

a partition is found by letting E1 = χ{v1>s}, for any s ∈ [0, 1), and E2 = Ω \ E1, see for

instance [9, 22, 18].

Proof. First, since F is itself convex, lower-semicontinuous, and F ≤ J (J = F on S0 =

domJ and +∞ elsewhere), the inequality F ≤ J ∗∗ is straightforward. In particular, if

v ∈ S0, F(v) ≤ J ∗∗(v) ≤ J (v) = F(v), and we deduce J ∗∗(v) = J (v).

If v 6∈ S, it must be that J ∗∗(v) = +∞: indeed, it is classical that domJ ∗∗ ⊂ convdomJ ,

which shows that in particular, if J ∗∗(v) < +∞, then vi ≥ 0 and
∑k

i=1 vi = 1 a.e. in Ω.

On the other hand, v must have bounded variation, otherwise J (v)∗∗ ≥ F(v) = +∞, a

contradiction. We deduce that domJ ∗∗ ⊂ S.
Let now v ∈ S and u ∈ BV (Ω; [0, 1]k−1) be defined by (9) (we also let u0 = 1, uk = 0).

For s ∈ [0, 1], we let us = (us1, . . . , u
s
k−1) where usi = χ{ui>s} for i = 0, . . . , k: it is for each

x a binary vector with 1 = us0(x) ≥ us1(x) ≥ · · · ≥ usk−1(x) ≥ usk(x) = 0. The co-area

formula (17) yields that for each i and a.e. s ∈ [0, 1], usi ∈ BV (Ω; {0, 1}), moreover, we have

ui(x) =
∫ 1
0 u

s
i (x) ds for a.e. x and each i.

10



Letting therefore, following (7), vsi = usi−1−usi , we find that vs ∈ S0 for a.e. s ∈ [0, 1], and

vi =
∫ 1
0 v

s
i ds. By convexity, we deduce that (it requires, in fact, an approximation argument

which is standard and which we skip)

J ∗∗(v) ≤
∫ 1

0
J (vs) ds. (23)

Now, for a.e. s, J (vs) = Hd−1(Jvs) = Hd−1(Jus) is the total surface of the jump set of

us. Since Jus ⊂ ⋃k−1
i=1 Jus

i
, it follows that

J (vs) ≤
k−1∑

i=1

Hd−1(Jus
i
) =

k−1∑

i=1

∫

Ω
|Dusi | . (24)

From (23), (24), (17) and (7), we find

J ∗∗(v) ≤
k−1∑

i=1

∫

Ω
|Dui| ≤

k−1∑

i=1

i∑

j=1

∫

Ω
|Dvj | =

k−1∑

j=1

(k − j)

∫

Ω
|Dvj |. (25)

The last estimate (25) cannot, in fact, depend on the order of the labels, and we deduce

that for any permutation σ of {1, . . . , k}, J ∗∗(v) ≤ ∑k−1
j=1(k − j)

∫
Ω |Dvσ(j)|. In particular,

we may assume (after a suitable rearrangement) without loss of generality that
∫
Ω |Dv1| ≤∫

Ω |Dv2| ≤ · · · ≤
∫
Ω |Dvk|, in which case one can show that

k−1∑

j=1

(k − j)

∫

Ω
|Dvj | ≤ k − 1

2

k∑

j=1

∫

Ω
|Dvj | ,

which together with (25) yields the right-hand side of (21). We conclude also that domJ ∗∗ =

S. This proof is strongly inspired from similar estimates for the discrete multiway cut problem,

see [1].

Eventually, we prove (22). Consider first w of the following form: for some i1, i2, one

has wi1 = w̄, wi2 = 1 − w̄, wi = 0 if i ∈ {1, . . . , k} \ {i1, i2}, where w̄ ∈ BV (Ω; [0, 1]). Then,

w ∈ S, moreover, w =
∫ 1
0 ws ds where for s ∈ (0, 1), ws

i1
= χ{w̄>s}, w

s
i2
= χ{w̄≤s}, w

s
i = 0 for

i 6= i1, i2. We deduce from the convexity of J ∗∗ and the co-area formula (17) that

J ∗∗(w) ≤
∫ 1

0
J (ws) ds =

∫

Ω
|Dw̄| = F(w) ,

which together with (21) shows that for two-phases states such as w, one has, in fact,

J ∗∗(w) = F(w) . (26)

Let now w ∈ S and v = (1/(k − 1))w + (1 − 1/(k − 1))(1/k, . . . , 1/k) (which spans all

v ∈ S with (k − 2)/(k(k − 1)) ≤ vi ≤ 2/k a.e.). We will write v as a convex combination of

states with only two phases for which the energy is estimated with (26). Let ŵi, i = 1, . . . , k,

be as follows:

ŵi
j =




wi if j = i ,
1− wi

k − 1
else.

11



Then, ŵi is the average of the (k − 1) states for which the ith component is wi and one of

the other components is 1− wi, so that by (26),

J ∗∗(wi) ≤
∫

Ω
|Dwi| = (k − 1)

∫

Ω
|Dvi| .

where we have used v = (1/(k − 1))w + constant. Now, direct calculation shows that v =

(1/k)
∑k

i=1 ŵ
i, so that

J ∗∗(v) ≤ k − 1

k

k∑

i=1

∫

Ω
|Dvi| = 2

k − 1

k
F(v) ,

which shows (22), as expected.

Remark 3.2. Observe that in the proof of (21), it is useful to consider not only the “v”

representation of the phases, but also the “u” representation obtained through the change of

variable (9).

3.2 The “local” convex envelope

Since it does not seems tractable to design an algorithm minimizing the unknown functional

J ∗∗, we will now look for a “convex envelope” which shares, in addition, the property of

being local, in the sense that it can be written roughly in the form (13), where we will

assume in addition that Ψ(x, ·) is even. In fact, a convex local functional may have a more

general form, as detailed in [12], however, we do not believe that considering such form would

improve the readability of this paper, nor give essentially different results, especially in view

of Proposition 3.3.

We consider therefore a nonnegative function Ψ : Ω × R
k×d → [0,+∞), continuous, and

convex in the last variable, such that
∫

Ω
Ψ(x,Dv) ≤ J (v) , v ∈ L2(Ω;Rk). (27)

We will moreover assume (as this is true, for instance, if Ψ(x,p) = 1
2

∑k
i=1 |pi|, and we hope

to do better than this integrand), that
∫

Ω
Ψ(x,Dv) = J (v) , v ∈ domJ = S0. (28)

A first observation is that we must have Ψ(x, 0) = 0, and this implies that for any p,

t 7→ Ψ(x, tp)/t is nondecreasing, so that Ψ ≤ Ψ (the recession function defined in (12)).

It follows that for any v,
∫

Ω
Ψ(x,Dv) ≤

∫

Ω
Ψ(x,Dv)

and since (27) only involves Ψ (this is because, in fact, J (v) is finite only on binary vectors, for

which Dv is purely singular, so that
∫
ΩΨ(x,Dv) =

∫
Jv

Ψ(x, νv(x)) dHd−1), clearly the largest

12



possible choice is to take Ψ = Ψ, that is, to restrict the choice to convex, 1-homogeneous

integrands. Therefore, from now on, we also assume that Ψ(x, ·) is 1-homogeneous. We will

show that, in this class, we can exhibit a maximal integrand Ψ such that (27) holds for all v.

Let now x0 ∈ Ω and ρ > 0 such that B(x0, ρ) ⊂ Ω, choose ν ∈ S
d−1 a direction and let

Γ+ = ∂B(x0, ρ) ∩ {x : (x− x0) · ν > 0},
Γ− = ∂B(x0, ρ) ∩ {x : (x− x0) · ν < 0},
∆ = B(x0, ρ) ∩ {x : (x− x0) · ν = 0}

Denote (fi)
k
i=1 the canonical basis of Rk. For i 6= j, we denote

λ±i,j =

∫

Γ±

Ψ(x, (fi − fj)⊗ ➉♥❻(x)) dHd−1(x) ,

λi,j =

∫

∆
Ψ(x, (fi − fj)⊗ ν) dHd−1(x)

where ➉♥❻(x) = (x− x0)/|x− x0| denotes the outer normal to B(x0, ρ).

Then, considering all possible v piecewise constant with Jv ⊆ Γ+∪Γ−∪∆, and using (27)

and (28), we find the following relationships:

λ+i,j + λ−i,j = Hd−1(Γ+) + Hd−1(Γ−)

λ+i,j + λj,i = Hd−1(Γ+) + Hd−1(∆)

λ−i,j + λi,j = Hd−1(Γ−) + Hd−1(∆)

for all i, j ∈ {1, . . . , k}. Combining these three equations, we deduce:

λi,j + λj,i = 2Hd−1(∆) = 4ρ

and dividing by 2ρ and letting then ρ→ 0, it implies

Ψ(x0, (fi − fj)⊗ ν)) + Ψ(x0, (fj − fi)⊗ ν)) = 2.

Since we have assumed that Ψ(x, ·) was even, we find that Ψ(x0, (fi − fj)⊗ ν) = 1 for all i, j.

It follows, using also the homogeneity, that Ψ(x,p) = |p| for any p of the form (fi − fj)⊗ p,

p ∈ R
d.

Hence the largest possible Ψ (in the considered class) is independent on x, and given by

the largest convex function below

Ψ0(p) =




|p| if p = (fi − fj)⊗ p, 1 ≤ i, j ≤ k, p ∈ R

d

+∞ else.

It remains to compute (Ψ0)∗∗: first, for q ∈ R
k×d,

(Ψ0)∗(q) = sup
1≤i<j≤k

p∈Rk

(qi − qj) · p− |p| = max
1≤i<j≤k




0 if |qi − qj | ≤ 1 ,

+∞ else.
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Letting therefore

K =
{
q = (q1, . . . , qk)

T ∈ R
k×d : |qi − qj | ≤ 1 ∀i < j

}
(29)

we find that (Ψ0)∗∗ is the support function of K, that is, (Ψ0)∗∗ = supq∈K q · p. We have

shown the following:

Proposition 3.3. The largest convex, local functional of the form (13), with Ψ(x, ·) a non-

negative, even convex function which satisfies both (27) and (28), is

J(v) =

∫

Ω
Ψ(Dv)

where Ψ(p) = supq∈K q · p, K given by (29).

Denote now, for all i, j:

Ki,j = {q : |qi − qj | ≤ 1}

so that K =
⋂

i<j Ki,j . Then, defining

Ψi,j(q) = sup
q∈Ki,j

q · p =




|p| if p = (fi − fj)⊗ p , p ∈ R

d

+∞ else,

one can express Ψ as the inf-convolution of the Ψi,j ’s, that is

Ψ(p) = min∑
i,j p

i,j=p

∑

i<j

Ψi,j(p
i,j)

which is also

Ψ(p) = min
pi,j∈Rk

pi=
∑

j>i p
i,j−

∑
j<i p

j,i

∑

i<j

|pi,j | . (30)

3.3 The convex partition problem

Our approach for computing minimizers of (1) (equivalently, (18)) will hence be the following:

we will look for a minimizer v̄ of

min
v∈S

J(v) +

∫

Ω
v(x) · g(x) dx . (31)

Then, two situations may occur:

1. v̄ ∈ S0, that is, v̄(x) ∈ {0, 1}k a.e. with
∑k

i=1 v̄i(x) = 1 a.e. in Ω: in this case, we have

J(v) = J (v), and since J ≤ J we have solved (18) and solved the partition problem

(with field g).

2. v̄ 6∈ S0: this covers, in fact, two situations quite different in nature:

14



(a) Either J(v̄) +
∫
Ω g · v̄ dx = infv J (v) +

∫
Ω g · v dx: in this case, one can show that

v̄ is a convex combination of minimizers of (18), which are non-unique. This is

tricky, since except for k = 2 (where a thresholding will do) there is no clear way

to find back a partition from the values of v̄. The best way might be to perturb a

little the field g, hoping to fall back in a case of uniqueness. This is illustrated in

Fig. 7.

(b) Or J(v̄) +
∫
Ω g · v̄ dx < infv J (v) +

∫
Ω g · v dx: in which case there seems to be no

hope to find the optimal partition from the result. This is the case in the example

of Fig. 6.

What is a maybe surprizing is that we found many more examples which fall in the first of

these two categories than in the second. For relaxations which are less tight such as (48)

and (49) — see Sec. 5 — this happens less frequently. In the second case, the relaxed solution

needs to be binarized — see [38] for a discussion of different binarization strategies, and [37]

for interesting bounds on the energy of the binarized solution.

Before explaining how (31) is practically solved, let us analyse a little further the properties

of the local convex envelope J .

3.4 Estimates for Ψ

We check here that Ψ satisfies basic estimates which show that, in particular, (22) is nearly

optimal.

Lemma 3.4. For all p = (p1, . . . , pk)
T ∈ R

k×d: if
∑k

i=1 pi 6= 0, then Ψ(p) = +∞. Otherwise,

one has:

1

2

k∑

i=1

|pi| ≤ Ψ(p) ≤ k − 1

k

k∑

i=1

|pi| . (32)

In particular, (22) holds with J ∗∗ replaced with J and for any v ∈ L2(Ω;Rk) with
∑k

i=1 vi = 1

a.e. in Ω.

Proof. The first inequality in (32) clearly follows from our construction. It is also a straight-

forward consequence of the inclusion B(0, 1/2)k ⊂ K. On the other hand, if q ∈ K, then

q+ (q, . . . , q)T ∈ K for any q ∈ R
d, and we deduce that

Ψ(p) = sup
q∈K

q · p = sup
q∈K,q∈Rd

q · p + q ·
k∑

i=1

pi.

Hence, if
∑k

i=1 pi 6= 0, this is +∞, as claimed. On the other hand, if
∑k

i=1 pi = 0, we

see that the sup can be taken only on the vectors q ∈ K with
∑

i qi = 0 (simply choose

q = −(1/k)
∑k

i=1 qi). But in this case, for any i = 1, . . . , k,

qi = −
∑

j 6=i

qj =

(
1− 1

k

)
qi −

1

k

∑

j 6=i

qj =
1

k

∑

j 6=i

(qi − qj)

and we deduce |qi| ≤ (k − 1)/k. The right-hand side of (32) follows.
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3.5 Duality. Paired calibrations

The functional J(v) =
∫
ΩΨ(Dv) has the dual representation (14):

J(v) = sup

{
−
∫

Ω

k∑

i=1

vidiv ξi : ξ ∈ C∞
c (Ω;Rk×d) , ξ(x) ∈ K ∀x ∈ Ω

}
.

Consider a Dirichlet minimimal partition problem: we assume that Ω is bounded with

Lipschitz boundary, and we choose a partition (E0
i )

k
i=1 of ∂Ω. We then look for a minimal

partition of Ω, with this given trace, that is, which minimizes

min
(Ei)ki=1

1

2

k∑

i=1

Per(Ei,Ω)

(where (Ei)
k
i=1 is a partition) under the constraint that Ei meets ∂Ω on E0

i . In fact, it is

standard that this constraint should be relaxed in the following way:

min
(Ei)ki=1

1

2

k∑

i=1

(
Per(Ei,Ω) +

∫

∂Ω
|χE0

i
− χEi

|
)
.

We let v0 = (χE0
1
, . . . , χE0

i
): then the local convexification of this problems becomes

min
v∈S

∫

Ω
Ψ(Dv) +

∫

∂Ω
Ψ((v0 − v)⊗ ➉♥❻Ω(x)) dHd−1 (33)

where ➉♥❻Ω is the outer normal to ∂Ω. It follows then from Corollary 6.7 in Section 6.6 that

the constraint v ∈ S can be removed in (33): a minimizer over v ∈ L2(Ω;Rk) will in fact

belong to S. We deduce the following result:

Proposition 3.5. The “generalized partition” v minimizes (33) if and only if there exists a

vector field ξ ∈ L∞(Ω;Rk×d), with div ξ = 0 in Ω, |ξi − ξj | ≤ 1 a.e., and such that

k∑

i=1

ξi ·Dvi = Ψ(Dv) |Dv| − a.e. in Ω , (34)

k∑

i=1

(v0i − vi)ξi · ➉♥❻Ω = Ψ((v0 − v)⊗ ➉♥❻Ω(x)) a.e. on ∂Ω (35)

Proof. An essential point is Corollary 6.7 in Section 6.6, which shows that the minimum

of (33) among all v ∈ L2(Ω;Rk) is, in fact, reached for a field v ∈ BV (Ω;Rk) with v ∈ S,
that is, v(x) ∈ S (the simplex) a.e. in Ω. Then, the result follows from quite standard convex

analysis, in the Hilbert space L2(Ω;Rk), and the characterization of the subgradient of the

(anisotropic) total variation with Dirichlet boundary conditions, see [41, Prop. 3] and [4,

Thm. 2].
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The functional in (33), which we denote by J , is a convex, l.s.c. function from L2(Ω;Rk)

to [0,+∞]. If v is a minimizer (which exists thanks to Rellich’s compactness theorem), over

L2(Ω;Rk), we must have 0 ∈ ∂J(v), the subgradient of J at v defined in a standard way by

{
w ∈ L2(Ω;Rk×d) : J(v) +

∫

Ω
w · (v′ − v) dx ≤ J(v′) ∀ v′ ∈ L2(Ω;Rk×d)

}
.

This subgradient is described in [41, 4] as follows: it consists in the functions w ∈
L2(Ω;Rk) such that there exists a vector fields ξ ∈ L∞(Ω;Rk×d) with ξ ∈ K and w = −div ξ

a.e., and which satisfy the conditions (34) and (35). If v is itself a partition (i.e., v ∈ S0),

then |Dv| is purely singular and carried by the jump set Jv which is the boundary of the

partition. Then the first condition expresses the fact that the flux of ξ through this boundary

is equal to the energy. In general, it is equivalent to requiring that

∫

Ω

k∑

i=1

ξi(x) ·Dvi(x) = J(v) ,

while “≤” is always true because ξ ∈ K a.e. in Ω. The second condition (35) does not enforce

any constraint as long as v = v0 on ∂Ω. If not, then the field ξ is determined by the difference

v0−v and the normal ➉♥❻Ω to ∂Ω. The fact that these conditions are sufficient for w = −div ξ

for being a subgradient at v is easily checked by integration by parts, the necessity for w to

be of this form is more difficult.

The proposition follows from the two previous observations.

A vector field which satisfies the conditions in Proposition 3.5 is called a “paired calibra-

tion”, following a terminology of Lawlor and Morgan [35]. They and Brakke [16] observed

first that the existence of a paired calibration was a sufficient condition for the minimality of

a partition. This also follows from Proposition 3.5, since if we have a function v ∈ S0 (i.e.,

a partition) for which a paired calibration, satisfying all the conditions in the Proposition.

exists, then it is a minimizer of (33), hence a minimal partition.

Let us consider now very simple example in dimension two. It is known that the boundary

of a minimal partition, in this case, is made of straight lines which meet at triple points (a

“Taylor junction”), with an angle of 120◦ [8, 11]. The following very easy proposition is

standard and its proof is found for instance in [16]

Proposition 3.6. Let Ω ⊂ R
2 be a Lipschitz, connected set, with 0 ∈ Ω. Let Ē2 = {x =

(x1, x2) ∈ Ω : x2 > 0 , x1 > −
√
3x2}, Ē3 = {x = (x1, x2) ∈ Ω : x2 < 0 , x1 <

√
3x2},

Ē1 = Ω \ (Ē1 ∪ Ē2). Then v̄ = (χE0 , χE1 , χE2) is a solution of

min
v∈BV (Ω;Rk)

{J(v) : v = v̄ on ∂Ω} .

This means that the minimum of the local convex envelope J is, in fact, the minimal

partition (which solves the partition functional J ). The proof is straightforward, as there

exists a constant vector field ξ ∈ K (hence with div ξ = 0), which satisfies both (34) and (35).
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(1, 0, 0)

(0, 0, 1)

ξ3 − ξ2

(0, 1, 0)

ξ3 − ξ1

ξ2 − ξ1

Figure 3: The “calibration” for the triple point.

Just pick ξ1 = (0, 0), ξ2 = (
√
3/2, 1/2), and ξ3 = (

√
3/2,−1/2). Observe that ξ2− ξ3 = (0, 1),

see Fig. 3. Then, ξ ∈ K since |ξ1−ξ2| = |ξ1−ξ3| = |ξ2−ξ3| = 1, (ξ2−ξ1) = νE2 on ∂E2∩∂E1,

(ξ2 − ξ3) = νE2 on ∂E2 ∩ ∂E3, and (ξ3 − ξ1) = νE3 on ∂E3 ∩ ∂E1: it follows that (34) holds.

The second condition is automatically satisfied since v is of course equal to its own trace

on ∂Ω. We will check that “looser” convex approximations of the partition problem fail at

reconstructing properly the triple point, see Section 5.

Remark 3.7. Although we have performed very few simulations in three dimensions, the

structure of minimal surfaces in 3D and their singularities, as described by J. Taylor [54], is

such that for all three types of singular minimal cones which she describes, there also will

exist a calibration made of constant vector fields as in the 2D situation. We mention that two

of these minimal cones only can appear in the three phases problem (a plane and three planes

meeting on one line, that is the 2D triple point extended by translation in the orthogonal

direction), while the third one (built upon a regular tetraedron) involves at least four phases.

The first two cones inherit their calibration from the 2D situation, while it is observed in [35]

that in any dimension, there is an obvious constant calibration for the cone built upon the

(d−2)-dimensional edges of the regular simplex, which is made of the (appropriately resized)

normal vectors to each facet of the simplex. For more details see Section 4.3.3.

4 Numerical approximation

4.1 Discretization

There are many ways to numerically tackle problems (31) and (33). We present a simple

approach which is quite efficient, in the framework of finite differences.

Approximation To simplify we consider only the 2D case (d = 2), and we assume that

Ω = (0, 1)2. Let N > 1 and h = 1/N > 0 be a discretization step.
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To allievate the notation, let us first consider the discretization of the simplified, scalar

problem

min
v∈BV (Ω;[0,1]

∫

Ω
|Dv|+

∫

Ω
g(x)v(x) dx (36)

If vh = (vhi,j)0≤i,j≤N−1 ∈ Xh ∼ R
N×N is a discrete function, which is identified with the

function in L2(Ω)

vh(x) =
∑

0≤i,j<N

vhi,jχ(ih,jh)+[0,h)2(x) , (37)

we can define its discrete total variation by

TV h(vh) = h2
∑

0≤i,j<N

∣∣∣(∇hvh)i,j

∣∣∣ (38)

where | · | is the standard Euclidean norm and ∇h : Xh → Xh ×Xh is defined by

(∇hvh)i,j =
1

h





(vhi+1,j − vhi,j , v
h
i,j+1 − vhi,j)

T if 0 ≤ i, j < N − 1 ,

(vhi+1,j − vhi,j , 0)
T if 0 ≤ i < N − 1, j = N − 1 ,

(0, vhi,j+1 − vhi,j)
T if i = N − 1, 0 ≤ j < N − 1 ,

(0, 0)T if (i, j) = (N − 1, N − 1)

Then, assuming that TV h is extended to L2(Ω) by letting TV h(v) = +∞ whenever v is

not of the form (37), we have the following elementary result. For the definition and properties

of Γ-convergence, see [15, 23], and Remark 4.2.

Proposition 4.1. TV h Γ-converges to the total variation
∫
Ω |Dv| as h→ 0.

Proof. Let just quickly sketch a proof of this result. By definition of the Γ-convergence we

need to show that [15] for any v ∈ BV (Ω):

(i) If vh → v, then
∫
Ω |Dv| ≤ lim infh→0 TV

h(vh);

(ii) There exists vh → v with
∫
Ω |Dv| ≥ lim suph→0 TV

h(vh).

The proof of (ii) is standard and based on the fact that any v ∈ BV (Ω) can be approxi-

mated with smooth functions vn ∈ C∞(Ω) with
∫
Ω |∇vn| dx →

∫
Ω |Dv|, see Theorem 2.1.

Then, it is easy to show that if vn ∈ C∞(Ω), by simply defining vn,hi,j = vn(ih, jh) we have

limh→0 TV
h(vn,h) =

∫
Ω |∇vn| dx (with, in this case, an error bound depending on D2vn).

Point (ii) follows from a standard diagonal argument.

The proof of (i) is based on the dual formulation of the total variation. We consider (vh)h,

a sequence of discrete functions at scale h, h = 1/N → 0, which converges to v in L2(Ω). To

show (i), it is enough to show that for any ξ ∈ C∞
c (Ω;R2) with |ξ| ≤ 1 in Ω, we have

−
∫

Ω
v(x)div ξ(x) dx ≤ lim inf

h→0
TV h(vh). (39)
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Then, taking the supremum over all such ξ’s will yield (i). We have

−
∫

Ω
v(x)div ξ(x) dx = lim

h→0
−
∫

Ω
vh(x)div ξ(x) dx

= lim
h→0

∑

i,j

∫ h

0
ξ1((i+ 1)h, jh+ s)(vhi+1,j − vhi,j) ds

+

∫ h

0
ξ2(ih+ s, (j + 1)h)(vhi,j+1 − vhi,j) ds . (40)

Now, if s ∈ (0, h), |((i+ 1)h, jh+ s)− (ih+ s, (j + 1)h)| = |(h− s, s− h)| ≤
√
2h, so that

√
ξ1((i+ 1)h, jh+ s)2 + ξ2(ih+ s, (j + 1)h)2

≤ |ξ((i+ 1)h, jh+ s)| +
√
2‖∇ξ‖L∞(Ω)h ≤ 1 + Ch

and it follows that

ξ1((i+ 1)h, jh+ s)(vhi+1,j − vhi,j) + ξ2(ih+ s, (j + 1)h)(vhi,j+1 − vhi,j)

≤ (1 + Ch)h
∣∣∣(∇hvh)i,j

∣∣∣

We deduce from (40) that (39) holds, hence (i).

Remark 4.2. By standard properties of the Γ-convergence [15], it follows that if vh is a

minimizer of

Jh(vh) +

∫

Ω
g(x)vh(x) dx , (41)

then as h → 0, vh converges to a solution of (36) (up to subsequences if this solution is non

unique). Hence, to solve our problem, we will minimize (41). Observe that Propostion 4.1

does not provide any error estimate. A recent approach to error estimates for this type of

problems is found in [34].

The vectorial case is identical: now we consider at scale h = 1/N > 0, the discrete version

of J , defined for vh = ((vh1 )i,j , . . . , (v
h
k )i,j)0≤i,j≤N−1 ∈ (Xh)k:

Jh(vh) = h2
∑

0≤i,j<N

Ψ
(
(∇hvh

l )i,j)
k
l=1

)
(42)

where Ψ is still the integrand in Prop. 3.3. Then, Jh is considered as a functional in L2(Ω;Rk),

vh being identified with the vectorial function

vh(x) =
∑

0≤i,j<N

vh
i,jχ(ih,jh)+[0,h)2(x) , (43)

as previously in (37). The proof of the following result is then identical to the proof Proposi-

tion 4.1 in the scalar setting, provided we use in addition to the approximation Theorem 2.1,

the convergence (16):
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Proposition 4.3. As h→ 0, Jh Γ-converges to J(v) =
∫
ΩΨ(Dv) (and J(v) = +∞ whenever

v ∈ L2(Ω;Rk) \BV (Ω;Rk))

This means that, as in Remark (4.2), we can approximate the minimization of (31) with

the discrete minimization of

min
vh
l
≥0 ,

∑k
l=1 v

l
h
=1

Jh(uh) +

∫

Ω
g(x) · vh(x) dx. (44)

The approximation of Dirichlet problems such as (33) follows the same lines.

4.2 A simple, converging algorithm

Now, how do we effectively solve (44)? There are essentially two difficulties. One comes

from the fact that there is no tractable, simple expression of Ψ (except for (30) which could

actually be used in an iterative way), so that it is more reasonable to use its dual definition

(as the support function of K) in the optimisation. The second comes from the fact that (at

least if k ≥ 3) the problem involves quite a lot of variables and it seems better to design a

simple algorithm, especially if it is so simple that it can be implemented on basic parallel

processing units such as GPUs (graphic cards).

For these reasons, we propose here to use a primal-dual Arrow-Hurwicz [6, 25] type algo-

rithm for minimizing (41). The advantage of this algorithm is that it extends easily to the

problems we will address in the next sections. It has been recently suggested in this framework

(more precisely, total variation minimization for image denoisi¡ng and reconstruction), first

by H. Talbot and B. Appleton [5] (who, in fact, suggested a primal-dual flow in a continuous

setting, which was then discretized using classical methods for hyperbolic schemes) and more

recently, in a setting closer to ours, by M. Zhu and T. Chan [57]. The version we propose

(first in [45], with a first proof of convergence), which is slightly different, is improved in the

sense that we can provide an estimate for the error in the objective [18, 20]. It is in fact a

variant of the Douglas-Rachford splitting method [39], and is inspired from similar algorithms

in [44, 47]. (We refer to [45, 18, 20] for details.)

We fix a scale h = 1/N > 0, and first discretize the external field by letting for l = 1, . . . , k

(Gh
l )i,j =

1

h2

∫

(ih,jh)+[0,h)2
gl(x) dx

(if not already given in a discrete form). We denote Gh
i,j = ((Gh

1)i,j , . . . , (G
h
k)i,j). Then, we

introduce a primal variable V = (Vi,j) ∈ (Xh)k and a dual Ξ = (Ξi,j) ∈ (Xh × Xh)k. The

problem we want to optimize may be written as

min
Vi,j∈S

max
((Ξl)i,j)

k
l=1∈K

h2
∑

i,j

k∑

l=1

(Ξl)i,j · (∇hVl)i,j + h2
∑

i,j

Vi,j ·Gh
i,j , (45)
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where we recall that the simplex S = {z ∈ R
k
+ :

∑k
i=1 zi = 1}. The idea of a Arrow-

Hurwicz algorithm is to follow simultaneously a gradient descent in V and ascent in Ξ, until

convergence to the saddle-point.

First we initialize with Ξ0 = 0, V
0
= V0 = 0. Then, we fix two “time steps” τ, τ ′ > 0 and

we update Ξn, Vn, V
n
by letting

(Ξn+1)i,j = ΠK

(
Ξn
i,j + τ ′(∇hV

n
)i,j

)
for all i, j

Vn+1
i,j = ΠS

(
Vn

i,j + τ
(
(div hΞn+1)i,j −Gh

i,j

))
for all i, j

V
n+1

= 2Vn+1 −Vn .

(46)

Here, the discrete divergence div h = −(∇h)∗ is the opposite of the adjoint of the discrete

gradient. The projections ΠK and ΠS are respectively the projections on the convex sets

K and S. The first is quite complicated to perform, and is done using Dykstra’s iterative

algorithm, see Appendix A. It motivates the use of a GPU since it can be easily parallelized.

The projection onto the simplex S can be done in linear time. See for example [24].

It is shown that the scheme converges as long as ττ ′ ≤ 1/8 (for h = 1), and in some sense

the speed of convergence is optimal [18, 20]. We found that it is a good compromise between

efficiency and memory storage (most variables need be stored just once, the projection over

K is done only once per iteration).

A theoretical advantage of this approach is that the primal-dual gap, given by

max
Ξi,j∈S

h2
∑

i,j

Ξi,j · (∇hVn)i,j + h2
∑

i,j

Vn
i,j ·Gh

i,j

− min
Vi,j∈S

h2
∑

i,j

(−div hΞn
i,j) ·Vi,j + h2

∑

i,j

Vi,j ·Gh
i,j

= Jh(Vn) + h2
∑

i,j

Vn
i,j ·Gh

i,j + h2
∑

i,j

max
l=1,...,k

[(div hΞn
l )i,j − (Gh

l )i,j ] ≥ 0 (47)

may be computed at each step and goes to zero at convergence, and could be taken as a

criterion for convergence. However, for k ≥ 4, the calculation of the primal energy Jh (that

is, of Ψ), is nearly intractable. For k = 3, it can be done quite efficiently, see Appendix C.

4.3 Examples

4.3.1 Problems with 3 labels

To test this approach, we have implemented a very simple program where the input is a color

image and the weight on each set E1, E2, E3 is equal to minus the level of red, green and blue

respectively. The result is a kind of projection to the closest of these three colors (of course,

this gives terrible output for most images). The example on Figure 4, right, is an output

for an input image with areas dominantly red, green or blue. The example corresponds to

a value of h = 1 (the discretization step in (44)), and the weight is (−2)× the level of each

channel, normalized between 0 and 1. The image has almost 120000 points (412× 291). The
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Input image Output

Figure 4: An example of a three-region segmentation.

gap (47) at convergence is ≤ 1 (for an energy of −122355). The total length energy (Jh(v))

of the output is 5897. (Hence, “most” of the energy is the external field term.) The output

is “almost” binary (i.e., the field v is most of the time an extreme point of the simples S).

In fact, we can compute a “width” of the interface, defined for instance as the ratio of the

number of points where u1 = 1 − v1 and u2 = u1 − v2 are between 0.1 and 0.9, over the

total “length” Jh(u). In this example, we found .75 pixel units, which is quite narrow. This

is not expected to be zero, because the discretization (42) of J requires a fuzzy interface to

approximate precisely the length (just as (38), this is clear if one thinks of how the Γ-limit

superior is established, point (ii) in the proof of Proposition 4.1).

We have also tried to solve the Dirichlet problem (33). A simple way to do (approximately)

so is to minimize (44) with a very strong external field (forcing pure red, green or blue) except

in a grey area where no particular color (i.e., set Ei, i = 1, 2, 3) is favored. The result is

impressive: what is expected, that is, a sharp discontinuity set with a triple point where

all three interfaces meet with and angle of 120◦, is actually computed by the program: see

Figure 5. In this case, the weights gi are 1/20 in the red, green, blue area and equal in the

Input with missing region Inpainted image

Figure 5: Reconstruction of a triple point.

grey area. This makes the length term quite important in the total energy, and actually the
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total length Jh(v) which is computed is about 603 which is not much more of the “true”

(isotropic) length of the total interface, estimated between 599 and 600 pixels. The size of

the image is 376× 357. This is of course an illustration of Proposition 3.6.

In fact, in trying to understand why it so often works so well, we could also find a

“counterexample,” that is, a situation where we do not expect a binary solution (vi ∈ {0, 1}
a.e.), but rather a mixed one.

Why, sometimes, it does not work. Now, let us consider the same geometry, but instead

of a boundary datum, a weight g1, g2, g3 such that on each Ēi, gi = 1 while gj = 0 for j 6= i,

except on a disk centered at the triple point where we choose g1 = g2 = g3. Equivalently, we

run our program with as input, Ē1 colored pure cyan ((R,G,B) = (0, 1, 1)), Ē2 pure yellow

(1, 1, 0), Ē3 pure magenta (1, 0, 1), except a grey area in the middle (see Figure 6, left). Then,

we find that the grey circle is completed with a perfect triple point, but this time with mixed

colors, that is, cyan ((R,G,B) = (0, .5, .5)) in Ē1, yellow (.5, .5, 0) in Ē2, magenta (.5, 0, .5)

in Ē3. In other words, the optimal solution is a mixture of half Ej and half Ek in Ēi, for

{i, j, k} = {1, 2, 3}. The issue is that, now, the opposite of the “calibration” of Proposition 3.6

can show that this is actually a local minimizer inside the grey circle, as before (with expected

energy of 3/2 times the radius of the circile). In particular, the length energy Jh(v) which is

computed now is 306, about half the true length, as expected, thus strictly below the length

of any binary solution with the same pattern of discontinuity (and, actually, any reasonable

binary solution for this input data). We should add that convergence of our scheme is quite

Input Output

Figure 6: Example of a nonbinary solution.

slow (and poor) for this particular example.

We really believe that the example in Figure 6 corresponds to a situation where J(v) <

J ∗∗(v), that is, the local convex envelope is strictly below the true (nonlocal) convex envelope.

4.3.2 Problems with more labels

We have observed that our approach works quite well with a quite high number of labels.

Figure 7 shows the completion of four regions with equidistant labels Here the values of (ai)
4
i=1
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Figure 7: Completion of four regions.

Figure 8: Completion of four regions: in case of non uniqueness, the method may find a

combination of the solutions.

are kept fixed, and span the four color intensity values (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). The

result is what is theoretically expected (two triple junctions, with angles of 120◦). However,

we must point out that the solution which is found here is only one out of two. It seems

that the program selects this particular solution because the discretization makes it minimal.

If one rotates the original image by 45◦, then both solutions have the same energy even for

the discrete problem, and our program produces an output which is not binary, but a convex

combination of the two minimal binary solutions, as shown in Figure 8.

We insist that it does not correspond to a situation where the convexification is too low

(as in Fig. 6), but just a case of non uniqueness, where any convex combination of the binary

solutions is also minimizing, as mentioned in point 2a, p. 15.

We also have implemented a “basic” image segmentation model (following a piecewise

constant Mumford-Shah model, see [43, 21]). The idea is to solve alternatively (for fixed k)

min
(Ei,ai)ki=1

min

{
λ

2

k∑

i=1

Per(Ei,Ω) +

k∑

i=1

∫

Ei

(I(x)− ai)
2 dx

}

with respect to (Ei)
k
i=1 and then to (ai)

k
i=1. Here, I : Ω → [0, 1]3 is the color information

(intensity of red, green, blue channels) of the original image. The initial values (ai)
k
i=1 (also

vector-valued) are initialized using the k-means algorithm, and then, once a new partition

(Ei) is found, each ai is updated by computing the average value of I in Ei. Figure 1 was

computed in this way, while Figure 9 shows another example, once with 4 and then with 10
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labels. Again, as for three labels, in almost all our experiment the solution was nearly binary

(up to a smoothing of the discontinuities due to the discretization).

Input 4 regions 10 regions

Figure 9: Basic piecewise constant segmentation.

4.3.3 3D Problems

We tested our approach on a few standard test cases in 3D. The generalization of the numerical

scheme to 3D is straight forward. For the minimal surface problems presented below we

enforced the boundary conditions by generating appropriate external fiels Gh
l at the faces of

a cubic grid.

Figure 10 shows the result of a minimal surface problem with three phases. Similar to the

2D case, our method finds an almost binary solution.

Figure 10: Minimal surface problem with three phases in 3D. The red and the gree phases

are represented as solid volumes and the blue phase is represented by a slice cutting through

the volume. Note that the phases meet at non-trival (curved) surfaces.

Figure 11 shows the result of a minimal surface problem with six phases. Clearly, the

solution of the problem with six phases is not unique. In order to obtain a unique solution,
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we introduced a slight anisotropy in the size of the grid cells. Again, our algorithm finds an

almost binary solution.

Figure 11: Minimal surface problem with six phases in 3D. The left image shows a volume

rendering of the result computed by our approach. The right image shows a natural minimal

surface generated by a soap film in a cubic frame. Note the little square in the middle of the

cube which is spanned by all six phases.

5 Comparison with other relaxations

In this section we compare our approaches with the recent proposals of [56] and [36]. We

show that our approach is tighter, and will solve problems which cannot be solved by looser

relaxations. This is illustrated numerically in Fig. 13.

In [56] the problem is simply relaxed as

min
v

1

2

k∑

i=1

∫

Ω
|Dvi| +

k∑

i=1

∫

Ω
gi(x)vi(x) dx , (48)

that is, replacing J ∗∗ with F . Clearly, if vi ∈ {0, 1} a.e., this is the same. Proposition 21

shows that this relaxation is, in general, below ours (except for k = 2 where they are the

same). It should therefore fail more often.

A variant is proposed in [36]: the mixed 1, 2-norm of (Dv1, . . . , Dvk) used in (48) is re-

placed with the 2-norm of the matrix (that is, a “standard” classical TV, this time normalized

with 1/
√
2). Its gives the relaxation:

min
v

1√
2

∫

Ω
|Dv| +

k∑

i=1

∫

Ω
gi(x)vi(x) dx , (49)
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where
∫
Ω |Dv| is defined by (10). Again, if v ∈ S0, then this boils down to energy (18).

However, in general, it is below. A first remark is that the integrand is of the form
∫
ΨL(Dv),

where ΨL is the support function of the Euclidean ball KL of radius 1/
√
2 in R

k×d:

KL =

{
q = (q1, . . . , qk)

T ∈ R
k×d :

k∑

i=1

q2i ≤ 1

2

}
.

Now, clearly, KL ⊂ K (defined in (29)), since if q ∈ KL, (qi − qj)
2 = q2i + q2j − 2qi · qj ≤

2(q2i + q2j ) ≤ 1 for any i < j, so that q ∈ K. This shows that ΨL ≤ Ψ. We can show the

following, more precise result:

Proposition 5.1. Let Ω, Ēi, i = 1, 2, 3 be as in Proposition 3.6. Let v̄i = χĒi
for each i, and

v̄ = (v̄1, v̄2, v̄3). Then v̄ is not a minimizer of F(v), nor of
∫
ΩΨL(Dv) = (1/

√
2)
∫
Ω |Dv|,

with prescribed boundary condition v = v̄ on ∂Ω.

Remark 5.2. The interfacial energy which is actually approached in [56] is anisotropic and,

in fact, a sum of 1D energies in each direction. In this case, one can show again that their

approach is equivalent to (the anisotropic version of) ours. We claim that the correct isotropic

generalization of the approach in [56] is what we presented in this paper.

Proof. To simplify the notation, in this proof, let the sets Ēi be defined in all R
2 (and

v̄i = χĒi∩Ω
for each i). We first prove that v̄ is not a minimizer of F with prescribed

boundary condition. We consider afterwards relaxation (49).

Step 1 First, let us assume that Ω is a convex set and let us not worry about the boundary

condition. We choose a rotationally symmetric, smooth mollifier ρ ∈ C∞
c (B(0, 1);R+), with∫

B(0,1) ρ dx = 1. As usual, for ε > 0, we let ρε(x) = ρ(x/ε)/ε2. We then define, for i = 1, 2, 3,

a smooth function vεi as the restriction to Ω of ρε ∗ χĒi
. By linearity, clearly, we still have∑3

i=1 v
ε
i = 1. By the co-area formula (17), the variation

∫
Ω |Dvεi | is the average of the lengths

of the level lines {vεi = s} for s ∈ (0, 1).

Let us choose a coordinate system (y1, y2) such that Ē1 = {y2 < −|y1|/
√
3}, and the jump

set ∂Ē1 is the graph y2 = w(y1) := −|y1|/
√
3. Assume for a while, to simplify, that Ω, near

this graph, coincides with the set |y1| < 2. First, assume also ε = 1 and consider the function

v11 = ρ∗χĒ1
. It is nondecreasing with respect to y2, and even strictly nondecreasing at points

(y1, y2) such that the support of ρ(· − (y1, y2)) meets ∂Ē1, that is, as soon as 0 < v11 < 1.

Invoking the implicit functions theorem, we see that for any 0 < s < 1, the level line {v11 = s}
is the graph of a smooth, even function ws, defined by v11(y1, ws(y1)) = s. In particular,

w′
s(y1) = −(∂1v

1
1)/(∂2v

1
1)(y1, ws(y1)).

Outside of B(0, 1) (hence, in particular, for |y1| > 1), we clearly have ws = w + cs for a

constant cs ∈ (−2/
√
3, 2/

√
3), and with cs = −c1−s for each s ∈ (0, 1). For each s, hence,

w′
s(y1) = w′(y1) = ±1/

√
3 if |y1| > 1. We check that 1/

√
3 is an upper bound for the

derivative of w′
s: indeed, since any translate of Ē1 in a direction (t,−1) with |t| ≤

√
3 is
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included in Ē1, we also have t∂1v
1
1 − ∂2v

1
1 ≥ 0: hence tw′

s +1 ≥ 0 for all t with |t| ≤
√
3, that

is, |w′
s| ≤ 1/

√
3 = |w′|. Since, moreover, w′

s(0) = 0 (ws is even), we deduce

H1({v11 = s}) =

∫ 2

−2

√
1 + |w′

s|2 dy1 < 4× 2√
3

= H1(∂Ē1 ∩ Ω) .

Hence, from the co-area formula we deduce
∫
Ω |Dv11| < H1(∂Ē1 ∩ Ω). A simple scaling

argument will then show that there exists c > 0 such that
∫
Ω |Dvε1| ≤ H1(∂Ē1 ∩ Ω) − cε for

ε ≤ 1. Now, if the boundary of ∂Ω is made of two straight lines (not necessarily vertical)

in the neighborhood of its intersection with ∂Ē1, the same is still true, because the possible

increase or loss of length of {vε1 = s} at the boundary (with respect to the previous case) is

compensated exactly by the loss or increase of the symmetric line {vε1 = 1 − s}, so that the

average length remains the same as when ∂Ω is vertical. If Ω is a generic convex set, then the

length of the lines {vε1 = s} in Ω are even shorter than if ∂Ω were replaced with two tangent

straight lines at its intersection with ∂Ē1, so that the variation of vε1 is even lower.

Step 2 Now, we consider any open set Ω and η > 0 such that B(0, 2η) ⊂ Ω. We choose

ε << η and let as above, for each i ∈ {1, 2, 3}, vεi = ρε ∗χĒi
in B(0, η), while vεi = v̄i = χĒi

in

Ω \B(0, 2η). In B(0, 2η) \B(0, η), we build vεi by joining with straight lines the level lines of

vεi inside B(0, η) and outside B(0, 2η): one can check that the total variation of each vεi in the

crown is then of order at most 2η + ε2/η as ε → 0, while, using the first step, it is less than

2η − cε inside the ball B(0, η). Hence, if ε is small enough, we find that
∫
Ω |Dvεi | <

∫
Ω |Dv̄i|,

and this shows the first part of the proposition.

Next we show why v̄ is not even a minimizer of
∫
ΩΨL(Dv) = (1/

√
2)
∫
Ω |Dv|, with v = v̄

on ∂Ω. This is a bit more tricky, since we did not succeed in building explicitly a competitor:

it therefore relies on a (simple) calibration argument. Let R > 0 be a radius such that

B(0, R) ⊂ Ω. We first observe that for any r ∈ (0, R), we can build a competitor vr with

same energy as v̄: we simply introduce the equilateral triangle Tr which has vertices at (r, 0),

(−r/2, r
√
3/2), (−r/2,−r

√
3/2). Outside of this triangle, we let vr = v̄. Inside the triangle,

we let vr = (1/3, 1/3, 1/3). We have

∫

Ω
|Dvr| =

∫

Ω\BR

|Dv̄| + 3
√
2(R− r) +

√(
2

3

)2

+

(
1

3

)2

+

(
1

3

)2

H1(∂Tr)

=

∫

Ω\BR

|Dv̄| + 3
√
2(R− r) +

√
2

3
× 3

√
3r

=

∫

Ω\BR

|Dv̄| + 3
√
2R =

∫

Ω
|Dv̄| (50)

so that the energy of vr is the same as the energy of the optimal partition v̄. If this were

the minimal energy, then, reasoning as in the proof of Proposition 3.5 (and admitting that

the (1-Lipschitz) projection onto the simplex S reduces the energy, so that the unconstrained
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minimizer of
∫
Ω |Dv| with boundary condition v = v̄ on ∂Ω is in fact in S), we find that

there should exist a vector field ξ ∈ L∞(Rk×d), with zero divergence, ξ ∈ KL a.e., and such

that both (34) and (35) hold with Ψ replaced with ΨL, and v with any minimizer, such as

v̄, vr, or any convex combination of these (for instance, (1/R)
∫ R

0 vr dr, which is Lipschitz

with piecewise constant gradient in B(0, R)). This fully determines ξ in B(0, R) (see Fig. 12):

we must have ξ = ([vr]/|[vr]|) ⊗ νTr (the normal to ∂Tr). Hence, a.e. in E1 ∩ B(0, R), ξ =

(2/
√
6,−1/

√
6,−1/

√
6)⊗ (−1, 0), in E2∩B(0, R), ξ = (−1/

√
6, 2/

√
6,−1/

√
6)⊗ (1/2,

√
3/2),

in E3 ∩B(0, R), ξ = (−1/
√
6,−1/

√
6, 2/

√
6)⊗ (1/2,−

√
3/2).

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

( 1
3
, 1
3
, 1
3
)

Figure 12: A calibration for the triple point and problem (49) does not exist

Proposed approach with energy (48) with energy (49)

Figure 13: Experimental comparison of different relaxations.

But this field does not have zero divergence in the distributional sense: for instance, accross

∂E2 ∩ ∂E3 = R+ × {0}, its normal jump is (−1, 1/2, 1/2) 6= 0. This leads to a contradiction,

showing that neither vr (nor v̄ which has the same energy) are minimizers of
∫
ΩΨ(Dv) with

boundary condition v̄ on Ω, in other words, the minimal energy must be strictly below the

value of the optimal partition.

Figure 13 illustrates the negative result of Proposition 5.1: the relaxation J is the only

one which reconstructs correctly the triple point.
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6 Extension to more general partition problems

6.1 The convex, local envelope of the general partition problem

Now, we explain how our setting is generalized to more general interaction energies. As

before, d ≥ 1 is the space dimension, k ≥ 2 the number of labels, Ω a bounded open subset

of Rd. By a general partition problem, we mean the problem of finding a partition (Ei)
k
i=1

which minimizes:

min
{Ei}ki=1

∑

1≤i<j≤k

σi,jHd−1(∂Ei ∩ ∂Ej) +
k∑

i=1

∫

Ei

gi(x) dx (51)

where the positive weights σi,j = σj,i satisfy

σi,j ≤ σi,l + σl,j (52)

for any {i, j, l} ⊂ {1, . . . , k}. This condition is necessary for (51) to have a solution (otherwise,

the surface energy is not lower-semicontinuous, since it will better to insert between Ei and Ej

an infinitesimal layer of label l), however, if it is not satisfied our approach will automatically

solve a relaxed (l.s.c. envelope) version of the problem.

To solve this, we introduce as before, for v ∈ S0 (defined in (19), v = (χE1 , . . . , χEk
)),

J (v) =

∫

Jv

σ0(v+(x)− v−(x)) dHd−1(x)

where σ0(q) = σi,j if qi = −qj = ±11, ql = 0 for l 6= i, j. We would like to compute the convex

envelope J ∗∗ of J , just like in Section 3, however, it is not expected to have a tractable

expression. So that we introduce again the “local” convex envelope J(v) =
∫
ΩΨ(Dv), where

now Ψ is the support function of the closed, convex set

K =
{
q = (q1, . . . , qk)

T ∈ R
k×d : |qi − qj | ≤ σi,j ∀i < j

}
. (53)

(Observe that if (52) is not met, then |qi − ql| ≤ σi,l and |ql − qj | ≤ σl,j will yield |qi − qj | ≤
σi,l + σl,j < σi,j , so K does not depend on the latter value.)

As before, we propose to solve instead of (51), its variant (31), with the new function J .

6.2 An equivalent representation

Now, in some cases, when the labels are in an ordered set, with a meaningful value (e.g.,

the disparity in a stereo reconstruction problem), the representation v might not be adapted.

In [46], where the interaction potential which is considered is the total variation of the labels,

the variable which is used is the variable ui = χ{ι>i} where ι(x) ∈ {1, . . . k} is the label (which

1It is straightforward to extend the problem to nonsymmetric weight σi,j 6= σj,i, and more general weights

depending also on the direction of the jump, but to simplify we stick to the isotropic case. For a recent

generalization allowing to impose ordering constraints and direction-dependent penalties we refer to [51].
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of course might be a different ordered set, but for simplicity we will stick to this case). It is

obtained from vi = χ{ι=i} by the change of variable (7), and satisfies (8). Observe that to

represent k labels, one needs only the k − 1 variables u1, . . . ,uk−1, since u0 ≡ 1 and uk ≡ 0

are fixed.

Problem (31) can be rewritten in term of u = (u1, . . . , uk−1) ∈ BV (Ω;Rk−1). First, we

use the change of variable (9) to introduce (with u0 ≡ 1, u1 ≡ 0)

H(u) = J((ui−1 − ui)
k
i=1) =

∫

Ω
Ψ((D(ui−1 − ui))

k
i=1) =

∫

Ω
Φ(Du)

where, for p = (p1, . . . , pk−1) (and letting p0 = pk = 0)

Φ(p) = Ψ((pi−1 − pi)
k
i=1) = sup

q∈K

k∑

i=1

qi · (pi−1 − pi)

= sup
q∈K

k−1∑

i=1

(qi+1 − qi) · pi = sup
r∈L

r · p (54)

where

L =
{
r = (qi+1 − qi)

k−1
i=1 ∈ R

(k−1)×d : q ∈ K
}
.

If ri = qi+1 − qi, we have qi =
∑i−1

l=1 rl + q1 for i ≥ 2 and if i < j, qj − qi =
∑j−1

l=i rl so that it

follows from (53) that

L =

{
r = (r1, . . . , rk−1) ∈ R

(k−1)×d :

∣∣∣∣∣

j−1∑

l=i

rl

∣∣∣∣∣ ≤ σi,j ∀ i < j

}
(55)

On the other hand, the term

∫

Ω
v · g dx =

∫

Ω

k∑

i=1

(ui−1 − ui)gi dx

=

∫

Ω

k−1∑

i=1

ui(gi+1 − gi) dx +

∫

Ω
g1 dx =

∫

Ω
u · g̃ dx + const.

where g̃ ∈ L1(Ω;Rk−1) is given by g̃i(x) = gi+1(x)− gi(x), and we have used the convention

u0 ≡ 1, uk ≡ 0. We see that (31) is equivalent to the minimization

min
u∈C0

H(u) +

∫

Ω
u(x) · g̃(x) dx (56)

where

C0 =
{
u ∈ BV (Ω;Rk−1) : 1 ≥ u1 ≥ · · · ≥ uk−1 ≥ 0 a.e.

}
. (57)

In [46], the authors use σi,j = |i − j| (the total variation of the labels): in this case, one

checks easily that the convex L is simply given by

L =
{
r = (r1, . . . , rk−1) ∈ R

(k−1)×d : |ri| ≤ 1 ∀ i
}

(58)
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on which it is straightforward to project. On the other hand, the representation with the

variable v would require to project onto K = {q : |qi+1 − qi| ≤ 1}, which is quite tricky.

This explains why this representation is also useful, depending on the particular form of the

surface tension σi,j between the phases i and j.

Another case which is better represented in terms of the variable u is the “truncated total

variation”, σi,j = min{|i− j|, T} for some threshold T > 0, see Fig. 2, right. In that case,

L =
{
r = (r1, . . . , rk−1) ∈ R

(k−1)×d :

|ri| ≤ 1 ∀ i , and
∣∣∣∣∣

j−1∑

l=i

rl

∣∣∣∣∣ ≤ T ∀ i < j with j − i ≥ T
}
. (59)

The projection onto the convex set L given by (59) is clearly more complicated than onto (58),

however, it is still simpler than on the corresponding convex set K.

6.3 A simpler variant

In this section and all that follows, we assume that

σi,j = σ̄(|j − i|)

for a function σ̄ : (0,+∞) → (0,+∞) which is concave, positive, nondecreasing. This clearly

implies (52), as in general it follows that σ̄(a) + σ̄(b) ≥ σ̄(a + b) for any a, b > 0. Indeed,

a = (a/(a + b))(a + b) + (1 − a/(a + b)) × 0, b = (b/(a + b))(a + b) + (1 − b/(a + b)) × 0, so

that (letting σ̄(0) = inft>0 σ̄(t) = limt→0 σ̄(t) ≥ 0)

σ̄(a) ≥ a

a+ b
σ̄(a+ b) +

b

a+ b
σ̄(0) and σ̄(b) ≥ b

a+ b
σ̄(a+ b) +

a

a+ b
σ̄(0) ,

from which follows σ̄(a) + σ̄(b) ≥ σ̄(a + b) + σ̄(0) ≥ σ̄(a + b), which is our claim. All the

particular energies considered up to now meet these conditions.

Solving (56) with the numerical approach described in Section 4.2 is quite simple, but still

requires to perform two relatively difficult tasks, which are (i) to project a vector onto L (ii)

to project a vector onto C0 = {u ∈ R
k−1 : 1 ≥ u1 ≥ · · · ≥ uk−1 ≥ 0} (which is in general

much easier than the first projection, except in case L is given by (58)). It is suggested in [46]

to avoid this last step by minimizing, instead of (56), the unconstrained variant

min
u∈BV (Ω;Rk−1)

H(u) +

∫

Ω

k∑

i=1

gi(x)|ui−1(x)− ui(x)| dx (60)

(where still, u0 ≡ 1 and uk ≡ 0). We can show the following proposition:

Proposition 6.1. Assume gi > 0 a.e, and for each i = 1, . . . , k. Then, any solution of (60)

satisfies 0 ≤ uk−1 ≤ uk−2 ≤ · · · ≤ u1 ≤ 1 a.e. in Ω, and hence is a solution of (56)
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Remark 6.2. As already observed, there is no loss of generality in assuming that the gi are

positive, as soon as they are bounded from below (even, in fact, by a given L1 function which

does not depend on the label i), as the problem remains unchanged if the same integrable

function is added to all the functions gi.

The proof of Proposition 6.1 relies on some truncation properties of the functional H and

will be a consequence of the Lemmas 6.3 and 6.4 which are proved in the following sections 6.4

and 6.5: we postpone it to section 6.6.

6.4 Ordering of the vector u

Let us denote by C ⊂ R
k−1 the convex C = {z ∈ R

k−1 : z1 ≥ z2 ≥ · · · ≥ zk−1}. For u ∈ R
k−1,

we denote by ΠC(u) the orthogonal projection of u onto C. The projection u′ = ΠC(u) is

a vector of the following form: there exist 1 = k1 ≤ k2 ≤ · · · ≤ kl+1 = k such that for each

n = 1, . . . , l and each i with kn ≤ i < kn+1,

u′i =
1

kn+1 − kn

kn+1−1∑

j=kn

uj (61)

Indeed, the sets {kn, . . . , kn+1−1}, when containing more than one index, are just the maximal

clusters of indices whose associated coefficients become equal in the projection, and u′ is then

simply the projection of u onto {z ∈ R
k−1 : zi = zj if ∃n , kn ≤ i ≤ j < kn+1}.

In addition, we claim that the projection u′ must satisfy, for each n = 1, . . . , l,

ukn ≤ u′kn = u′kn+1−1 ≤ ukn+1−1 (62)

Indeed, if for instance ukn > u′kn for some n, we define a vector u′′ ∈ C by u′′i = u′i if i 6= kn,

and u′′kn = min{u′kn−1
, ukn} > u′kn : then, since clearly (ukn − u′′kn)

2 < (ukn − u′kn)
2, the vector

u′′ is closer to u than u′, a contradiction.

Observe in particular that (62) yields that if u′i−1 > u′i (that is, the index i is one of the

kn, 2 ≤ n ≤ l), we must have ui−1 > ui, hence, conversely, if ui−1 ≤ ui then u
′
i−1 = u′i. An

recursive algorithm for computing the projection ΠC(u) can be deduced from this remark,

see Appendix B.

Now, let us show that the projection onto C decreases the energy H:

Lemma 6.3. For any u ∈ BV (Ω;Rk−1), H(ΠC(u)) ≤ H(u).

Here, ΠC(u) denotes the function x 7→ ΠC(u(x)).

Proof. First, using Theorem 2.1 and the convergence (16), together with the lower-semicontinuity

of H, it is enough to show the lemma for a smooth u ∈ C∞(Ω;Rk−1). In particular, ΠC(u)

is (Lipschitz) continuous: we even have (since ΠC is 1-Lipschitz) |∇ΠC(u)(x)| ≤ |∇u(x)| for
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a.e. x ∈ Ω. Indeed, at a.e. x, and for any α ∈ {1, . . . , d},

|∂αΠC(u)(x)| = lim
ε→0

1

ε
|ΠC(u)(x+ εeα)−ΠC(u)(x)|

≤ lim
ε→0

1

ε
|u(x+ εeα)− u(x)| = |∂αu(x)|

(where eα = (δα,β)
d
β=1 is the canonical basis of R

d). From which our claims follows, as

|∇ΠC(u)(x)|2 =
∑d

α=1 |∂αΠC(u)(x)|2 ≤ |∇u(x)|2. In particular, the projection decreases the

Euclidean total variation.

As seen above, we can cover Ω by finitely many closed sets A associated each to a particular

partition of {1, . . . , k − 1} into l clusters {kn, . . . , kn+1}, with the same notation as above.

Letting û be defined by

ûi =
1

kn+1 − kn

kn+1−1∑

j=kn

uj

whenever kn ≤ i < kn+1, the set A is simply {x ∈ Ω : ΠC(u) = û}. This implies ∇ΠC(u) =

∇û a.e. in A, hence ∫

A

Φ(∇û(x)) dx =

∫

A

Φ(∇ΠC(u)(x)) dx . (63)

Hence to prove the lemma, it is enough to show that

Φ(∇û(x)) ≤ Φ(∇u(x)) (64)

a.e. in A. But in Ω we have:

∇ûi =
1

kn+1 − kn

kn+1−1∑

j=kn

∇uj

for kn ≤ i < kn+1. Now, if (ξi)
k−1
i=1 ∈ L, we have for any x ∈ Ω

k−1∑

i=1

ξi · ∇ûi(x) =
l∑

n=1

kn+1−1∑

i=kn

(∑kn+1−1
j=kn

ξj

)

kn+1 − kn
· ∇ui(x) =

k−1∑

i=1

ξ̂i · ∇ui(x) (65)

where for each i with kn ≤ i < kn+1, we have let

ξ̂i =
1

kn+1 − kn




kn+1−1∑

j=kn

ξj


 .

If we show that (ξ̂i)
k−1
i=1 ∈ L, it will follow from (65) that

∑
i ξi∇ûi(x) ≤ Φ(∇u(x)), from

which (64) will follow.

We let ξ0i = ξi for each i, and for n = 1, . . . , l we let ξni = ξ̂i if i < kn+1, and ξ
n
i = ξn−1

i = ξi

if i ≥ kn+1. In other words, ξn is obtained from ξn−1 by averaging all components between kn

and kn+1 − 1, and leaving the other unchanged. Let us show by induction that (ξni )
k−1
i=1 ∈ L,

for each n ≤ l: since (ξ̂i)
k−1
i=1 = (ξli)

k−1
i=1 , the thesis will follow.
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This is true for n = 0, by assumption. Assume n ≥ 1 and (ξn−1
i )k−1

i=1 ∈ L. The only

non-obvious conditions to check to prove that (ξni )
k−1
i=1 ∈ L are of the kind

∣∣∣
∑

i1≤i≤i2
ξni

∣∣∣ ≤ σi2+1,i1 = σ̄(i2 − i1 + 1) ,

with either i1 < kn ≤ i2 < kn+1 or kn ≤ i1 < kn+1 ≤ i2. In the first case, for instance, simple

algebra shows that this sum is the convex combination
(
1− 1 + i2 − kn

kn+1 − kn

) ∑

i1≤i<kn

ξn−1
i +

1 + i2 − kn
kn+1 − kn

∑

i1≤i<kn+1

ξn−1
i ,

hence its norm is less than, using the concavity of σ̄:

(
1− 1 + i2 − kn

kn+1 − kn

)
σ̄(kn − i1) +

1 + i2 − kn
kn+1 − kn

σ̄(kn+1 − i1)

≤ σ̄
((

1− 1+i2−kn
kn+1−kn

)
(kn − i1) +

1+i2−kn
kn+1−kn

(kn+1 − i1)
)
.

Writing kn+1 − i1 = (kn+1 − kn) + (kn − i1) in the last term, we find that the argument of σ̄

is in fact equal to (kn − i1) + (1 + i2 − kn) = i2 − i1 + 1, and the thesis follows. The second

case is treated in the same way.

This achieves the proof of the lemma.

6.5 Truncation of the coordinates

Now, we define C0 = C ∩ [0, 1]k−1. Observe that ΠC0 = Π[0,1]k−1 ◦ ΠC : indeed, for any

u ∈ R
k−1 and z ∈ C0,

(u−Π[0,1]k−1ΠCu) · (z−Π[0,1]k−1ΠCu)

= (u−ΠCu) · (z−Π[0,1]k−1ΠCu) + (ΠCu−Π[0,1]k−1ΠCu) · (z−Π[0,1]k−1ΠCu)

≤ (u−ΠCu) · (z−ΠCu) + (u−ΠCu) · (ΠCu−Π[0,1]k−1ΠCu)

≤ (u−ΠCu) · (ΠCu−Π[0,1]k−1ΠCu) = 0

since the vector ΠCu − Π[0,1]k−1ΠCu has constant coefficients on each cluster of constants

coefficients of ΠCu. Then, we have in addition:

Lemma 6.4. For any u ∈ BV (Ω;Rk−1), H(ΠC0(u)) ≤ H(u).

Here again, ΠC0(u) ∈ C0 is x 7→ ΠC0(u(x)).

Proof. Since H(ΠC(u)) ≤ H(u), we just need to show that H(Π[0,1]k−1(u)) ≤ H(u) whenever

u ∈ C a.e, moreover, as before, we may assume that u is smooth. Then, the same arguments

as in the proof of the previous lemma show that the inequality is true provided we can show

that for any i1, i2 with 1 ≤ i1 ≤ i2 ≤ k − 1, and any p ∈ R
(k−1)×d, if p̂ is defined by p̂i = pi

when i1 ≤ i ≤ i2 and p̂i = 0 else, Φ(p̂) ≤ Φ(p). But this is an obvious consequence of the

fact that if (ξi)
k−1
i=1 ∈ L, also (ξ̂i)

k−1
i=1 , defined by ξ̂i = ξi whenever i1 ≤ i ≤ i2 and ξ̂i = 0 else,

belongs to L, which follows from the assumption that σ̄ is nondecreasing.
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6.6 Proof of proposition 6.1

Proof. Let u solve (60). Let u′ = ΠC0u. By Lemma 6.4, we have J(u′) ≤ J(u). Let us now

consider the other terms in (60), that is,

∫

Ω

(
g1(x)|1− u1(x)|+

k−1∑

i=2

gi(x)|ui−1(x)− ui(x)|+ gk(x)|uk−1(x)|
)
dx

We see that when we replace u with, first, u′′ = ΠCu in this expression, some terms of the

form |ui−1(x) − ui(x)| will vanish (hence decreasing the energy, since gi > 0 a.e.), while,

thanks to (62), if |u′′i−1(x) − u′′i (x)| 6= 0, we have ui−1(x) ≥ u′′i−1(x) > u′′i (x) ≥ ui(x) so that

|u′′i−1(x) − u′′i (x)| ≤ |ui−1(x) − ui(x)|. On the other hand, the effect of projecting then u′′

onto [0, 1]k−1, to find u′, does not alter most terms in the sum from i = 1 to k − 1, but

strictly reduces the first and last term (|1 − u1(x)| and |uk−1(x)|) if u′′ was not already in

[0, 1]k−1, while it might also reduce some other terms of the form |ui−1(x)− ui(x)| whenever
ui−1(x) > ui(x). Hence, the energy is strictly reduced by replacing u with u′, unless u = u′,

that is, u ∈ C0.

Remark 6.5. The same proof would show that an unconstrained minimizer of H with

prescribed Dirichlet conditions in L1(∂Ω;C0) will also be in C0 a.e., hence be a minimizer of

the constrained problem of minimizing over C0.

Corollary 6.6. Assume gi > 0 a.e., for i = 1, . . . , k, and let v solve

min∑
i vi=1 a.e.

J(v) +

k∑

i=1

∫

Ω
gi(x)|vi(x)| dx .

Then v solves (31).

It simply follows from Proposition 6.1 after the changes of variable (7) and (9). We also

have the following variant which regards the Dirichlet problem (33):

Corollary 6.7. Let v ∈ L2(Ω;Rk) minimize the energy in (33) without the constraint v ∈ S.
Then v ∈ S, and is a solution of (33).

Proof. The fact that Ψ(p) = +∞ if
∑

i pi 6= 0 yields that any v of finite energy is in

BV (Ω;Rk), with
∑

i vi = 1 a.e. in Ω (which is inherited from the boundary condition v0

and the fact
∑

i v
0
i = 1 on ∂Ω). Then, using the changes of variable (7) and (9), together

with Remark 6.5, we find that v ∈ S.

6.7 Numerical analysis and results

We do not detail our implementation here: indeed, it follows the same lines as in Section 4.

The discrete approximation is of the same type and the Γ-convergence result in Proposition 4.3

will still holds in case Ψ is replaced with Φ and J with H. Then, we use the same type of
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Arrow-Hurwicz’ iteration, as described in (46). To avoid the reprojection onto C0 (wich is not

so complicated, see Appendix B, we introduce also a dual variable for the terms |ui−1 − ui|
which is updated exactly like the other dual variable.

The slowest part in this method is obviously the computation of the projection onto L of

the dual variable (Ξ1, . . . ,Ξk−1) ∈ R
(k−1)×d. This motivates again the use of a GPU. This

step is done using Dykstra’s algorithm as described in Appendix A. The set L is described as

the intersection of k(k+1)/2 “simple” convex sets and an iterate of Dykstra’s algorithm must

therefore involve as many projections and dual variables. Also, the primal-dual gap, which

has an expression similar to (47), can be computed as before only in the 2 or 3-labels cases

(since evaluating Φ, like Ψ, requires an iterative algorithm if k ≥ 4), so that we usually choose

an arbitrary stopping criterion for our iterations (like the variation between two successive

iterates).

Figure 14: A stereo pair

Figure 15: Stereo reconstruction. Top left, disparity (ground truth) for the pair in Fig. 14 –

Top right, reconstructed with TV regularization as in [46] – Bottom left: with “Potts” energy

– Bottom right: with Truncated TV

We show an example of stereo reconstruction, as described in [46]. We have implemented

with k = 17 labels a disparity reconstruction algorithm, where the data term is made of
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absolute differences of the color channels between the left and right image, with a linear

interpolation as described in [10]. We show here the reconstruction with three different

interaction potentials: the total variation as in [46], a “Potts” energy (the length of the

discontinuity), and the “truncated TV”. Results are shown on Figure 15. The best, and more

precise results are obtained with the truncated TV. More precisely, we can count the number

of “wrong” pixels where the error in disparity is more than one: in this case, we have found

2.55% of wrong pixels in the result with the TV interaction, 4.22% with the Potts model, and

1.88% with the truncated TV.

A Algorithm for projecting onto K

Let us explain here how we implemented, in our practical computation, the projection of a

vector (ξi)
k
i=1 in R

k×d onto the convex K (or with the same technique, of (ξi)
k−1
i=1 in R

(k−1)×d

onto the convex L). These two sets are described as a finite intersection of simple sets, on

which a projection is easily computed. In this case, a converging algorithm was first proposed

by Dykstra in the 1980’s [14].

A.1 Dykstra’s algorithm

The idea is essentially as follows: we are given k convex sets in R
N , K1, . . . ,Kk, each on

which has a simple algorithm for projecting onto it, and you want to compute the projection

of a vector x onto
⋂k

i=1Ki. Letting ψi(z) = 0 if z ∈ Ki, and +∞ else, it means you want to

solve

min
z∈RN

|x− z|
2

2

+
k∑

i=1

ψi(z) . (66)

Then, a good idea is to consider the dual problem, which in this case can be written [25, 50]

min
y∈RN

|x− y|
2

2

+

(
k∑

i=1

ψi

)∗

(y) , (67)

moreover, z̄ solves (66) if and only if ȳ = x − z̄ solves (67). Here, (
∑k

i=1 ψi)
∗ denotes the

Legendre-Fenchel conjugate [25, 50] of
∑k

i=1 ψi, that is,

(
k∑

i=1

ψi

)∗

(y) = sup
z∈RN

y · z −
k∑

i=1

ψi(z)

Now, it is known (and easy to check) that the Legendre-Fenchel conjugate of a sum of

convex, lower semicontinuous functions is given by the inf-convolution of the Legendre-Fenchel

conjugate of each function. In this case, that means:

(
k∑

i=1

ψi

)∗

(y) = inf

{
k∑

i=1

ψ∗
i (yi) :

k∑

i=1

yi = y

}
, (68)
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so that another way to write (67) is:

inf
(yi)ki=1∈(R

N )k

1

2

∣∣∣x−∑k
i=1 yi

∣∣∣
2
+

k∑

i=1

ψ∗
i (yi) , (69)

The idea behind Dykstra’s algorithm is to minimize now (69) alternatively in each variable

(yi), for i = 1, . . . , k, until convergence (this point of view was is found for instance in Gaffke

and Mathar [28]).

Hence, we start with y0i = 0 for each i, and (yn+1
i )ki=1 is found from (yni )

k
i=1 by letting, for

i = 1, . . . , k:

yn+1
i = arg min

y∈RN

1

2

∣∣∣
(
x−∑j<i y

n+1
j −∑j>i y

n
j

)
− y
∣∣∣
2
+ ψ∗

i (y) . (70)

Now, let us set for each n ≥ 1, yn =
∑k

i=1 y
n
i , x

n = x − yn (and x0 = x). We also set

xn0 = xn−1, xni = x− (
∑

j≤i y
n
j +

∑
j>i y

n−1
j ) (in particular xnk = xn = xn+1

0 ).

The primal version of (70) is, for n ≥ 1 and i = 1, . . . , k:

xn+1
i = arg min

z∈RN

1

2

∣∣xni−1 + yni − z
∣∣2 + ψi(z) (71)

while yn+1
i is then given by yn+1

i = xni−1 + yni − xn+1
i . But, as ψi is defined, it means nothing

else than {
xn+1
i = ΠKi

(xni−1 + yni )

yn+1
i = xni−1 + yni − xn+1

i

(72)

This is the main iteration of Dykstra’s algorithm, as described in the original work. More-

over, it is shown there that as n→ ∞, xn → ΠK(x) (strongly, if we replace RN with a Hilbert

space).

A.2 The projection onto K

In order to implement the numerical method described in Section 4, we need to project onto

the convex set K ⊂ R
k×d defined in (29) or (53). which may be written as the intersection of

convex sets
⋂

1≤i1<i2≤k

Ki1,i2 , with Ki1,i2 =
{
(qi)

k
i=1 ∈ R

k×d : |qi2 − qi1 | ≤ σi1,i2

}
.

Given q = (qi)
k
i=1 ∈ R

k×d, the projection onto Ki1,i2 is given by

(ΠKi1,i2
(q))i =





qi if i 6= i1, i2 ;

qi1 +
1
2q

i1,i2 if i = i1

qi2 − 1
2q

i1,i2 if i = i2

where

qi1,i2 = (|qi2 − qi1 | − σi1,i2)
+ qi2 − qi1
|qi2 − qi1 |

.

Dykstra’s algorithm is now simple to implement: we are given a vector q we want to project

onto K. We fist let qi1,i2 = 0, and recursively update as follows:
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1. For 1 ≤ i1 < i2 ≤ k:

(a) Compute q̂ = qi2 − qi1 + qi1,i2 ;

(b) Let then ˆ̂q = (|q̂| − σi1,i2)
+(q̂/|q̂|);

(c) Assign to qi1 the value of qi1 +
1
2(
ˆ̂q − qi1,i2) and to qi2 the value qi2 − 1

2(
ˆ̂q − qi1,i2);

(d) Let qi1,i2 take the value ˆ̂q.

2. Test how much q = (qi)
k
i=1 has changed during the loop: if change is less than some

tolerance, end. Else: go back to step 1.

The projection onto L is slightly more complicated but the idea is the same, we skip the

details.

A.3 Accelerating the projection onto K

The number of constraints in K grow quadratically in k, whereas for the weak relaxations,

the constraints stay linear in k. For very specific functionals such as the total cyclic variation

[52], the quadratic number of constraints can actually be expressed in an equivalent form

which only requires linearly many constraints. Yet in the general case, Dykstra’s algorithm

becomes quite impractical for a larger number of labels (e.g. k > 5). However, we observed

that only a very small fraction (usually below 1%) of the constraints are violated during the

iterates of the primal-dual algorithm. We show that this can be used to significantly speeding

up the projection onto K, in case the surface tensions satisfy a triangular condition a bit

stronger than the natural condition (52), see (73) below.

In this Section, we show that indeed only those constraints which are actually violated

need to be considered for computing the projection ontoK. This leads to a dramatic reduction

of the computing time.

Given the surface tensions (σi,j) (with σi,j = σj,i), the sets Ki,j (1 ≤ i < j ≤ k) are

defined as in the previous Section by

Ki,j =
{
p ∈ R

d×k : |pi − pj | ≤ σi,j

}

and we have K =
⋂

i<j Ki,j .

Let us analyse the way the boundaries of the sets Ki,j intersect each other. First, the

normal at p ∈ ∂Ki,j (so that |pi − pj | = σi,j) is

νi,j(p) =
1√
2σi,j

(pi − pj)⊗ (ei − ej)

where here, for p ∈ R
d and x ∈ R

k, p ⊗ x ∈ R
d×k is (pnxi)

i=1,...,k
n=1,...,d, and (ei)i=1,...,k is the

canonical basis of Rk.

In particular, we see that if i < j, l < m are all different indices, then ∂Ki,j and ∂Kl,m

intersect perpendicularly, as 〈νi,j(p), νl,m(p)〉 = 0. (Throughout this section, we use 〈·, ·〉 to
denote the full scalar product in R

d×k, in particular, 〈p⊗ x, q ⊗ y〉 = (p · q)(x · y).)
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Let now p ∈ K, p ∈ ∂Ki,j ∩ ∂Ki,m. Then,

〈νi,j(p), νi,m(p)〉 =
1

2σi,jσi,m
(pi − pj) · (pi − pm)

=
1

4σi,jσi,m

(
(pi − pm) · (pi − pm) + (pm − pj) · (pi − pm)

+ (pi − pj) · (pi − pj) + (pi − pj) · (pj − pm)
)

=
1

4σi,jσi,m

(
σ2i,m + σ2i,j − |pm − pj |2

)
≥ 1

4σi,jσi,m

(
σ2i,m + σ2i,j − σ2m,j

)
.

If now p ∈ K, p ∈ ∂Ki,j ∩ ∂Kl,j , we find in the same way

〈νi,j(p), νl,j(p)〉 ≥ 1

4σi,jσl,j

(
σ2i,j + σ2l,j − σ2i,l

)
.

In all cases, we see that if the surface tensions satisfy

σ2i,l ≤ σ2i,j + σ2l,j (73)

for all triple of distinct indices i, j, l, then we have that the intersection of any two surfaces

∂Ki,j and ∂Kl,m satisfies

〈νi,j(p), νl,m(p)〉 ≥ 0. (74)

Now, we recall that for any convex set C, its normal cone at x ∈ C is the set NC(x) of

vectors ν such that

〈y − x, ν〉 ≤ 0 ∀y ∈ C .

Moreover, it coincides with the subgradient ∂δC(x) of the characteristic function

δC(x) =




0 if x ∈ C

+∞ else.

In case C,C ′ are two convex set and C ∩ C ′ has nonempty interior, we deduce that [50,

Cor. 23.8.1]

NC∩C′(x) = NC(x) +NC′(x)

at any point x ∈ ∂(C ∩ C ′).

In the present case, we deduce that for any I ⊂ {(i, j) : i < j}, the normal cone to

KI =
⋃

(i,j)∈I Ki,j at p is made of all the vectors
∑
λi,jνi,j(p), where (λi,j) are non-negative

numbers and (i, j) runs on all the pairs (i, j) ∈ I such that |pi − pj | = σi,j . In particular, we

deduce that if p ∈ ∂KI ∩ ∂KI′ , then

ν ∈ NKI (p) , ν ′ ∈ NKI′ (p) ⇒
〈
ν, ν ′

〉
≥ 0 . (75)

The following result follows:
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Proposition A.1. Assume (73) holds for all i, j, l = 1, . . . , k, and let p ∈ R
d×k. Let

Ip = {(i, j) : i < j, |pi − pj | ≤ σi,j}

and

Jp = {(i, j) : i < j, |pi − pj | > σi,j}

and denote Kp =
⋂

(i,j)∈Ip Ki,j, L
p =

⋂
(i,j)∈Jp Ki,j. Then ΠK(p) = ΠLp(p).

Proof. By continuity it is enough to prove the proposition when p is in the interior of Kp,

which we will assume from now on.

Let q = ΠK(p) = ΠLp∩Kp(p). Then, q ∈ ∂(Lp ∩Kp) which can be split into three parts,

∂Lp ∩ int(Kp), int(Lp) ∩ ∂Kp, and ∂Lp ∩ ∂Kp. If q ∈ ∂Lp ∩ int(Kp), then the first-order

condition of optimality for q will easily show that q = ΠLp(p), which is our thesis.

Hence it is enough to rule out the two other possibilities, which are q ∈ int(Lp) ∩ ∂Kp

and q ∈ ∂Lp ∩ ∂Kp. The first one is obviously impossible, as in that case, for ε > 0 small,

q+ ε(p−q) ∈ K = Lp ∩Kp is closer to p than q, a contradiction. Hence it remains to show

that q 6∈ ∂Lp ∩ ∂Kp.

Assume q ∈ ∂Lp ∩ ∂Kp. First of all, one can find a unit vector νKp ∈ NKp(q) such that

for t > 0 small, q− tνKp is in the interior of a cone of vertex q contained in Kp (as it will lie

in the interior of the dual cone to NKp(q). A possible choice, here, is to take νKp equal to

the renormalized sum of all the normals νi,j(p) ((i, j) ∈ Ip, |qi − qj | = σi,j) extremal to the

cone NKp(q), which, thanks to (75), will satisfy 〈νKp , νi,j(p)〉 > 0 for all i, j.

If for t small, we also have q − tνKp ∈ Lp then we’re done, indeed, we deduce that

〈p− q,−tνKp〉 ≤ 0, but since p ∈ Kp and νKp ∈ NKp(q), one also has 〈p− q, νKp〉 ≤ 0.

Hence 〈p− q, νKp〉 = 0 which is possible only if p ∈ ∂Kp, a contradiction (we have assumed

p in the interior).

If q− tνKp 6∈ Lp for any t > 0 small, let us show that it is not too far anyway, that is:

dist(q− tνKp , Lp) = o(t) as t→ 0 . (76)

Let zt ∈ Lp be such that ‖q− tνKp − zt‖ = dist(q− tνKp , Lp). Clearly, this distance is less

than t (since q ∈ Lp). Assume by contradiction that for a sequence (tn)n ↓ 0, it is larger

than δtn for some δ > 0. Possibly extracting a further subsequence we may assume that

(q − ztn)/tn − νKp converges to some vector ν of norm between δ and 1, moreover, clearly,

ν ∈ NLp(q) and in particular 〈ν, νKp〉 ≥ 0.

As ztn is the projection onto Lp of q− tnνKp and q ∈ Lp we also have

〈q− ztn ,q− tnνKp − ztn〉 ≤ 0

so that 〈
q− ztn
tn

− νKp , νKp

〉
≤ − 1

t2n
‖q− tnνKp − ztn‖2 ≤ −δ2 ,

hence in the limit 〈ν, νKp〉 ≤ −δ2, a contradiction.
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Hence, (76) holds and ‖q − tνKp − zt‖ = o(t), in particular, (q − zt)/t → νKp as t → 0.

We also deduce that zt ∈ Kp if t is small enough, hence zt ∈ Kp ∩ Lp = K, so that

〈p− q, zt − q〉 ≤ 0

Dividing by t and sending t → 0, we deduce that 〈p− q, νKp〉 ≥ 0, but since p ∈ int(Kp),

again, and νKp ∈ NKp(q), it follows that 〈p− q, νKp〉 = 0 and p ∈ ∂Kp, a contradiction.

B Algorithm for projecting onto C

Let u ∈ R
k−1: we give here a simple algorithm for computing the projection ΠCu of u onto

C = {z ∈ Rk−1 : z1 ≥ z2 ≥ · · · zk−1}. Of course, as in the previous section, we could

still use Dykstra’s algorithm: however, this will usually converge in infinitely many iterations

(although the error decreases very fast), whereas the alternative solution we propose here

needs at most k − 2 iterates to produce the exact solution.

Let us first modify slightly the problem, and consider the minimization:

min
z∈C

k−1∑

i=1

ωi(zi − ui)
2 (77)

where ωi are positive weight. Then, the same analysis as in section 6.4 holds true, and in

particular (61): we hence know that if for some index i ∈ {1, . . . , k − 2}, ui ≤ ui+1, the

solution z of (77) satisfies zi = zi+1 (while if there is no such index, u ∈ C and z = u is the

solution).

In this case, (77) is obviously equivalent to the minimization of

∑

j 6=i,i+1

ωj(zj − uj)
2 +

(
ωi(zi − ui)

2 + ωi+1(zi − ui+1)
2
)

=
∑

j 6=i,i+1

ωj(zj − uj)
2 + (ωi + ωi+1)

(
zi −

ωiui + ωi+1ui+1

ωi + ωi+1

)2

+ ωiu
2
i + ωi+1u

2
i+1 −

(ωiui + ωi+1ui+1)

ωi + ωi+1

2

(78)

over all z ∈ C with zi = zi+1, which (since the last line in (78) does not depend on z) is a new

problem of the form (77), but now in dimension (k − 2), and with the coordinates ui, ui+1

replaced with their average with respective weights ωi and ωi+1, and their common weight in

the new distance replaced with the sum of the weights ωi + ωi+1.

Hence, a straightforward recursive algorithm for computing ΠCu is as follows:

1. Let first z = u, and define k−1 “clusters” Ci = {i}, i = 1, . . . , k−1, of only one element.

2. Identify two coordinates zi, zi+1 with zi < zi+1. If there are no such coordinates, z ∈ C:

the procedure ends and z = ΠCu.
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3. Replace the clusters Cj , j ∈ Ci ∪ Ci+1, with the union Ci ∪ Ci+1. Replace then zi and

zi+1 with the average
(∑

j∈Ci
zj

)
/(♯ Ci).

4. go back to 2.

C Evaluation of Ψ for three labels

Let us quickly mention how, in case k = 3, the value of Ψ(q) defined in (30) can be computed

in order to estimate the primal-dual gap (47).

We use the formula (54) to write, given q = (q1, q2, q3) with q1 + q2 + q3 = 0 (otherwise

Ψ(q) = +∞),

Ψ(q1, q2, q3) = Φ(p1, p2)

with p1 = −q1, p2 = −q1 − q2 = q3.

Using (55) (for weights σi,j = 1), we have that (here p = (p1, p2))

Φ(p) = sup {r1 · p1 + r2 · p2 : |r1| ≤ 1, |r2| ≤ 1, |r1 + r2| ≤ 1} .

Standard duality shows that this can be rewritten

Φ(p) = min
q∈Rd

|q| + |p1 − q| + |p2 − q| ,

that is, q is the point whose total distance to 0, p1 and p2 in R
2 is minimal.

Hence, the problem boils down to finding a simple way to compute, given a, b, c ∈ R
2, the

point x ∈ R
2 which minimizes |x− a|+ |x− b|+ |x− c|.

If a, b, c are aligned (in our case, if det(p1, p2) = 0), then x is optimal when it is equal to

a point which lies in between the two other (or is equal to one of the other). For instance, if

b ∈ [a, c], x = b is optimal and the solution is |a− b|+ |b− c|.
If the points are not on the same line, then they form a non-degenerate triangle. It is

shown, then, that if x is optimal, it must lie inside the triangle formed by the three points.

Then, from the optimality conditions, one checks that either x is one of the points a, b, c

(say, for instance, a), in which case the angle b̂ac must be greater than, or equal to 120◦, or

x 6∈ {a, b, c}, in which case the angles âbc, b̂ac, âcb are all three smaller than 120◦. In this

last non-degenerate case, the three angles âxb, b̂xc, ĉxa must be exactly 120◦, so that x lies

at the intersection of three circles, which are the circles made of the points which “see” two

vertices of the triangle under an angle of 120◦. This is very easy to compute. The centers of

these circles are A,B,C: A is at distance |bc|/(2
√
3) of the segment [b, c] and its projection

on this segment is the middle point (b+ c)/2 (and a and A must be separated by (bc)). B is

the same with respect to a and c, and C with respect to a and b. Then, the circles of center

A and radius |bc|/
√
3 and of center B and radius |ac|/

√
3 have the two intersection points c

and x: x is then the symmetric of c with respect to the line (AB). See Fig. 16.
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Figure 16: Construction of the optimal point x
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