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Abstract

Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial

resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolu-

tions. The problem of inferring images which combine the high spectral and high spatial resolutions of

HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research

due to the increasing availability of HSIs and MSIs retrieved from the same geographical area.

We formulate this problem as the minimization of a convex objective function containing two

quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur,

different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes

piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands.

The downsampling operator accounting for the different spatial resolutions, the non-quadratic and

non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard

optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally “live”

in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm

(SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this

optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral
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linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated,

and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of

experiments with simulated and real-life data.

Index Terms

Hyperspectral imaging, superresolution, data fusion, vector total variation (VTV), convex non-

smooth optimization, Alternating Direction Method of Multipliers (ADMM).
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A convex formulation for hyperspectral image

superresolution via subspace-based

regularization

I. INTRODUCTION

images are an efficient way to describe and store visual information about our world. This

work will deal with a special kind of them, the so-called spectral images. A spectral image, or

data cube, is a set of 2D images, also termed bands, representing the reflectance or radiance of a

scene in different parts of the electromagnetic (EM) spectrum. They find applications in the fields

of remote sensing (agriculture, mineralogy, etc.), astronomy, and biomedicine, for example [1].

Our focus will be on the remote sensing field, where spectral images are typically generated

from air- or spaceborne sensors.

In this context, it is common to distinguish between hyperspectral and multispectral images

(HSIs and MSIs, respectively). The difference is application-dependent, but HSIs typically have

high spectral resolution in the visible, near-infrared, and shortwave infrared spectral ranges [1].

As a result of this high resolution, HSIs have a large number of bands, each one corresponding to

a somewhat narrow part of the EM spectrum. For example, the Hyperion Imaging Spectrometer

has about 200 spectral bands, each covering 10 nm of the spectrum, with a spatial resolution of

30m [2].1 On the other hand, MSIs generally offer a higher spatial resolution, but each band

covers a larger range of the spectrum, resulting in a much smaller number of bands. For example,

the IKONOS satellite collects multispectral images covering four bands (blue, green, red and

near-infrared) with a spatial resolution of 4m [3].2 In other words, HSIs have comparatively high

spectral and low spatial resolutions, while MSIs have low spectral and high spatial resolutions.

It is of interest to fuse the information from these two data sources, to synthesize images

with simultaneously high spectral and high spatial resolutions. A related problem that has

1More information at http://eo1.usgs.gov/sensors/hyperion.

2More information at http://www.digitalglobe.com/sites/default/files/DG\ GeoEye1\ DS.pdf.
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been extensively studied is pansharpening, which addresses the fusion of multispectral and

panchromatic images, the latter of which are single-band images usually covering the visible and

the near-infrared spectral ranges [4]–[6]. Panchromatic images (PANs) typically have a spatial

resolution that is even higher than the one of MSIs. The HSI-MSI fusion problem is significantly

more difficult to solve than pansharpening, owing to three factors: a) although both are ill-posed,

there is a much larger number of variables to estimate in HSI-MSI fusion, b) the hyperspectral

data typically have a large dimensionality, which can act computationally more as a crutch than

an asset, and c) often, the spectral range covered by the HSI is significantly larger than the one

covered by the MSI, and, therefore, many bands of the HSI are not included in any band of the

MSI.

Recently, some techniques dedicated to the fusion of HSIs and MSIs have been proposed. A

common trend is to associate this problem with the linear spectral unmixing one, which assumes

that the underlying data can be described by a mixture of a relatively small number of “pure”

spectral signatures, corresponding to the materials that are present in the scene [1], [7]. Since

both HSIs and MSIs capture the same scene, the underlying materials (the so-called endmembers)

should be the same. Therefore, a spectral dictionary extracted from one of the images should also

be able to explain the other one. Due to the high spectral resolution of the HSIs, the dictionary

is extracted from these data, and is then used to reconstruct the multispectral data via sparse

regression. The estimate of the original high resolution HSI is then obtained from the regression

coefficients and from the dictionary. This technique was introduced in [8] for HSIs, but there

are older works exploiting similar ideas for MSIs [9]. For example, Kawakami et al. [10] fused

hyperspectral images with images from RGB cameras, starting by estimating the endmember

mixing matrix from the hyperspectral data through a ℓ1-minimization problem, solved via a non-

smooth Gauss-Newton algorithm. The endmember matrix, jointly with the spectral responses of

the RGB sensor, was then used as a basis to reconstruct the RGB image, by formulating an

optimization problem that imposed sparsity. In [11], Huang et al. unmixed the hyperspectral

data via the K-SVD algorithm, and reconstructed the MSI using orthogonal matching pursuit to

induce sparsity. The method was tested with Landsat/ETM+ and Aqua/Modis images. Song et

al. [12] first learned two dictionaries from the two different data, and then used a dictionary-

pair learning method to establish the correspondence between them. Again, their method was

tested using Landsat/ETM+ with Aqua/Modis data, but only taking into account the spectrally
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overlapping bands. A similar and older technique is the one from Yokoya et al., which alternately

unmixes both sources of data to find the signatures and the abundances of the endmembers [13].

A different framework was proposed by Hardie et al. in [14], in which a fully Bayesian

approach was followed, by imposing prior distributions on the problem. This work was the

foundation for other works: Zhang et al. introduced a method which works in the wavelet do-

main [15], and later published an expectation-maximization algorithm to maximize the posterior

distribution [16]. Wei et al. used a Hamilton Monte Carlo algorithm to deal with the high-

dimensional space of the posterior distribution [17]. In [18], Chen et al. introduced a method

that treats image registration and image fusion as a joint process. The fusion of HSIs with just the

panchromatic band is a different, but related, problem [19]–[21]. Using only the hyperspectral

image, different authors [22], [23] treated this problem as a simple superresolution one.

A. Contributions

This work is built around the standard linear inverse problem model for HSIs and MSIs.

This model is used to formulate data fusion as a convex optimization problem. We use a form

of vector Total Variation-based regularization [24], taking into account both the spatial and

the spectral characteristics of the data. In order to perform the optimization, we follow an

Alternating Direction Method of Multipliers (ADMM) approach by using the Split Augmented

Lagrangian Shrinkage Algorithm (SALSA) [25], and we explore the inherent redundancy of the

images with data reduction techniques, to formulate the problem in a computationally efficient

way. This method, which we term HySure, for Hyperspectral Superresolution, allows us to fuse

hyperspectral data with either multispectral or panchromatic images.

In the literature, the HSI-MSI fusion problem is very often dealt with as a non-blind one,

in the sense that the spatial and spectral responses of the sensors are assumed to be known

(see [13], [15]–[17], for example). In practice, however, the information that is available about

these responses is often scarce and/or somewhat inaccurate. In this work, we take a blind

approach, assuming that these responses are unknown, and we formulate another convex problem

to estimate them, making only minimal assumptions: we assume that the spatial response has

limited support and that both responses are relatively smooth. The estimate of the spectral

response can be improved by using information on the correspondence between bands from the

two images, if that information is available—it is often easily obtained from data on the spectral
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coverage of the various bands from the two sensors.

This work extends [26] in several different directions: it details the optimization process more

clearly, establishes the framework used to estimate the spatial and spectral responses of the

sensors, and presents a number of new experimental results.

B. Outline

The remainder of this work is organized as follows. Section II describes the data fusion

method, including the proposed model and the formulation of the optimization problem. The

approach followed to perform the optimization is presented in Section III. Section IV deals with

the estimation of the sensors’ spatial and spectral responses. Section V presents experimental

results. Section VI concludes.

II. DATA FUSION METHOD

A. Observation Model

Multispectral and hyperspectral images can be thought of as three-dimensional arrays or

tensors, often called data cubes. However, for notational convenience, the representation followed

in this work will consider HSIs and MSIs to be two-dimensional matrices, where each line

corresponds to a spectral band, containing the lexicographically ordered pixels of that band. We

use bold lowercase to denote vectors (e.g., x, y) and bold uppercase to denote matrices (e.g.,

H, M).

Let the matrix representing the observed hyperspectral data be Yh ∈ R
Lh×nh , with Lh bands

and spatial dimension nh, and let Ym ∈ R
Lm×nm denote the observed multispectral data, with

Lm < Lh bands and spatial dimension nm > nh. Matrix Z ∈ R
Lh×nm denotes the high spatial

and spectral resolution data to be estimated.

With this representation, we model the hyperspectral measurements as

Yh = ZBM+Nh (1)

where matrix B ∈ R
nm×nm is a spatial blurring matrix representing the hyperspectral sensor’s

point spread function in the spatial resolution of Z; it is assumed to be band-independent

and to be under circular boundary conditions. These two assumptions are made for simplicity.

When dealing with non-blind data fusion, allowing the blur to vary across bands would not
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change the complexity of the algorithm. In the blind case, the increase in complexity would be

relatively small. Regarding the boundary conditions, assuming them to be periodic has two main

advantages. First, it allows to use Fast Fourier Transforms (FFTs) to compute convolutions.

Second, matrix inversion, usually a costly operation, is easily performed, again through the

use of FFTs, under certain conditions that are met in this case. Although periodic boundary

conditions are not totally realistic, we experimentally found that they do not lead to any significant

artifacts in the fused image, while allowing a dramatic reduction in the amount of computation. A

technique based on ADMM that makes no assumptions about the boundaries has been proposed

in [27], [28], but we did not find the corresponding increase in complexity justified for the

images we have worked on.

Matrix M ∈ R
nm×nh , whose columns are a subset of the columns of the identity matrix,

accounts for a uniform subsampling of the image, to yield the lower spatial resolution of the

hyperspectral image. Nh represents i.i.d. noise. The assumption that the noise is identically

distributed across bands is also made for simplicity. Accommodating statistically independent

noise across bands and pixels, but with band-dependent variance, would be straightforward.

We model the multispectral measurements as

Ym = RZ+Nm, (2)

where R ∈ R
Lm×Lh holds in its rows the spectral responses of the multispectral instrument, one

per multispectral band, and Nm represents i.i.d. noise.

In this work, matrices B and R are estimated from the data, by formulating a quadratic

optimization problem. Section IV will address that topic.

B. Dimensionality reduction

Hyperspectral data normally have a large correlation between bands: the spectral vectors, of

size Lh, usually “live” in a subspace of dimension much lower than Lh [29], [30]. Therefore,

we can write

Z = EX, (3)

where E ∈ R
Lh×Ls is a matrix whose Ls columns span the same subspace as the columns of Z,

and X ∈ R
Ls×nm are the representation coefficients. Small values of Ls, i.e., Ls ≪ Lh, translate

into a description of the data in a relatively low-dimensional space.
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This dimensionality reduction has two advantages. One is that it is computationally more

efficient to work in a lower dimensional space than in the original space of Z, making algorithms

which use these representations comparatively fast. The other advantage is that, since the number

of variables to be estimated is significantly reduced, the estimates will normally be more accurate

than if we worked in the original dimensionality. As an illustration of the amount of reduction

that is possible, assume that the hyperspectral image has 200 bands. With Ls = 10, which is a

typical value, only 5% of the number of original variables need to be inferred.

Different approaches can be followed to factorize matrix Z, and two of them will be briefly

mentioned here. One is to take into account the physical process that gave origin to Yh. In the

linear unmixing approach [29], it is assumed that the spectral response of each pixel is a linear

combination of the pure spectral signatures of the underlying endmembers. In this case, E would

be the spectral signature matrix obtained from Yh, and X would represent the abundance fractions

of the endmembers for every pixel of Z. There are numerous algorithms in the literature that

address the unmixing problem (for example, Vertex Component Analysis – VCA [31]). Several

of the methods discussed in Section I use the linear mixing model.

Another approach is to use Singular Value Decomposition (SVD) to obtain the factorization

Yh = UΣVT, where U and V are orthogonal matrices and Σ is a rectangular diagonal matrix

containing the singular values, which are assumed to be in non-increasing order. Denote by Σ̂,

Û and V̂, respectively, the truncated matrices obtained by discarding the rows and columns

with the smallest singular values from Σ and the corresponding columns of U and V. A low-

dimensional approximation of Yh is given by ÛΣ̂V̂T . In this approach, we make E = Û.

Due to the low intrinsic dimensionality of the hyperspectral data, most of the singular values are

rather small, allowing a very significant dimensionality reduction while retaining a rather faithful

approximation of Yh. If Nh = 0 and all discarded singular values are zero, this representation

spans the true signal subspace. If the former condition on Nh is not obeyed but Nh is i.i.d.,

this representation corresponds to the maximum likelihood estimate of that subspace. However,

if the noise is non-i.i.d., the estimation of the subspace is more complex; see, for example, [32]

for details, and for algorithms oriented to subspace estimation in hyperspectral applications.

With any of these two factorizations, we replace Eq. (1) with

Yh = EXBM+Nh, (4)
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where the error due to the dimensionality reduction has been incorporated into Nh.

Remote sensing images often are somewhat noisy. The use of truncated SVD is also a very

common approach to perform denoising, a topic that we shall address in Section V.

C. Regularization

The problem that we are trying to solve is strongly ill-posed, and therefore needs adequate

regularization. The regularizer that we use is given by

ϕ
(
XDh,XDv

) def
=

nm∑

j=1

√√√√
Ls∑

i=1

{[
(XDh)ij

]2
+
[
(XDv)ij

]2}
, (5)

where (A)ij denotes the element in the ith row and jth column of matrix A, and the products

by matrices Dh and Dv compute the horizontal and vertical discrete differences of an image,

respectively, with periodic boundary conditions. This regularizer is a form of vector Total

Variation (VTV) [24]. Its purpose is to impose sparsity in the distribution of the absolute gradient

of an image, meaning that transitions between the pixels of an image should be smooth in the

spatial dimension, except for a small number of them, which should coincide with details such

as edges. Total Variation was proposed for the first time in [33] and is extensively used in image

restoration [25], [27], [34]–[39]. It has two different discrete formulations, the anisotropic and

isotropic ones [40]; in this work, we use the isotropic formulation. In [41], Zhao et al. proposed

an isotropic TV scheme for hyperspectral image deblurring in a band-by-band manner. This

means that each band was regularized independently from the other ones. This approach has

a shortcoming: it does not take into account that edges and other details normally have the

same locations in most bands. The vector form of the regularizer, which we use in this work,

promotes solutions in which edges and other details are aligned among the different bands.

VTV has previously been used in a pansharpening application [42] and in the denoising of

hyperspectral images [43].

We apply the regularizer to the reduced-dimensionality data X, and not to Z itself. This is

indeed reasonable, since the subspace spanned by E is the same as the one where Z resides

(or an approximation, when using truncated SVD), and by regularizing X we are indirectly

regularizing Z.
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D. Optimization problem

Let ‖X‖F def
=
√

Tr(XXT ) denote the Frobenius norm of X, and (·)T denote the transposition

operator. We can now formulate an optimization problem based on our model with the proposed

regularizer:

minimize
X

1

2

∥∥∥Yh − EXBM

∥∥∥
2

F
+

λm

2

∥∥∥Ym −REX

∥∥∥
2

F

+ λϕϕ
(
XDh,XDv

)
. (6)

The first two terms are data-fitting terms, imposing that the estimated image should be able to

explain the observed data according to the model defined in (4) and (2). The last term is the

regularizer. The parameters λm and λϕ control the relative importances of the various terms. We

shall discuss the selection of these parameters in Section V-C.

Problem (6) is convex, but is rather hard to solve, due to the nature of the regularizer, which

is non-quadratic and non-smooth. Additional difficulties are raised by the large size of X (the

variable to be estimated) and by the presence of the downsampling operator M in one of the

quadratic terms, preventing a direct use of the Fourier transform in optimizations involving

this term. We deal with these difficulties by using the Split Augmented Lagrangian Shrinkage

Algorithm (SALSA) [25], which is an instance of the Alternating Direction Method of Multipliers

(ADMM). An alternative approach would consist in employing a primal-dual method [44], [45].

Unlike our approach, primal-dual methods do not require the solution of linear systems of

equations on each iteration. However, since the system matrix in our problem is diagonalizable

using light computations, SALSA yields much faster algorithms than those based on primal-dual

methods, according to our experience. The next section and the Appendix describe the details

of the optimization method.

III. OPTIMIZATION METHOD

ADMM involves the introduction of auxiliary variables into the optimization problem, through

the so-called variable splitting technique. We split the original optimization variable X into a

total of five variables: one which we still call X, and four auxiliary variables, V1 to V4. The
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optimization problem becomes

minimize
X

1

2

∥∥∥Yh − EV1M

∥∥∥
2

F
+

λm

2

∥∥∥Ym −REV2

∥∥∥
2

F

+ λϕϕ
(
V3,V4

)

subject to V1 = XB, (7)

V2 = X,

V3 = XDh,

V4 = XDv.

For notational simplicity, we define the matrices V and H,

V
def
=




VT
1

VT
2

VT
3

VT
4



, H

def
=




BT

I

DT
h

DT
v



,

and the cost function as follows:

f
(
V
) def
=

1

2

∥∥∥Yh − EV1M

∥∥∥
2

F
+

λm

2

∥∥∥Ym −REV2

∥∥∥
2

F

+ λϕϕ
(
V3,V4

)
.

We can express (7) as

minimize
X

f
(
V
)

subject to V = HXT .

(8)

This problem has the following augmented Lagrangian [46]

L
(
X,V,A

)
= f

(
V
)
+

µ

2

∥∥∥HXT −V −A

∥∥∥
2

F
, (9)

where A is the so-called scaled dual variable [47], and µ is a positive constant, called penalty

parameter. We are now ready to apply the ADMM method, which yields the algorithm shown

in Fig. 1. As we can see, SALSA solves the original, complex optimization problem through

an iteration on a set of much simpler problems. The constraints are taken into account, in

an approximate way, by minimizing the augmented Lagrangian of the problem relative to the

auxiliary variables.
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Require: data: Yh, Ym; regularization parameters: λm, λϕ; penalty parameter: µ; matrices R,

B and E; initializations: V(0) and A(0)

k := 0

repeat

X(k+1) ∈ argmin
X

L
(
X,V(k),A(k)

)

V(k+1) ∈ argmin
V

L
(
X(k+1),V,A(k)

)

A(k+1) := A(k) −
(
HX(k+1)T −V(k+1)

)

k := k + 1

until stopping criterion is satisfied.

Fig. 1. Pseudocode for the HySure algorithm. For details, see the Appendix.

The minimization with respect to X is a quadratic problem with a block cyclic system matrix,

which can be efficiently solved by means of the Fast Fourier Transform (FFT). Minimizing with

respect to the auxiliary variables is done by solving three different problems, whose solutions

correspond to three Moreau proximity operators [48]. The minimization with respect to V1 is a

quadratic problem which is efficiently solved via FFTs, and the minimization relative to V2 is

also quadratic; these two problems involve matrix inverses which can be computed in advance.

Finally, the minimization with respect to V3 and V4 corresponds to a pixel-wise vector soft-

thresholding operation.

The details of the optimization, as well as an analysis of the algorithm’s complexity, are

presented in the Appendix. The number of splitting variables could have been reduced, by

eliminating V1, for example. This could have been done via a scheme similar to the one proposed

in [41], working with Kronecker products. We chose not to do so, since the form of the algorithm

that we presented above is simpler to derive, and the computational and memory gains of doing

one less splitting did not seem to be very significant.

The algorithm described above satisfies the conditions for the convergence of SALSA estab-

lished in [25], which require matrix H to have full column rank (which is true in our case, due

to the presence of identity matrix I), and function f(·) to be closed, proper, and convex (which

is also true, since it is a sum of closed, proper, and convex functions). Under these conditions,
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and for arbitrary µ > 0, V(0) and A(0), if problem (8) has a solution X∗, then the sequence

{X(k)} will converge to X∗; if a solution does not exist, then at least one of the sequences

{V(k)} or {A(k)} will diverge. The actual value of the penalty parameter µ is not important as

a condition for convergence, but can have a strong influence on the convergence speed of the

algorithm. The choice of µ is discussed in Section V-C.

IV. ESTIMATING THE SPATIAL BLUR B AND THE SPECTRAL RESPONSE R FROM THE DATA

As previously mentioned, matrices B and R are estimated from the observed images. The

advantages of doing so are threefold. First, as previously mentioned, the available information

about the sensors can be rather scarce. Second, it may be hard to precisely adapt that information

to the model that is being used for data fusion. Third, there may be discrepancies between the

real spatial and spectral responses and the data supplied by the manufacturers. These can be

due to several causes, such as atmospheric conditions, postprocessing artifacts, and even the

variability within the observed scene [49].

As already mentioned, in [15], [16], Zhang et al. assumed the spatial response to be known.

However, they also suggested using Gaussian blurs with different variances as spatial responses

when this was not the case, arguing that their fusion method did not require a strict knowledge of

the spatial response of the sensor. In [50], Yokoya et al. have directly addressed the estimation of

responses for the fusion of HSIs and MSIs from the Hyperion and ASTER sensors, respectively,

which are aboard two different satellites. Their method estimates both the relative spatial and

relative spectral responses of the sensors. The spatial response is assumed to correspond to a

Gaussian blur and its variance is estimated by using a template-matching technique. In order

to determine the spectral response, the authors use the so-called pre-launch response, with

information obtained from measurements performed on the sensors before they were launched

into space. The method tries to find a spectral response that is able to describe the observed data

and that is close to the pre-launch response. In a different approach, Huang et al. estimated the

spectral response directly form the data, without requiring a priori information [11].

Recall that, without noise,

Yh = ZBM, Ym = RZ,

which implies that

RYh = YmBM. (10)
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Taking (10) into account, we infer R and B by solving the optimization problem

minimize
B,R

∥∥RYh −YmBM
∥∥2 + λbφB(B) + λRφR(R), (11)

where φB(·) and φR(·) are quadratic regularizers that will be discussed in detail below, and

λb, λR ≥ 0 are the respective regularization parameters. Matrix B, and possibly also matrix R,

are subject to some constraints discussed below.

A special consideration needs to be made regarding the estimation of the spectral response.

This is due to the fact that, when using the observed data, it is not possible to fully estimate matrix

R. The reason for this is that, as discussed in Section II-B, the hyperspectral data normally span

only a low-dimensional subspace of the full spectral space. Only the component of R parallel

to that subspace can be estimated. This is not a drawback, however, since the component of R

orthogonal to that subspace has essentially no influence on the result of the image fusion. In

fact, if we write R = R‖ + R⊥, where R‖ = RP‖ and R⊥ = RP⊥, and P‖ and P⊥ denote

the projection matrices onto the subspaces spanned by the original hyperspectral vectors and

onto the subspace orthogonal to it, respectively, we have RYh = R‖Yh + R⊥Yh = R‖Yh,

since R⊥Yh is zero. For the product RZ, which is involved in the fusion problem, we have

RZ ≈ R‖Z, since Z will span approximately the same subspace as Yh, because it corresponds

to an image containing the same endmembers.

According to the observation model presented in Section II-A, matrix B accounts for a 2D

cyclic convolution. In addition, we assume that the convolution kernel has finite support contained

in a square window of size
√
nb, thus containing nb pixels, centered at the origin.

Let [YmB]:j denote the jth column of YmB, b ∈ R
nb denote the columnwise ordering of the

convolution kernel, and Pj ∈ R
nm×nb denote a matrix which selects from Ym a patch such that

[YmB]:j = (YmPj)b.

With these definitions in place, a slight modification of the optimization (11) is

minimize
b,R

nh∑

j=1

∥∥∥RYh,:j −Ym,jb

∥∥∥
2

+ λbφb(b) + λRφR(R)

subject to bT1 = 1,

(12)
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where Yh,:j denotes the jth column of Yh, Ym,j
def
=
[
(YmPcj)

]
∈ R

Lm×nb , with cj denoting the

column of Ym corresponding to the jth column of Yh, φb(b)
def
=φB(B), and the normalization

condition bT1 = 1 imposes unit DC gain of the blur.

We note that (12) is a quadratic program with only equality constraints and, therefore, using

Lagrange multipliers, its solution can be obtained by solving a linear system of equations.

However, even though we have a closed-form solution, because the size of the optimization

variables (i.e., nb + Lm × Lh) is usually of the order of thousands, it may be useful to solve

problem (12) via alternated minimization with respect to b and R.

The optimization with respect to b leads to the following regularized least squares problem:

minimize
b

nh∑

j=1

∥∥∥RYh,:j −Ym,jb

∥∥∥
2

+ λb

(∥∥Dhb
∥∥2 +

∥∥Dvb
∥∥2
)

subject to bT1 = 1,

(13)

The two last terms of the function being minimized in (13) correspond to φb(·), which is a

noise-removing regularizer that smooths the estimated convolution kernel by promoting that the

values of the differences between neighboring pixels be small. As before, Dh and Dv compute the

horizontal and vertical discrete differences of the convolution kernel, with dimensions adjusted

for this particular case.

An approximate solution for (13) is computed by first relaxing the constraint, estimating the

filter without the normalization condition, and then normalizing the result to unit DC gain. The

solution of the unconstrained problem is given by

b∗ =
[ nh∑

j=1

YT
m,jYm,j + λb

(
DT

hDh +DT
vDv

)]−1

[ nh∑

j=1

YT
m,jRYh,:j

]
.

(14)

The support covered by b is user-specified. We have found, experimentally, that the choice of

this support does not have much influence on the blur estimate, as long as it encompasses the

support of the actual blur.
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Concerning the estimation of R, we use the regularizer φR(·) in order to deal with the

indetermination of the orthogonal component, and to reduce estimation noise. In the cases in

which there is information about the overlap between bands of the HSI and the MSI, we constrain

the elements of R that correspond to non-overlapping bands to zero.

The estimation of R can be made independently for each of the MSI bands. Let rTi denote a

row vector containing the ith row of R without the elements that are known to correspond to

hyperspectral bands that do not overlap the ith multispectral band, and by Yh,i denote the matrix

Yh without the rows corresponding to those same bands. The optimization of (12) is decoupled

with respect to the rows of R and may be written as

minimize
ri

∥∥rTi Yh,i −Ym,i:BM
∥∥2
F
+ λR

∥∥Dri
∥∥2, (15)

in which Ym,i: is the ith row of Ym, and the product by D computes the differences between the

elements in ri corresponding to contiguous hyperspectral bands. The solution of (15) is given

by

r∗i =
[
Yh,iY

T
h,i + λRD

TD
]−1

Yh,i

[
Ym,i:BM

]T
. (16)

The estimation of each of the matrices B and R, as presented so far, requires the knowledge

of the other matrix. In order to estimate both, and instead of using alternating optimization as

proposed before, we adopt an even simpler technique. We start by estimating R. To do this

without knowing B, we first blur both spectral images with a spatial blur that is much stronger

than the one produced by B, so that the effect of B becomes negligible. This, conveniently,

also minimizes the effect of possible misregistration between the hyperspectral and multispectral

images. Following this, we estimate the spectral response R using (16), setting the kernel of

the spatial blur between the strongly blurred multispectral and hyperspectral images to a delta

impulse. Finally, we estimate the spatial blur B using (13) on the original (unblurred) images,

with the value of R just found. Fig. 2 summarizes the estimation method. In the tests presented

in Section V, we have used, for the strong spatial blur, an averaging in a square of 9× 9 pixels

for the MSI, and a correspondingly smaller averaging for the HSI.

We now discuss the set of solutions of (12), which is an important issue in our approach

to the estimation of b and R, closely related to that of identifiability. Given that the objective



16

function in (12) is quadratic, a sufficient condition for (12) to have a unique solution is that its

Hessian matrix be positive definite. Assuming that λb, λR > 0, the null space associated with

the regularization terms is the set

A
def
={(R,b) : R = c1T

Lh
, b = d1nb

, c ∈ R
Lm , d ∈ R},

where we have assumed that the spectral response of the MS channels spans over the entire Lh

HS spectral bands, and the HS bands are contiguous in frequency. The case in which the spectral

response of the MS channels spans over subsets of the Lh HS spectral bands corresponds to a

minor modification of the reasoning provided below. The case in which the HS bands are not

contiguous is somewhat more elaborate, but would follow the same line of reasoning.

For any (R,b) ∈ A, we may write

nh∑

j=1

∥∥∥RYh,:j −Ym,jb

∥∥∥
2

=

nh∑

j=1

∥∥∥yh,jc− ym,jd
∥∥∥
2

, (17)

for some c ∈ R
Lm , d ∈ R and where yh,j

def
=1T

Lh
Yh,:j and ym,j

def
=Ym,j1nb

. Let us suppose that

there exits a nonzero couple (c, d) nulling all the nh quadratic terms in the right hand side of

(17). In this case, all vectors ym,j , for j = 1, . . . , nh would be collinear with c. Having into

consideration that the components of ym,j represent the average intensities in the Lm MS bands

in the patch Pcj , such a scenario is highly unlikely, implying that the intersection of the subspace

A with the null space associated with the data term shown in the left hand side of (17) is empty,

except for the origin. We conclude, therefore, that the Hessian of the quadratic objective function

present in (12) is positive definite and, thus, the solution of the corresponding optimization exists

and is unique. An important consequence of this uniqueness is that the subproblems (13) and

(15) have unique solutions; moreover, the system matrices present in the expressions (14) and

(16) are nonsingular.

V. EXPERIMENTAL STUDY

In this section, we first describe the datasets that were used in the experimental tests, and the

indices that were used to evaluate the quality of the results. We then give some details on the

implementation of our algorithm and, finally, we present the experimental results, which include

comparisons with several other fusion methods.
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Require: data: Yh and Ym; regularization parameters: λR and λB.

Blur Ym with a strong blur.

Blur Yh with a correspondingly scaled blur.

Estimate R using (16) on the blurred data.

Estimate B using (14) on the original observed data.

Normalize b to unit DC gain.

Fig. 2. Summary of the method to estimate R and B.

A. Data sets

Three datasets were used to test the different algorithms. Dataset A was purely synthetic.

The ground truth image was a collection of simple geometric shapes composed of different

hypothetical materials. In order to simulate the different materials, the U.S. Geological Survey

Digital Spectral Library splib06 was used.3 This library assembles the reflectance values of

different materials (e.g., minerals, plants, microorganisms, man-made materials) as measured by

different instruments, covering the wavelength range from ultraviolet to far infrared. One of the

instruments used to spectroscopically analyze the data was the National Aeronautics and Space

Administration (NASA) Airborne Visible/Infra-Red Imaging Spectrometer (AVIRIS), which is

capable of delivering calibrated images in 224 contiguous spectral channels within the 0.4-2.5 µm

range [3].4 Five signatures from this library were randomly selected as endmembers, and the

image was built under the linear mixing model.

We created an image with high resolution both in the spatial and in the spectral domains, to

serve as ground truth. To create a hyperspectral image, we spatially blurred the ground truth one,

and then downsampled the result by a factor of 4 in each direction. Three different spatial blurs

(block filter with dimensions 5×5, Gaussian filter with σ = 2 and support 5×5, and the Starck-

Murtagh filter [51]) were used to synthesize three different HSIs. A false color representation

of a hyperspectral image can be seen in Fig. 4b, in which different colors correspond to

different materials. To create panchromatic and multispectral images, the spectral response of

3Available at http://speclab.cr.usgs.gov/spectral-lib.html.

4More information is available at http://aviris.jpl.nasa.gov/.
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the IKONOS satellite was used. This satellite captures both a panchromatic (0.45-0.90 µm) and

four multispectral bands (0.45-0.52, 0.52-0.60, 0.63-0.69 and 0.76-0.90 µm) [3]. Gaussian noise

was added to the hyperspectral image SNR=30 dB) and to the multispectral image (SNR=40

dB).

Dataset B was semi-synthetic. It was based on a standard hyperspectral image (Pavia Univer-

sity, see Fig. 5). This image was obtained with the Reflective Optics System Imaging Spectrom-

eter (ROSIS), which has 115 spectral bands, spanning the 0.43-0.86 µm spectral range, and a

spatial resolution of 1.3m [3].5 This image was used as ground truth. Hyperspectral, multispectral

and panchromatic images were generated from it as described for dataset A.

Dataset C consisted of images taken above Paris (see Fig. 6a), and was obtained by two

instruments on board the Earth Observing-1 Mission (EO-1) satellite, the Hyperion instrument

and the Advanced Land Imager (ALI). Hyperion is a hyperspectral imager with a spatial resolu-

tion of 30 meters; the ALI instrument provides both multispectral and panchromatic images at

resolutions of 30 and 10 meters, respectively [2].6 The hyperspectral and panchromatic images

were directly used for experiments on hyperspectral+panchromatic fusion, and therefore we had

no access to the ground truth. For experiments on the fusion of hyperspectral and multispectral

images, we needed the HSI to have lower resolution than the MSI, and therefore we first reduced

the spatial resolution of the hyperspectral image by blurring with the Starck-Murtagh filter and

downsampling, as described above for dataset A (using a downsampling factor of 3, in this case).

The original hyperspectral image, before blurring and downsampling, was used as ground truth.

B. Quality indices

To evaluate the quality of fusion results, three indices taken from the literature were used,

when a ground truth image was available, as was the case for datasets A and B, and for HS+MS

fusion on dataset C. The first index was the Erreur Relative Globale Adimensionnelle de Synthèse

(ERGAS), proposed in [52] and defined, for an estimated image Z and a ground truth image Ẑ,

5More information is available at http://www.opairs.aero/rosis\ en.html.

6More information is available at http://eo1.gsfc.nasa.gov/, http://eo1.usgs.gov/sensors/ali and http://eo1.usgs.gov/sensors/

hyperioncoverage.
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as

ERGAS
(
Z, Ẑ

) def
= 100

1

S

√√√√ 1

Lh

Lh∑

l=1

MSE
(
Zl:, Ẑl:

)

µ2
Ẑl:

, (18)

where S is the ratio between the resolutions of the hyperspectral image and of the multispectral

or panchromatic one, i.e., S =
√

nm/nh; Zl: and Ẑl: are the lth bands of the estimated image

and of the ground truth image, respectively; MSE(Zl:, Ẑl:) is the mean squared error between

Zl: and Ẑl:; and µ
Ẑl:

is the mean of Ẑl:.

The second index was the Spectral Angle Mapper (SAM), which is the mean, among all

pixels, of the angle between the vectors formed by the spectral representation of the pixel in the

estimated image and the spectral representation of the same pixel in the ground truth image,

SAM
(
Z, Ẑ

) def
=

1

nm

nm∑

j=1

arccos

(
ZT

:j Ẑ:j∥∥Z:j

∥∥
2

∥∥Ẑ:j

∥∥
2

)
, (19)

where Z:j denotes the spectral representation of the jth pixel of the estimated image and Ẑ:j

denotes the same for the ground truth image. This index is an indicator of the spectral quality

of the estimated image. In this paper we report the value of the SAM index in degrees.

The third index was based on the Universal Image Quality Index (UIQI), proposed by Wang

et al. [53]. It was computed on a sliding window of size 32× 32 pixels, and averaged over all

window positions. Denoting by zi the ith windowed segment of a single-band image and by ẑi

the corresponding segment of a single-band ground truth image, the UIQI is given by

Q(z, ẑ)
def
=

1

M

M∑

i=1

σziẑi

σzi
σẑi

× 2µzi
µẑi

µ2
zi
+ µ2

ẑi

× 2 σzi
σẑi

σ2
zi
+ σ2

ẑi

, (20)

where M is the number of window positions, σziẑi
is the covariance between zi and ẑi, σzi

is

the standard deviation of zi, and σẑi
is the standard deviation of ẑi. This index has a range of

[−1, 1], being equal to 1 when z = ẑ.

The definition of the UIQI index was extended to multiband hyperspectral images by simple

averaging:

UIQI
(
Z, Ẑ

) def
=

1

Lh

Lh∑

l=1

Q
(
Zl:, Ẑl:

)
. (21)

Q was computed using the MATLAB code provided by Wang et al.7

7Available from https://ece.uwaterloo.ca/∼z70wang/research/quality index/demo.html.



20

(a) Spatial blur between the HSI and

the panchromatic band.
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(b) Spectral relationship between the HSI

and the panchromatic band.
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(c) Spectral relationship between the

HSI and the MSI. Different multispectral

bands are shown in different colors.

Fig. 3. Spectral and spatial blur estimates for dataset C.

When working with the fusion of hyperspectral and panchromatic images from dataset C,

we had no access to the ground truth. We hence only show false color representations of the

estimated images, for visual inspection.

C. Implementation details

In the experimental tests, we performed two preprocessing steps on the hyperspectral data:

First, uncalibrated or very noisy bands were removed. Second, the data were denoised by

projecting Yh onto a subspace of dimension Ls = 10 found through truncated SVD; the ground

truth images, when available, were also projected onto this subspace. Making Ls = 10 allowed

us preserve at least 99.95% of the energy of the original images from all datasets. Dataset C

consisted of raw data, in which the energy per band strongly varied across the spectrum. For

this reason, before denoising, we normalized all bands of this dataset so that the 0.999 intensity

quantile corresponded to a value of 1.

After the preprocessing, we estimated the spectral and spatial responses as described in

Section IV. We then estimated matrix E using VCA;8 since the subspace estimated by VCA

shares the dimension of the subspace estimated by SVD [31], we also made Ls = 10 in this step.

Since VCA has a random component, we performed ten runs of our algorithm in each case, and

we report the average of the corresponding results. Their standard deviation was negligible.

8Available from http://www.lx.it.pt/∼bioucas/code/demo vca.zip.



21

To choose the values of the algorithm’s parameters, we first found the optimal values for each

situation, and computed the corresponding quality indices. We then chose a set of parameter

values that were the same for all situations, but that yielded quality indices that were very close

to the previously found optimal ones. These values were λm = 1 and µ = 5 × 10−2. We used

λTV = 10−2 when fusing a HSI with a panchromatic image and λTV = 5× 10−4 when fusing a

HSI with a MSI. We used λB = λR = 10 (see Section V-D1 for how these values were chosen).

In [47], a stopping criterion was proposed for problems solved via ADMM. We verified that

this criterion worked well, always yielding less than 200 iterations. Given this, we ran the

algorithm for 200 iterations in every case.

D. Experimental results

1) Estimation of the spatial and spectral responses of the sensors: Our first experiments were

aimed at testing the estimation of the spectral and spatial responses of the sensors on real-life data.

After checking that the results on datasets A and B were rather accurate, we chose the values of

λB and λR that yielded the highest-quality results on those datasets. We then tested the estimation

method, with those parameter values, on dataset C. In the estimation of the spectral response,

we took into account the available information on the overlap between the hyperspectral bands

and the multispectral and panchromatic ones. Since the original hyperspectral and multispectral

images of this dataset have the same resolution, for that pair of images we have set B = I,

corresponding to no spatial blur, and we have just estimated R, without applying any additional

spatial blur. For the hyperspectral+panchromatic images, which have different resolutions, we

performed the estimation as described in Fig. 2. The estimated blurs, which look quite reasonable,

can be seen in Fig. 3.

2) Fusion of hyperspectral and panchromatic images: A number of methods for the fusion of

multiband images with panchromatic ones, drawn from the pansharpening literature, were used

for comparison with HySure. Those methods were originally built having in mind the fusion

of panchromatic images with multispectral ones, i.e., they were built for a small number of

bands, and not for the large number of bands of a typical hyperspectral image. The methods

can, however, be extended in a straightforward manner to hyperspectral images, since they have

no restrictions on the number of bands. In what follows, a quick rundown of those methods is

given. A criterion used to choose the methods for comparison was that they should not impose
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(a) Panchromatic image. (b) Hyperspectral image (false

color).

(c) HySure’s result (false color).

Fig. 4. Hyperspectral + panchromatic fusion on dataset A.

restrictions on the ratio between the resolutions of the high spatial resolution image and the low

spatial resolution one. Since our method does not impose such restrictions, we only compared

it against similarly built methods.

In [6], Amro et al. divided the pansharpening methods into several categories. One of them is

the Component Substitution family; different methods from this family were tested in this work.

They are characterized by the transformation of the multispectral bands into a set of components,

usually through a linear transformation. After this, a component of the transformed multiband

image is replaced with an image derived from the panchromatic one, and then the transformation

is undone. These methods work well only when the spectra of the two data sources almost

overlap, a condition which may not be fulfilled when fusing panchromatic and hyperspectral

images. The Gram-Schmidt adaptive (GSA) method from Aiazzi et al. [54] is an adaptation of

the Gram-Schmidt spectral sharpening method (GS). The latter is based on the Gram-Schmidt

transformation of the different low spatial resolution bands, followed by the substitution of the

first band of the transformed image with a modified version of the panchromatic band. This

modified version is given by a weighted sum of the multispectral bands, expanded to the spatial

resolution of the panchromatic image. The weights are obtained in different ways, and that is the

main difference between GS and GSA. In GS, they are assumed to be the same for all bands,

while in GSA they are estimated from the observed data, usually guaranteeing better results.

In the case of fusion with hyperspectral images, GSA involves the inversion of a matrix that

is close to singular, possibly affecting the quality of the results. Nevertheless, as will be seen
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later, the experiments showed an improvement of GSA relative to GS. The Fast Intensity-Hue-

Saturation Fusion Technique (FIHS) is another method included in this family. It is similar to

GSA and GS, with the difference that the processing is made in the IHS color space, with the

panchromatic image replacing the intensity component of the multiband image [55]. Another

method (PCA) relies on the Principal Component Analysis of the multiband image, and replaces

the first principal component with the panchromatic image [55].

Another family of methods is the Relative Spectral Contribution family. An example is the

Brovey Transform method (BT), based on the chromaticity transform [55]. In this method, each

pixel of the estimated image is given by the corresponding pixel of the panchromatic image,

weighted by a linear combination of the values of the different spatially expanded multispectral

bands for this same pixel. Finally, another family is the High-Frequency Injection one, from

which we used the Box High-pass Filtering method (HPF). It is characterized by the extraction

of high frequency information from the high spatial resolution image, followed by the injection

of this information into the multiband image [6]. To perform the high frequency extraction, the

method starts by producing a low-pass version of the panchromatic image through a box filtering

operation. This blurred image is then subtracted from the original one, yielding a high frequency

version of it.

Fig. 4 and Table I show the results of the various methods for dataset A. We only show the

results for the Starck-Murtagh blur, since the results for the other two blurs were very similar to

these. The results for dataset B (again, just for the Starck-Murtagh blur) can be seen in Fig. 5

and Table II. The evolution of the cost function (6) during the optimization is shown in Fig. 5e.

Figure 5f shows the errors as a function of band wavelength for the three best methods. Dataset

C allowed us to evaluate the methods on real-life data. Fig. 6 shows the results.

The proposed method outperformed the other ones in all cases, except for the SAM index

in dataset B, in which it was surpassed by BT. We found that most published pansharpening

methods seem to not deal well with the fact that the panchromatic image’s spectral range does

not overlap a large number of hyperspectral channels.

3) Fusion of hyper- and multispectral images: The literature on the fusion of hyperspectral

and multispectral images is much sparser than the one on pansharpening. As a consequence,

we were only able to perform comparisons with one published method: we had access to an

implementation of a method by Zhang et al. [15] (henceforth, designated by ZBS) and used it
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(a) Observed HSI (false

color).

(b) Observed panchromatic

image.

(c) HySure’s result (false

color).

(d) BT’s result (false color).
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(e) Evolution of the cost function during the optimization.
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(f) Relative Root-mean-square error (RMSE) between

the estimated image and the ground truth, for the

different bands (for the three best methods).

Fig. 5. Results for dataset B (HSI+PAN fusion).

for comparisons on datasets B and C. This implementation needed the input HSIs and MSIs

to be represented with the same spatial resolution. Therefore, we upsampled the HSIs to the

resolution of the MSIs, using bicubic interpolation, for input to ZBS. This method does not

estimate the spatial blur, needing it to be specified; we estimated it as in our method, with the

difference that we worked with the upsampled version of the HSI. Following the lead of that

method’s authors, we chose the decomposition level of the Nondecimated Wavelet Transform to

be three.
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TABLE I

RESULTS FOR DATASET A (HSI+PAN FUSION).

ERGAS SAM UIQI

GS 1.330 1.136 0.868

GSA 1.268 1.156 0.870

FIHS 1.788 1.456 0.863

PCA 1.451 1.149 0.865

BT 1.832 1.427 0.875

HPF 3.277 1.688 0.845

HySure 0.717 0.524 0.895

TABLE II

RESULTS FOR DATASET B (HSI+PAN FUSION).

ERGAS SAM UIQI

GS 4.960 5.494 0.897

GSA 4.587 5.116 0.905

FIHS 4.813 5.255 0.905

PCA 7.609 9.448 0.774

BT 4.533 4.550 0.926

HPF 5.573 6.151 0.880

HySure 3.813 4.856 0.937

The results of these tests are shown in Fig. 7 and in Tables III and IV. The proposed

method surpassed the other one in all tests. For dataset B, and due to input restrictions of

the implementation of ZBS that was available to us, we only worked on a section of the image

with 200×200 pixels, corresponding to the bottom left corner. For this dataset, as an illustration

of the processing speed, the proposed method took about 35 seconds to perform the fusion in a

MATLAB implementation running on an Intel R© Xeon R© CPU at 3.20 GHz with 16 GB of RAM.
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(a) Observed panchro-

matic image.

(b) Observed

hyperspectral image.

(c) HySure’s result. (d) GSA’s result. (e) GS’s result.

(f) HPF’s result. (g) BT’s result. (h) FIHS’s result. (i) PCA’s result.

Fig. 6. Results for dataset C (HSI+PAN fusion). All images, except (a), are in false color.

TABLE III

RESULTS FOR DATASET B (HSI+MSI FUSION).

ERGAS SAM UIQI

ZBS 5.919 4.375 0.881

HySure 1.213 1.956 0.995

TABLE IV

RESULTS FOR DATASET C (HSI+MSI FUSION).

ERGAS SAM UIQI

ZBS 5.011 3.672 0.725

HySure 4.101 3.092 0.840
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(a) Observed multispectral

image.

(b) Observed hyperspectral

image.

(c) HySure’s result. (d) ZBS’s result.

Fig. 7. Results for dataset B (HSI+MSI fusion). All images are in false color; Figs. 7c and 7d are very similar to Fig. 7a due

to the false color rendering, but they have 93 bands, while Fig. 7a has only four.

VI. CONCLUSIONS

We have proposed a method, termed HySure, to perform the fusion of hyperspectral images

with either panchromatic or multispectral ones, with the goal of obtaining images which have

high resolution in both the spatial and the spectral domains. This problem is closely related to

the pansharpening one, but presents new challenges due to the much larger size of hyperspectral

images when compared with the multispectral images normally used in pansharpening and to

the fact that the different images do not normally have a complete spectral overlap. In addition

to performing the fusion, the proposed method is also able to estimate the relative spectral and

spatial responses of the sensors from the data.

We formulated the fusion problem as a convex program, solved via the Split Augmented

Lagrangian Shrinkage Algorithm (SALSA)—an instance of the Alternating Direction Method of

Multipliers (ADMM). The estimation of the relative responses of the sensors was formulated as a

convex quadratic program. Taking advantage of the low intrinsic dimensionality of hyperspectral

images by working on a subspace of the space where those images are defined, and using an

adequate variable splitting, we obtained an effective algorithm which compares quite favorably

with several published methods on both simulated and real-life data.
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APPENDIX

In this Appendix we show in detail how to solve the optimization problem described in

Section III. We start by expanding (9) in its different components:

L
(
X,V1,V2,V3,V4,A1,A2,A3,A4

)

=
1

2

∥∥∥Yh − EV1M

∥∥∥
2

F
+

µ

2

∥∥∥XB−V1 −A1

∥∥∥
2

F

+
λm

2

∥∥∥Ym −REV2

∥∥∥
2

F
+

µ

2

∥∥∥X−V2 −A2

∥∥∥
2

F

+ λϕϕ
(
V3,V4

)
+

µ

2

∥∥∥XDh −V3 −A3

∥∥∥
2

F

+
µ

2

∥∥∥XDv −V4 −A4

∥∥∥
2

F
.

(22)

The optimization algorithm, which was given in condensed form in Fig. 1, is given in more

detail in Fig. 8.

k := 0

repeat

X(k+1) ∈argmin
X

L
(
X,V

(k)
1 , · · · ,V(k)

4 ,

A
(k)
1 , · · · ,A(k)

4

)

for i = 1, · · · , 4 do

V
(k+1)
i ∈argmin

Vi

L
(
X(k+1),V

(k)
1 , · · · ,

V
(k)
i , · · · ,V(k)

4 ,A
(k)
1 , · · · ,A(k)

4

)

end for

A
(k+1)
1 := A

(k)
1 −

(
X(k+1)B−V

(k+1)
1

)

A
(k+1)
2 := A

(k)
2 −

(
X(k+1) −V

(k+1)
2

)

A
(k+1)
3 := A

(k)
3 −

(
X(k+1)Dh −V

(k+1)
3

)

A
(k+1)
4 := A

(k)
4 −

(
X(k+1)Dv −V

(k+1)
4

)

k := k + 1

until stopping criterion is satisfied.

Fig. 8. Optimization algorithm.
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The first minimization problem is

X(k+1) ∈ argmin
X

µ

2

∥∥∥XB−V
(k)
1 −A

(k)
1

∥∥∥
2

F

+
µ

2

∥∥∥X−V
(k)
2 −A

(k)
2

∥∥∥
2

F

+
µ

2

∥∥∥XDh −V
(k)
3 −A

(k)
2

∥∥∥
2

F

+
µ

2

∥∥∥XDv −V
(k)
4 −A

(k)
3

∥∥∥
2

F
,

which has the solution

X(k+1) =
[
BBT + I+DhD

T
h +DvD

T
v

]−1

[(
V

(k)
1 +A

(k)
1

)
BT +

(
V

(k)
2 +A

(k)
2

)

+
(
V

(k)
3 +A

(k)
3

)
DT

h +
(
V

(k)
4 +A

(k)
4

)
DT

v

]
.

(23)

The computation can be efficiently performed through the use of the Fast Fourier Transform,

having complexity O(Ls × nm log nm). The first term on the right hand side, including the

inverse, can be computed in advance, before the iteration.

To solve the minimization problem involving V1,

V
(k+1)
1 ∈ argmin

V1

1

2

∥∥∥Yh − EV1M

∥∥∥
2

F

+
µ

2

∥∥∥X(k+1)B−V1 −A
(k)
1

∥∥∥
2

F
,

we can take advantage of the masking matrix M to separate V1 into V1M and V1M, where

M is the matrix that selects the pixels not selected by M. We then have

V
(k+1)
1 M =

[
ETE+ µI

]−1

[
ETYh + µ

(
X(k+1)B−A

(k)
1

)]
M

(24)

and

V
(k+1)
1 M =

(
X(k+1)B−A

(k)
1

)
M. (25)

[
ETE+ µI

]−1
and ETYh can be precomputed. The computations can be efficiently via the FFT,

and have complexity O(Ls × nm log nm).

The minimization

V
(k+1)
2 ∈ argmin

V2

λm

2

∥∥∥Ym −REV2

∥∥∥
2

F

+
µ

2

∥∥∥X(k+1) −V2 −A
(k)
2

∥∥∥
2

F
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has the solution

V
(k+1)
2 =

[
λmE

TRTRE+ µI
]−1

[
λmE

TRTYm + µ
(
X(k+1) −A

(k)
2

)]
,

(26)

where only
(
X(k+1) −A

(k)
2

)
cannot be precomputed. The complexity of this part is O(Ls×nm).

V3 and V4 are computed by solving the minimization problem
{
V

(k+1)
3 ,V

(k+1)
4

}
∈ argmin

V3,V4

λϕϕ
(
V3,V4

)

+
µ

2

∥∥∥X(k+1)Dh −V3 −A
(k)
2

∥∥∥
2

F

+
µ

2

∥∥∥X(k+1)Dv −V3 −A
(k)
3

∥∥∥
2

F
,

whose solution is given by a column-wise vector-soft threshold function [56],
{(

V
(k+1)
3

)
:j
,
(
V

(k+1)
4

)
:j

}
=

= max
{∥∥C

∥∥
F
− λϕ

µ
, 0
} C∥∥C

∥∥
F

,
(27)

where

C =
{(

X(k+1)Dh −A
(k)
3

)
:j
,
(
X(k+1)Dv −A

(k)
4

)
:j

}
,

and (.):j denotes the jth column of a matrix. We follow the convention that 0/||0||F = 0. The

complexity of computing V3 and V4 is O(Ls × nm log nm), being dominated by FFTs.

After performing these optimizations, the following equations are used to update the Lagrange

multipliers:

A
(k+1)
1 = A

(k)
1 −

(
X(k+1)B−V

(k+1)
1

)
,

A
(k+1)
2 = A

(k)
2 −

(
X(k+1) −V

(k+1)
2

)
,

A
(k+1)
3 = A

(k)
3 −

(
X(k+1)Dh −V

(k+1)
3

)
,

A
(k+1)
4 = A

(k)
4 −

(
X(k+1)Dv −V

(k+1)
4

)
.

The complexity of the algorithm is dominated by the FFTs, and is O(Ls × nm log nm) per

iteration.
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