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A CONVEX MODEL AND L; MINIMIZATION FOR MUSICAL
NOISE REDUCTION IN BLIND SOURCE SEPARATION*
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Abstract. Blind source separation (BSS) methods are useful tools to recover or enhance in-
dividual speech sources from their mixtures in a multi-talker environment. A class of efficient BSS
methods are based on the mutual exclusion hypothesis of the source signal Fourier spectra on the time-
frequency (TF) domain, and subsequent data clustering and classification. Though such methodology
is simple, the discontinuous decisions in the TF domain for classification often cause defects in the
recovered signals in the time domain. The defects are perceived as unpleasant ringing sounds, the
so called musical noise. Post-processing is desired for further quality enhancement. In this paper,
an efficient musical noise reduction method is presented based on a convex model of time-domain
sparse filters. The sparse filters are intended to cancel out the interference due to major sparse
peaks in the mixing coefficients or physically the early arrival and high energy portion of the room
impulse responses. This strategy is efficiently carried out by l1 regularization and the split Bregman
method. Evaluations by both synthetic and room recorded speech and music data show that our
method outperforms existing musical noise reduction methods in terms of objective and subjective
measures. Our method can be used as a post-processing tool for more general and recent versions of
TF domain BSS methods as well.

Key words. Blind source separation, time-frequency domain, musical noise, convex model,
time-domain sparse filters, [; minimization, split Bregman method.
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1. Introduction

Sound signals in daily auditory scenes often appear as mixtures when multiple
speakers or sound sources are active. It is of both fundamental and practical interest to
recover the sound source signals from the received mixtures with minimal information
of the environment, mimicking what human ears can do by paying attention to a
selected speaker. Blind source separation (BSS) methods aim to achieve this goal,
based on some a-priori knowledge of the source signal properties. Following the physics
of sound mixing, let us consider N sources si(t), k=1,---,N, to be convolutively
mixed. At M sensors, the recorded mixture signals x;(t), j=1,---,M, are :

N 1
2 () =D hjk(d)sk(t—d), (L.1)

k=1d=0

where [ is the delay length on the order of 10310 taps (each tap lasts 1/F's second, F's
is the sampling frequency, e.g. 16000 Hertz) in a standard room, h;j(d) is the discrete
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Green’s function of the room, also known as the room impulse response (RIR), from
source k to receiver j. The (severely ill-posed) mathematical problem is to recover
both hj,(d) and sg(t) from x;(t).

A major branch of BSS is the so called independent component analysis (ICA)
which assumes that the source signals are orthogonal to (or independent of) each
other [16]. ICA is a more general methodology than recovering sound signals. The
time domain ICA [1, 2] attempts to estimate the h;x’s directly and has to deal with a
high dimensional nonconvex optimization problem ([16, 24]). Frequency domain ICA
[7, 8, 9] solves an instantaneous (I=0) version of (1.1) in each frequency bin after
applying the discrete Fourier transform (DFT) to (1.1) frame by frame:

ZHM £ Sk(f.7), (1.2)

where (X;,H,,S%) are the T-point DFT of (x;,hj,s,) respectively, and 7 is the
frame number. The larger T'/I is, the better the approximation. Due to the absence
of periodicity in d of h;;, and s, DF'T does not transform convolution to local product
exactly. The frequency domain approach is limited to using a long DFT, in addition
to computations to sort out scaling and permutation ambiguities when synthesizing
multi-frequency estimation of Sk(f,7) back to a time domain output [16, 23]. Imper-
fections and errors in scaling and permutation in the frequency domain may lead to
artifacts in the time domain signals at the final output.

The time-frequency (TF) approaches have been developed ([31, 10] among others)
more recently. They are based on the working assumption that Si(f,7) and Sk (f,7)
(k#£E') are relatively sparse or have almost no overlap in the (f,7) domain. The non-
overlap assumption is satisfied quite well by clean speech signals, though is found to
deteriorate in reverberant room (a regular room with reflecting surfaces) conditions
[13]. It follows from (1.2) and the non-overlap assumption that

X;(f,m) =~ Hj(f) Se(f,7), (1.3)

where k € [1,N] is such that Sy is the dominant source at (f,7). The source signals
can be classified by clustering on TF features. In the two receiver case (similar to two
ears), a common feature vector is:

[X2(fir)] 1
|X1(f> )| 27 f

which are the amplitude ratio and normalized phase difference (phase delay) at each
point (f,7). The angle ranges in (—m,7]. In view of (1.3), Xao(f,7)/X1(f,7)~
How(f)/Hik(f), so the feature vector © reflects the Fourier transform of RIRs from
the dominant source k. The success of the method relies on the formation of clusters
in the histogram of the feature vector. The number of clusters is the number of iden-
tified source signals; see Figure 1.1 for an illustration of two peaks in the © histogram
with input data being a mixture of two speech signals. Each TF point (f,t) whose ©
belongs to cluster Cy, (by comparing distances from O(f,7) to the cluster centroids)
is regarded as occupied by the Fourier spectrum of the k-th source signal. One can
then define a binary mask (BM) function

Mk(fﬂ—):{l, @(f,T).ECk, (15)

®(f7 ) angle(XQ(f’ )/Xl(fvT)) ) (14)

0, otherwise.
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Fi1G. 1.1. Histogram of © feature points (amplitude ratio and phase delay) of 2 miztures of 2
speech signals, showing 2 distinct peaks.

An estimation of the k-th source in TF domain is

Sk‘(fvT):Mk'(fvT)Xl(f’T)v (16)

where X; may be replaced by X as another choice (for multiple sensors, any X; works
for extraction). Finally, taking inverse DFT (iDFT) yields the estimate of s (¢). The
method is robust in the sense that more than two source signals may be recovered
from two receivers.

However some remarks are in order. First, the phase of the estimated signal
in (1.6) is same as that of the mixture signal. While the amplitude of the domi-
nant k-th source is a good approximation of the mixture signal at those points in
Ck, it is not clear that the phase of the k-th signal is close to that of the mixture
signal. Phase errors exist in (1.6). Second, the angle function in (1.4) can cause
aliasing errors if the phase of Hax(f)/Hix(f) goes out of (—m,w|. For example if
How (f)/Hii(f) =exp{idy f}, with |¢y f| > 7, then the angle part of © is equal to the
remainder of ¢, f modulo m, missing the true value ¢y f and causing artifacts in clus-
tering and classification. Here ¢y, represents a typical delay of the dominant source in
the model (1.1). This restriction translates into an upper limit of a few centimeters
on the interdistance of the two receivers, and is recently relaxed [30] by a technique
of oversampled Fourier transform and modular arithmetics. Third, the binary mask
function My makes a zero or one (winner-take-all) decision in the TF domain, which
easily leads to nonlinear nonlocal distortions perceived as ringing sounds (musical
noise [12]) in the time domain. Fourth, the non-overlap working assumption is vio-
lated to various degrees when music signals are in the sources or when the number of
source signals increases.

Methods associated with mask based BSS were proposed recently [11, 12] to
suppress musical noise. The main ingredients of these methods are: (1) employ-
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ing the overlap-add method for reconstructing the waveform outputs from esti-
mated spectra of source signals; (2) using a finer shift of window function while
taking short time Fourier transform (STFT); (3) adopting non-binary masks. One
choice for (3) is based on the so called sigmoid function, where My, is defined by
M (f,7)=1/[1+exp(g9(di(f,7) —0k))], where 65 and g are shape parameters, and
di(f,7) is the distance between cluster members and their centroids. The other choice
for (3) comes from Bayesian inference. The mask function is a conditional probabil-
ity function My(f,7)=P(Cy|X (f,7)) where Cf is the k-th cluster and X (f,7) the
mixture spectrogram (absolute value of the DFT vector as a function of frequency
and frame number). In short, the above noise reduction methods relied on either a
gradual change of the Fourier spectra or non-binary masks to increase smoothness of
processing in the TF domain.

In this paper, we introduce a simple and efficient time domain method to suppress
musical noise type artifacts in the output of binary mask based TF domain BSS. Our
method can be also used as a postprocessing tool for removing artifacts in any other
frequency domain based processing. The idea is to formulate a convex optimization
problem for seeking sparse filters to cancel the interference and re-estimate the source
signals in the time domain. Our method exploits the spatial difference from sources
to receivers and does not assume the statistics of speech data. The resulting filter
estimation is more economical in data usage and robust for non-stationary speech data
[3]. The motivation of incorporating sparsity regularization is to reduce interference
by resolving major peaks in the early arrival parts of RIRs, which contain geometric
source-receiver information (distances and angles) and are sparsely structured. Sparse
filter solutions do not resolve all details of the RIRs, hence avoid overfitting and heavy
computational costs. As a result, we effectively reduced errors in phase aliasing and
the discontinuous masking operations of the initial TF mask based method. The
sparse filters are computed by /; norm regularization and the split Bregman method,
for which fast convergence was recently studied [22].

The paper is organized as follows. In Section 2, we propose a way to modify
the mask function to reduce fuzzy points in the feature space that lie in almost
equal distances to two cluster centroids. This treatment reduces clustering errors
and extends the TF binary mask based BSS [10] in the regime where the microphone
spacing exceeds the effective range of [31] and phase aliasing errors occur. In Section 3,
we introduce a convex musical noise suppression model based on a convex optimization
problem with [; norm regularization. In Section 4, the computational framework by
the split Bregman method is shown. In Section 5, evaluations of the proposed method
demonstrate its merits in comparison with existing methods. Even in the case of large
and unknown microphone spacing, the proposed masking and musical noise reduction
method enhances the recovered speech and music signals significantly. The concluding
remarks are in Section 6.

2. Initial source estimation

The initial sound separation is carried out by the TF domain binary mask method
[31], as described in the introduction, with the K-means algorithm for clustering. We
shall however propose some improvements towards the accurate estimation of the
feature parameters with less restriction on the receiver interdistances. Because the
single source dominance assumption at each TF point may not be valid with the
increase of source number N or reverberation time (convolution length D in model
(1.1)), we introduce a stricter criterion below for clustering accuracy. At each TF
point (f,7), the confidence coefficient of (f,7) € Cy, is defined by CC(f,7) = —2

in. i)
mingp d;
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where d; is the distance between ©(f,7) and the centroid of the j-th peak. The new
mask function is defined for some p >0 as

L (f,m)€C, and CC(f,7) <p,

. (2.1)
0, otherwise.

Mk(fvT) {

The motivation for the refined mask (2.1) is to reduce the number of fuzzy feature
points which have nearly equal distances to at least two cluster centers. The refined
mask function (2.1) applies to the situation where the unknown receiver spacing is
not small enough and phase aliasing errors are present [31, 10]. Similar to the TF
binary mask BSS method of [10], we adopt the amplitude only feature O(f,7)=

[‘g(l((f’:))ll yeens ‘)‘g}(‘?}f&)q , where | X (f,7)| is a normalization factor and M is the number

of receivers (sensors). Such a phase free feature vector, though robust to receiver inter-
distances and free of phase aliasing errors, is found to less discriminative and produce
lower quality separations [10]. Our modified mask function (2.1) helps to compensate
for this loss of separation quality, and sets a better stage for the subsequent time-
domain noise reduction and quality enhancement of the recovered source signals.
Besides the above binary mask based BSS methods, non-binary masks such as sigmoid
function based mask and Bayesian inference based mask discussed in Section 1 were
also implemented as the initial step of separation for our proposed musical noise
reduction method. Further reduction of musical noise is observed for these methods
as well after our post-processing.

3. Musical noise reduction model

Let us first consider the determined case of mixing model with 2 sensors and
2 sources (N =M =2). The output signals of the TF domain mask based BSS are
denoted as yi(t), k=1,2. The mixing model (1.1) can be abbreviated as z;(t)=
Zi:l hjk * s, where the star denotes linear convolution (the inner sum of (1.1)). The
following algebraic identities hold:

h22 *xl(t) — h12 >I<(E2(t) = (hgg *hll — h12 * th) *Sl(t)7
hot #x1(t) — hi1 % 22(t) = (hor ¥ hia — h11 % hag) * s2(2). (3.1)

The identities are also known in communication theory as cross-channel cancellation
for blind channel identification [27]. Now the modeling idea is to replace the convo-
lutions of source signals on the right hand side of (3.1) by the initial separations ¥
and yo respectively. We then seek a pair of filters u;i, j,k=1,2, such that

Up * T1 — Uk * T Yk (3.2)

In general, y; or yo may differ from (haog*hig —hio#hay)*s1(t) or (hay*hia—hy*
hag) * s2(t) by a convolution [24]. Identities (3.1) imply a family of solutions to (3.2)
of the form U1 =g * hgg (U12 =(go* h21) and U21 =391 *hlg (u22 =g2* hn), where g1
and gp are a pair of unknown filters. In other words, the solutions u;; may differ
from the room impulse responses (RIRs, or the hji’s) by a convolution gy. The
optimal choice of g1 (g2) is to minimize the length or support of g1 xhis (g2*h11) and
g1*haa (g2%ho1). Without knowledge of RIRs (hj;’s) however, we shall use {; norm
regularization of uy; and usg to achieve this goal. The physical reason is to use sparse
filters to cancel out the main contributions of interference due to the early arrival
parts of the RIRs, which are sparsely structured.
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Let us consider a duration D of y,(t), and seek a pair of sparse filters u;x, j,k=1,2,
to minimize the energy (I3 norm) of uyg *x1 — uay * T2 — yx subject to l1-norm regular-
ization. The I3 norm comes from the Gaussian fit of the unknown noise (mismatch)
distribution. The resulting convex optimization problem for t € D is

(Wip,usp) =arg min = ||uygx@1 —uop*x2 — Y3+ p(|[uikl[1 + [Juzkl[1).  (3.3)
(u1k1u2k 2

Let us denote the length of signal in D as Lp and the length of filter solution as L.
In matrix form, the convex objective (3.3) becomes

uj = argmin | Awg — i[5+ i1, (34)

where uy, is formed by stacking up wix and wusg, and the Lp x 2L matrix A is (T is
transpose):

z1(1) 21(2) ... .. 3 (Lp-—1) z1(Lp) T
Il(l) Zl(LD72) a:l(Lpfl)
A e 21(Lp—L+1)
- 7I2(1) 7I2(2) 712(LD71) 721)2(LD)
—x2(1) ... —x2(Lp—2) —x2(Lp—1)
T _2a(1) —wa(Lp—L+1)

When uj;, and uj;, are found, we compute uj, * x1 —uj;, * x2 for a better approximation
of s;, with musical noise reduced.

The sparsity regularization is also needed to generalize the model to more than
two sources. Let us consider the enhancement for 3 sources from 3 mixtures, where
each mixture is the sum of sources coming from different propagation channels as

x1=hi1*¥s1+hiaxso+hig*ss,
2o = ho1 %81 +hoo * 82+ haz * 53, (3.5)
l’gihgl *81 +h32*82+h33*53.

Suppose that y3 is the target for denoising. Let u;, j =1,2,3, be the cancellation filters.
If the filters satisfy

’U,l*h11+’(,L2*h21+U3*h31 :O, (36)
Ul *h12+’u,2>kh22+U3*h32 :0, (37)

then
uy * 1 +Ug * To +uz * 3= (ug *h13+us*hog +ugz *haz) *S3. (3.8)

To find u;, 7=1,2,3, we take the mixtures x;, j= 1, 2, 3, in a duration D as the
training data. A natural choice is to estimate the cancellation filters by least squares:

. 1
(u,u3,u})=arg min —||uy * 21 +ug * o +uz * 23 —Y3|3. (3.9)
U1,u27U32

However, numerical experiments have shown that without further constraints the
cancellation filters obtained by least squares (3.9) based on the training data in D
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do not work well away from the training data. The problem is overfitting. The
solutions might memorize the training data. In other words, it can happen that (uq *
hll —+ U9 *hgl “+us *hgl) *S1+ (’LL1 *h12 —+u9 *h22 “+us *h32) * SS9 = 0 in D, while neither
(uy *h11 +ug *hay +uz*hgy) nor (uq xhis+us*hog +usg*hsze) is equal to 0.

There are a few ways to fix overfitting, such as cross-validation, regularization, or
Bayesian priors. The approach we take here is regularization which turns out to be
efficient. Using [; regularization as illustrated for the 2 sources case, we modify the
optimization problem (3.9) to

(u1,u3,u3) =arg min *Hul 1 +ugx w2 +uz x @3 — 3|3+ p(l[ua ]|+ |z +[[us]1)-
wy,ug,uz 2
(3.10)
Likewise, for M sensors and M sources, M >3, we approximate y; by a linear com-
bination of the mixtures z;, 7=1,2,...,M. When t€ D, for a proper value of p>0,
we minimize:

M

1
(jk)—argmm 1D Jujrw;— ykllg+u2|lum|l17 (3.11)
Jj=1 j=1

M
and estimate s; by §p = Z ujy *x;. Though two sensors are enough for mask based

BSS methods, the remalmng M —2 sensors are also used here for reducing the musical
noise.

4. Minimization by Bregman method

In this section, we adapt the split Bregman method and apply it to the musical
noise reduction model (3.4) in reverberant conditions such as in a normal room with
acoustic reflections. The split Bregman method was introduced in [22] for solving
l1, total variation, and related regularized problems. It has been recently shown (see
e.g. [17, 20]) that the split Bregman algorithm can also be derived by the augmented
Lagrangian method (see e.g. [18]). The connection between split Bregman algorithm
and Douglas Rachford splitting was addressed in [19]. The split Bregman method
aims to solve the unconstrained problem

m&nJ((I)u)—FH(u), (4.1)

where J is convex but not necessarily differentiable, H is convex and differentiable,
and ¢ is a linear operator. The general split Bregman iteration with initial values
d°=0, u’=0, =0, is

1 1
dF :argmdinxj(d) — (b d—d") + §||d_q)uk||§, (4.2)
1 1
uktl =argmin XH(U) + <bk7‘1>(u —Uk)> + §||dkJrl - q’“”%a (4.3)
u
B bk (@R pykt), (4.4)

where X is a positive constant, and (-,-) is the regular inner product.

If J is the I3 norm, the subproblem (4.2) has explicit solutions. The subproblem
(4.3) is also easy to solve since the objective is differentiable. Convergence of the split
Bregman method for the case of J(u)=ul|u||; was analyzed [15], and the result is
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THEOREM 4.1. Assume that there exists at least one solution u* of (4.1). Then we
have the following properties for the split Bregman iterations (4.2),(4.3), and (4.4):

Jim pl| @ |4+ H () = | [+ H ("),

Furthermore,

lim [|u® —u*||2=0
k—oo

if u* is the unique solution.

shrink(f, u)4

A

FiG. 4.1. Illustration of the one dimensional shrink operator in the while loop of the algorithm
in Section 4.

Now we implement the split Bregman method on our proposed musical noise
reduction model. Let J(u)=plu|l;, ®=1I, and H(u)=3||Au— f|]3. Setting d°=0,
u% =0, and b° =0, we have the iterations:

1
d+ =argmin ]|y - (8, d— ") + 5 [ld— |3 (45)
1 1
uFtl :argminﬁHAu—fH%—i— (V% u—uk) + §Hdk+1 —ull3, (4.6)
u
WP =pk — (@F Tt R, (4.7)

Explicitly solving (4.5) and (4.6) gives the simple algorithm

Initialize ©«°=0,d°=0,"=0

While [|u**t — ||y /||u*H ]2 > €
(1) d**! =shrink(u” +b*, %)
(2) WP = (AT+ AT A) "L AT f 4 A(d* 1 —bb))
(3) b= bk — @t it

end While
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Here shrink is the soft threshold function defined by

shrink(v,t) = (7¢(v1), 7t (v2), -+, 7 (vy)) for v=(v1,v9, -+ ,v,) ER™ and t>0, where
7t (x) =sign(x) max{|z| —t,0}; see Figure 4.1 for a one dimensional plot. Noting that
the matrix A is fixed, we can precalculate (A + AT A)~! so that the iterations only
involve matrix multiplication.

Unlike previous applications of Bregman methods to under-determined prob-
lems in compressed sensing, here A is an Lp by ML matrix with Lp> ML
(over-determined). The complexity of calculating (A +ATA)~! is O(Lp(ML)?)+
O(ML)*)=0O(Lp(ML)?). The complexity of each iteration is O((ML)?). The
Forward-Backward splitting method [17] is also a candidate for this problem. It
does not involve matrix inversion. But the complexity of each iteration is O(LpML).
We can accelerate it by precalculating AT A and AT f to reduce the complexity in
each iteration to O((ML)?), where AT A has complexity O(Lp(ML)?). However, the
Forward-Backward splitting method usually needs more iterations to converge than
the split Bregman method. We tested various cases and found that the convergence
time of the split Bregman method is less than that of the Forward-Backward splitting
method by about 40%. Our entire algorithm is summarized as follows:

Input: Observed mixture signals, z;, j=1,...,M >2.
Output: Estimated sources with musical noise suppressed, 5, k=1,...,N
(N=M).
Initial separation: Extract signals yx, k=1,...,N by TF mask approaches
with a proper p.
Filter estimation: Apply the split Bregman method to obtain the filters
u;fk7 j=1,...,M for each source k, according to (3.11).
M
Musical Noise Suppression: 5 = Zlu;k *T;.
‘7:

5. Evaluation and comparison

The parameters for the proposed method are chosen as p=€e=10"3, n=1, A=2p,
Lp=30000, and L=1000. So matrix A is 30000 x 2000, and AT A is 2000 x 2000. As
suggested in [12], the STFT frame size is 512 and frame shift is 512/8. For simplicity,
we denote by BM1 the so called DUET method of [31], and by BM2 the extended
binary mask BSS method of [10], with the modified feature ®(f,7) in Section 2.

The performance measure [29] is calculated in two steps, provided that the true
source signals and sensor noises are known. The first step is to decompose by orthog-
onal projection an estimate §(t) of a source s(t) into a sum of four terms:

é(t) = Starget (t) + Einterf (t) + €noise (t) + Cartif (t)7 (51)

where Stqrget(t) is an allowed deformation of the target source s(t), €interf(t) is an
allowed deformation of the interfering (unwanted) sources, €,0is¢(t) for sensor noises,
and eqri7(t) for artifacts of the separation algorithms such as musical noise or other
forbidden distortions of the sources. The second step is to compute performance
criteria on the decibel (dB) scale as follows [29, 21]:

e The Signal to Distortion Ratio (SDR)

||Starget| |%
+ €noise T €artif | |%

SDR=10log,, (5.2)
Heinterf
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Fic. 5.1. Spectrograms of a source signal (left), the distorted source signal sq(middle) and the
recovered source signal (right). From the left to the middle spectrogram, 80% of the energy is masked
out. The reverberation time is 150 ms and the input SIR ~—5.9 dB (decibel). Patterns inside the
circles illustrate the improvement by the proposed method.

e The Signal to Interferences Ratio (SIR)

2
SIR2 10log,, |Staractllz (5.3)
lleinter ]2

e The Signal to Artifacts Ratio (SAR)

| ‘Starget + Einterf + enoise| |§

SAR=10log,

(5.4)
lleartir 113

Besides these objective measures, the average Perceptual Evaluation of Speech
Quality (PESQ,[26]) score was computed as a measure of performance. This measure
was designed to estimate the subjective quality of speech. The output is an estimate
of the Mean Opinion Score (MOS), a number between 1 and 5. The meanings of the
scores in relation to speech quality are: 1-Bad, 2-Poor, 3-Fair, 4-Good and 5-Excellent.

To test the musical noise reduction portion of our method, synthetic mixture data
are used to recover a source signal where energy loss due to binary mask is simulated.
The masked signal plays the role of BSS output g, in Section 3. Measured binaural
RIRs (hjk, j,k=1,2) are used to generate mixtures x; and x. For the spectrogram
of hy1*s; (or absolute value of S11 =STFT(hi1%1)), a mask M of the same size as
S11 is defined. The mask is multiplied entry by entry to Si; to produce a distorted
waveform signal sq=4STFT(S110M), where o is entrywise product. We recover
hi1*s1 from the two mixture signals x1, x5 and s4 (in place of y;) with the Bregman
iterations in Section 4. Figure 5 shows the spectrogram of the source signal hij*s;
(left), the spectrogram of the distorted signal s; (middle) and the spectrogram of the
recovered signal (right) in some time frames. The test is repeated under different
reverberation times: anechoic, 150 milliseconds (ms), and 580 ms. Though a little
interference from s is introduced, i.e. a little decrease of SIR, the gain in SDR [21] is
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Fic. 5.3. Configuration and parameters of the room recording.

found to be significant in the low input SDR regime; see Figure 5.2. This phenomenon
is observed in processing room recorded data as well.

Comparison of several musical noise suppression methods is carried out on room
recorded data. The set-up is shown in Figure 5.3. In case of 2 sources, their loca-
tions are at S7; and Ss in Figure 5.3, and the sensors Mic; and Micy provide data
for separation and noise suppression. In case of 4 sources, all the loudspeakers and
microphones contribute to the musical noise reduction but only Micy, and Micg are
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Method PESQ SIR SDR SAR
Input 1.37 0.04 0.02 46.48
BM1u 2.24 13.24 6.44 9.37

BM1(0.50)+L1 218 947 858 17.74
BM1(0.25)+L1 221  10.07 926  17.97
BM1(0.10)+L1  2.22 1018 951  18.94
BM1(0.05)+L1 2.40 13.41 12.18 19.05

SMiiu 2.17 11.38 6.52 9.14
SM+L1 2.35 10.34 9.35 17.97
BYMuu 2.33 13.30 7.20 10.20
BYM+L1 2.34 11.25 9.86 18.04

TABLE 5.1. Comparison of musical noise reduction methods on room recorded speech data.
Average evaluation results are shown for the 2 sources case. BM1 with conventional mask (1.5);
SM (Sigmoid mask); BYM (Bayesian mask). The initial separation for our method (denoted by L1)
employs BM1 with refined mask (2.1) (where p=0.50,0.25,0.10,0.05), SM, and BYM respectively
(where p=1).

Method PESQ SIR SDR SAR
Input 1.10 -449 -4.51 26.54
BM1u 1.89 9.39 3.79 6.57

BM1(0.50)+L1 1.90 630 585 19.06
BM1(0.25)+L1 1.91 6.35 5.89 18.93
)
)

BM1(0.10)+L1 1.84 5.63 5.23 18.76
BM1(0.05)+L1 1.75 5.36  4.79 16.86
SMiy 1.71 8.22 221 5.40
SM+L1 1.82 494 431 1538
BYMunu 1.83 8.21 3.34 6.65
BYM+L1 1.82 4.76 4.36 17.10

TABLE 5.2. Comparison of musical noise reduction methods on room recorded speech data.
Average evaluation results are shown for the 4 sources case. BM1 with conventional mask (1.5);
SM (Sigmoid mask); BYM (Bayesian mask). The initial separation for our method (denoted by L1)
employs BM1 with refined mask (2.1) (where p=0.50,0.25,0.10,0.05), SM, and BYM respectively
(where p=1).

used for separation. Tables 5.1 and 5.2 list results of different musical noise sup-
pression methods discussed in Section 1. Compared with BM1, sigmoid mask, and
Bayesian mask methods, our method leads in the overall quality PESQ [26], and by a
significant margin in SDR and SAR. The SIR improvement is however not uniformly
better. In the case of 4 sources, SIR improvement lags the other methods. Figure 5.4
illustrates that the refined binary mask method itself cannot achieve higher PESQ
than standard BM1 method, and is even significantly worse than BM1 method if p
is small. Small values of p helps the binary mask extract individual source signals
with less interference by sacrificing the quality of the target source signal a little. It
is highly possible that the perception quality of the refined mask based estimation is
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Fic. 5.4. Average output PESQ varies with respect to the mask refined parameter p. Left panel
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Red dash line indicates the results by standard BM1 method, which is independent of p. Green dash
line indicates the results by refined BM1 method at four different values of p, while the results by
the refined BM1 method with post-processing by the proposed method corresponds to black dash line.

Method PESQ SIR SDR SAR

Input 1.50 1.90 1.85 33.16
BM2 1.63 16.87 3.58 4.01
SM 111] 2.07 2210 886 9.10
BYMiuny 2.52 16.54 11.66 14.50

BM2+L1 245 16.52 12.81 16.32
SM+L1 233 16.66 11.48 17.76
BYM+L1  2.60 1542 11.73 20.32

TABLE 5.3. Comparison of musical noise reduction methods on speech/music miztures with
unknown large microphone spacing. Refined mask (2.1) with p=0.5, sigmoid mask and Bayesian
mask are employed respectively.

worse than that computed by traditional BM1 method, as shown in Figure 6 for p
smaller than 0.5. However, these “low interference” estimates yx, k=1,2,...,N, pro-
vide good input for post-processing in (3.4) and (3.11). This does not mean that the
proposed post-processing method always prefers small values of p. When the number
of sources increases, p in the mask (2.1) should increase accordingly to control the
growth of zero-paddings. According to our tests, p € (0.05,0.1) for the two-source case
and p € (0.25,0.5) for four-source case are good settings.

Next we remove Mic; and Micy from the set-up of Figure 5.3, so only 2 micro-
phones Mico and Micg are active. The unknown microphone spacing between Mico
and Mics is reset to [15,20] cm, outside the effective range of binary mask BSS meth-
ods [31, 10]. The azimuths of the two loudspeakers (emitting speech and music signals
sampled at 8000Hz and of 5 second duration) are changed to 0° and 60°. We continue
to use the refined mask (2.1) with a nearly optimal value of p=0.5 based BM2, sig-
moid mask, and Bayesian mask respectively as the initial separation for our method.
As discussed in Section 2, since BM2 may not work well, eliminating fuzzy feature
points by choosing a proper value of p helps to gain a good SIR but sacrifices the sig-
nal quality. However, as seen in Table 5.3, the overall quality is improved significantly
by both the Bayesian mask and our method without losing SIR.
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Method Test Category > = <
Table 5.1 2 sources 55% 35% 10%

Eiln‘; Table 5.2 4 sources 55% 35% 10%
masky Table 5.3  Speech 94% 4% 2%

Table 5.3 Music 99% 1%

Table 5.1 2 sources 55% 40% 5%
Lll Vs Table 5.2 4 sources 78% 15% ™%
rsriigli?lll(li Table 5.3  Speech 25% 64% 11%
Table 5.3 Music 6% 3% 21%

Table 5.1 2 sources 35% 40% 25%
L1vs Table 5.2 4 sources 50% 43% 7%
Bayesian - Taple 5.3 Speech  13% 66% 21%
Table 5.3 Music 4% 3%  23%

TABLE 5.4. Subjective evaluation on musical noise reduction. Notation > (<) means the output
of our method is perceived with less (more) musical noise, while ~ means “hard to distinguish”.
Binary Mask is BM1 (BM2) for Tables 5.1, 5.2, and 5.3.

Furthermore, we conduct a subjective test on ten listeners with normal hearing
to evaluate the reduction of musical noise. The paired comparison test requires each
listener to rank the four methods according to the performance of musical noise re-
duction in the groups of experiments conducted in Tables 5.1, 5.2, and 5.3. The
percentage of our method’s preference over three other methods in musical noise re-
duction is shown in Table 5.4. Since the initially estimated music sources contain
more musical noise, the contrasts between these methods on the music channel are
more pronounced.

6. Conclusions

In the paper, we propose and evaluate an efficient time domain method for re-
ducing musical noise in the output of TF mask based BSS methods. By a more
selective TF mask, we reduce the percentage of fuzzy points on the TF domain to
improve separation quality. We employ fast Bregman iterations to minimize a convex
1 norm regularized objective to compute sparse time-domain filters for musical noise
reduction. The time domain filters effectively reduce musical noise and enhance the
overall quality of the recovered music and speech signals in terms of both objective
and subjective measures.
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