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ABSTRACT

A collaborative convex framework for factoring a data matrixX into
a non-negative product AS, with a sparse coefficient matrix S, is
introduced. We restrict the columns of the dictionary matrix A to
coincide with certain columns of X , thereby guaranteeing a phys-
ically meaningful dictionary and dimensionality reduction. As an
example, we show applications of the proposed framework on hy-
perspectral endmember and abundances identification.

Index Terms— Hyperspectral endmember detection, non-
negative matrix factorization, dictionary learning, subset selection,
dimensionality reduction

1. INTRODUCTION

Dimensionality reduction has been widely studied in the signal pro-
cessing and computational learning communities in recent years.
One of the major drawbacks of virtually all popular approaches for
dimensionality reduction is the lack of physical meaning in the re-
duced dimension space. This significantly reduces the applicability
of such methods. In this work we present a framework for dimen-
sionality reduction, based on matrix factorization and sparsity the-
ory, that uses the data itself for the low dimensional representation,
thereby guaranteeing the physical fidelity. While the method is ap-
plicable in numerous areas, from biology to sensor networks, we
concentrate on an application in hyperspectral imaging (HSI). This
by itself is an important area that will help to illustrate the proposed
framework and demonstrate it in real data. Applications in other
disciplines, where the physical meaning of the low dimensional rep-
resentation is also critical, will be studied in the future.

HSI sensors record up to several hundred different frequencies in
the visible, near-infrared and infrared spectrum. This precise spec-
tral information provides some insight on the material at each pixel
in the image. Due to relatively low spatial resolution and the pres-
ence of multiple materials at a single location (e.g., tree canopies
above ground or water and water sediments), many pixels in the im-
age contain the mixed spectral signatures of multiple materials. The
task of determining the abundances (presence quantity) of different
materials in each pixel is called spectral unmixing. This is clearly an
ill-posed problem that requires some assumptions and data models.
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Unmixing requires a dictionary with the spectral signatures of
the possible materials (often denoted as endmembers) in the image.
Since these dictionaries can be difficult to obtain and might depend
on the conditions under which they were recorded, it is sometimes
desirable to automatically extract suitable endmembers from the im-
age one wants to demix in a process called endmember detection.
Many different techniques for endmember detection have been pro-
posed, see [1] and references therein. Related although not yet ap-
plied to endmember detection are subset selection methods like the
rank-revealing QR decomposition (e.g. [2]), which finds the most
linearly independent columns of a matrix.1

Simultaneously detecting endmembers and computing abun-
dances can be stated as factorizing the data matrix X ∈ Rm,d into
X ≈ AS, A,S ≥ 0, with both A ∈ Rm,n and S ∈ Rn,d being
unknown. In this notation each column of X is the spectral signa-
ture of one pixel in the image. Hence, m is the number of spectral
bands, d is the total number of pixels, and each of the n columns of
A represents one endmember. The abundance matrix S contains the
amounts of each material in A at each pixel in X . Due to the phys-
ical non-negativity constraint the geometric interpretation of blind
unmixing is to find endmembers that span a cone which contains
most of the data.

The general problem of representing X ≈ AS with A,S ≥ 0 is
known as non-negative matrix factorization (NMF). The application
of NMF to hyperspectral endmember detection can for instance be
found in [3]. NMF problems are non-convex and typically solved by
estimating A and S alternatingly. Although variants of NMF meth-
ods often produce good results in practice, they are not guaranteed
to converge to a global minimum.

Considering that while material mixtures in HSI exist, it is un-
likely that pixels contain a mixture of all or many of the materials in
A, researchers have recently focused on encouraging sparsity on the
abundance matrix S [4]. Motivated by the ideas of dictionary learn-
ing for sparse coding, the works [5, 6] proposed explicitly to look for
endmember matrices that lead to sparse abundance maps. We follow
a similar idea, though our method will be fundamentally different in
two aspects: First, we restrict columns of our dictionary A to appear
somewhere in the data X . This is a common working hypothesis
for moderate ground sampling distance images and is called pixel
purity assumption. In the general context of dictionary learning and

1Independent of the work here described, Laura Balzano and Rob Nowak
developed a related matrix factorization technique and connected and com-
pared it to RRQR. We thank Laura for pointing out their work and also the
possible relationships with RRQR.



non-negative matrix factorization it guarantees the columns of A to
be physically meaningful. As mentioned above, the lack of physi-
cal interpretation has been a critical shortcoming of standard dimen-
sionality reduction and dictionary learning techniques, and not yet
addressed in these areas of research. Second, choosing the dictio-
nary columns from the data enables us to propose a convex model
and hence avoid the problem of saddle points or local minima.

Our method is based on the recent ideas of collaborative spar-
sity (see for example [7] and the references therein) and will use an
energy that extends the one studied in [8], in a similar setting as re-
cently proposed by Lin et al. in [9] for low rank approximation with
the nuclear norm.

2. CONVEX ENDMEMBER DETECTION MODEL

With the restriction that the endmembers in A be part of the data
X , the underlying problem is then to find a nonnegative matrix, T ,
such that XT ≈ X , most rows of T are zero and the columns of
T are additionally sparse. In other words, we want the columns of
X , which are the spectral signatures at each pixel, to be well repre-
sented by sparse nonnegative linear combinations of the same sparse
subset of columns of X . This subset of columns corresponds to the
nonzero rows of T and will be the selected endmembers. The ad-
ditional sparsity requirement on T reflects the assumption that most
pixels are not mixtures of all the selected endmembers, but rather
just a few. We normalize the columns of X to have unit l2 norm
so that we discriminate based solely on spectral signatures and not
intensity.

It’s already clear from this formulation that the problem is too
large because the unknown matrix T is a d×dmatrix, where d is the
number of pixels. Thus, before proceeding with the proposed convex
model, we reduce the dimension of the problem by using clustering
to choose a subset of candidate endmembers A from the columns of
X and a submatrix Xs ∈ Rm×ds of X for the data with ds ≤ d.
We use Xs = A in our experiments but could also include more or
even all of the data. We use k-means with a farthest-first initializa-
tion to select A. An angle constraint 〈Ai, Aj〉 < .995 ensures the
endmember candidates are sufficiently distinct, and an upper bound
nc is placed on the number of allowable clusters so that T is at most
a nc × ds matrix and the size of the problem is reasonable. We then
propose a convex model for the more manageable problem of finding
a nonnegative T such that AT ≈ Xs, with T having the same spar-
sity properties described above. Note that we have not convexified
the problem by pre-fixing the dictionary A. This is done simply to
work with manageable dimensions and datasets. Our convex model
will still select the endmembers as a subset of this reduced A.

2.1. The model

Our model consists of a data fidelity term and two terms that encour-
age the desired sparsity in T . For simplicity, we consider the data
fidelity term β

2
‖(AT−Xs)

√
Cw‖2F , where ‖·‖F denotes the Frobe-

nius norm, β is a positive constant, and Cw ∈ Rds×ds is a diagonal
matrix we can use to weight the columns of (AT −Xs) so that it re-
flects the density of the original data. So that only a few samples are
cooperatively selected as endmembers, we encourage rows of T to
be zero by penalizing ζ

∑
i ‖Ti‖∞ with ζ a positive constant. Due to

the nonnegativity constraint, this is the same as ζ
∑
i maxj(Ti,j).2

This kind of collaborative/structured sparsity regularizer has been

2The work mentioned above by Balzano and Nowak uses ‖ · ‖2 instead
of ‖ · ‖∞.

proposed in several previous works, for example [8]. To encour-
age sparsity of the nonnegative T , we use a weighted l1 norm,
〈RwσCw, T 〉. Here Rw is a diagonal matrix of row weights. We
choose Rw to be the identity in our experiments, but we could
also choose these weights to be proportional to 〈Aj , Ā〉, where Ā
is the average of the columns of A, which would encourage selec-
tion of endmembers towards the outside of the cone containing the
data. The weighting matrix σ has the same dimension as T , and the

weights are chosen to be σi,j = ν(1 − e
−(1−(AT Xs)i,j)

2

2h2 ) for con-
stants h and ν. This means that σi,j is small when the ith column
of A is similar to the jth column of Xs and larger when they are
dissimilar. This choice of weights encourages sparsity of T without
impeding the effectiveness of the other regularizer. By encouraging
each column of T to sum to something closer to one, the weighted
l1 penalty prefers data to be represented by nearby endmember can-
didates when possible, and this often results in a sparser matrix T .
Overall the proposed convex model is given by

min
T≥0

ζ
∑
i

max
j

(Ti,j) + 〈RwσCw, T 〉+
β

2
‖(AT −Xs)

√
Cw‖2F .

(1)

2.2. Refinement of solution

Since we are using a convex model to detect endmembers, it can’t
distinguish between identical or very similar endmember candidates.
But the model works very reliably when the columns of A are suf-
ficiently distinct, which they are by construction. A limitation is
that the convex model is unable to choose as endmembers any data
not represented in A. Nonetheless, as is shown in Section 3, the re-
sults of this approach already compare favorably to other methods.
Moreover, it provides an excellent initialization for the alternating
minimization approach to NMF, which can be used to further refine
the solution if desired. Letting Ã be the endmembers selected by the
convex model, the solution is refined by alternately minimizing

min
A≥0,S≥0,||Aj−Ãj‖2<rj

1

2
‖AS −X||2F + 〈Rwσ, S〉 (2)

and renormalizing the columns of A after each iteration. Here, rj
is the diameter of the jth cluster containing the data near Ãj , and
ensures that the refined endmembers obtained by this alternating ap-
proach cannot be too different from those already selected by the
convex model, thereby remaining close to the physical space.

2.3. Numerical optimization

We use the alternating direction method of multipliers (ADMM) [10,
11] to solve (1) using the parameters nc = 150, ζ = 1, β = 250,
ν = 50, and h = 1 − cos(4π/180). In our experiments, we also
choose Xs = A. We then define column weights Cw that weight
each column j by the number of pixels in the jth cluster (the cluster
centered atAj) divided by the total number of pixels d. To refine the
solution of the convex model, we note that each alternating step in
the minimization of (2) is a convex minimization problem that can
again be minimized using ADMM and its variants. The update for
the abundance S is identical to the split Bregman algorithm proposed
for hyperspectral demixing in [4], and its connection to ADMM is
discussed in [12].



Fig. 1: Comparison of endmember recostruction methods

3. NUMERICAL RESULTS

3.1. Supervised endmember detection

For comparison purposes we extracted nine endmembers
from the standard Indian pines dataset (publicly available
at https://engineering.purdue.edu/biehl/
MultiSpec/hyperspectral.html) by averaging over
the corresponding signals in the ground truth region. Then we
created 50 data points for each endmember, 30 data points for each
combination of two different, 10 data points for each combination
of three different, and additionally 30 data points as mixtures of
all endmembers. Finally, we add Gaussian noise with zero mean
and standard deviation 0.006, make sure our data is positive, and
normalize it. We evaluate our method in a comparison to N-findr
[13], vertex component analysis (VCA) [14] with code from [15], an
NMF method using the alternating minimization scheme of our re-
finement step with random initial conditions, and the QR algorithm.
For the latter we simply used MATLAB’s QR algorithm to calculate
a permutation matrix Π such that XΠ = QR with decreasing
diagonal values in R and chose the first nine columns of XΠ as
endmembers. Since the success of non-convex methods depends
on the initial conditions or on random projections we run 15 tests
with the same general settings and record the average, maximum
and minimum angle by which the reconstructed endmember vectors
deviate from the true ones in Table 1. For the tests we adjusted the
parameters of our method to obtain 9 endmembers.

We can see that our method gives the best average performance.
Due to a high noise level, methods that rely on finding the cone with
maximal volume or finding most linearly independent vectors, will
select outliers as the endmembers and do not yield robust results.
Looking at the minimal and maximal α we see the effect predicted.
The non-convex methods like alternating minimization and VCA can
outperform our method on some examples giving angles as low as
1.76. However, due to the non-convexity they can sometimes find
results which are far off the true solution with angles of 6.95 or even

8.17 degrees. A big benefit of our convex framework is that we con-
sistently produce good results. The difference between the best and
the worst reconstruction angle for our method is 0.15 degrees with
and 0.17 without the refinement, which underlines its high stabil-
ity. Figure 1 shows the original endmembers as well as an example
reconstructions by each method with the corresponding angle of de-
viation.

Method Evaluation on 15 test runs
Avg. α Min. α Max. α

Ours refined 3.37 3.30 3.42
Ours without refinement 3.93 3.84 4.01

VCA 4.76 1.78 6.95
N-findr 10.19 7.12 13.79

QR 9.87 4.71 12.74
Alt. Min. 4.50 1.76 8.17

Table 1: Angle of deviation from true endmembers

3.2. Results on real hyperspectral data

To show how our method performs on real hyperspectral data we
use the urban image (publicly available at www.tec.army.mil/
hypercube). Figure 2 shows the RGB image of the urban scene,
the spectral signatures of the endmembers our method extracted, and
the abundance maps of each endmember. We can see that we get
a very sparse image representation, segmenting into material cat-
egories such as concrete, house roofs, soil or dirt, grass, and two
different types of vegetation, which all seem to be reasonable when
visually comparing our results to the RGB image.

4. FUTURE RESEARCH

We have presented a convex method for endmember detection in hy-
perspectral images. However, the general framework can be applied



Fig. 2: Results on the urban hyperpectral image

to a much wider class of problems. For any non-negative matrix fac-
torization or dictionary learning method, it could be interesting to
find physically meaningful dictionary atoms by restricting the atoms
to appear in the data. Hence, one could develop a concept of non-
negative principal component analysis restricting the principal com-
ponents to be part of the data. Possible future application areas in-
clude computational biology, sensor networks, and in general dimen-
sionality reduction and compact representation applications where
the physical interpretation of the reduced space is critical.
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