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Abstract. In this paper we present a convex optimization problem for solving the rational
covariance extension problem. Given a partial covariance sequence and the desired zeros of the
modeling filter, the poles are uniquely determined from the unique minimum of the corresponding
optimization problem. In this way we obtain an algorithm for solving the covariance extension
problem, as well as a constructive proof of Georgiou’s seminal existence result and his conjecture, a
stronger version of which we have resolved in [Byrnes et al., IEEE Trans. Automat. Control, AC-40
(1995), pp. 1841–1857].
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1. Introduction. In [7] a solution to the problem of parameterizing all ratio-
nal extensions of a given window of covariance data has been given. This problem
has a long history, with antecedents going back to potential theory in the work of
Carathéodory, Toeplitz, and Schur [9, 10, 31, 30], and continuing in the work of
Kalman, Georgiou, Kimura, and others [18, 14, 21]. It has been of more recent in-
terest due to its significant interface with problems in signal processing and speech
processing [11, 8, 25, 20] and in stochastic realization theory and system identifica-
tion [2, 32, 22]. Indeed, the recent solution to this problem, which extended a result
by Georgiou and confirmed one of his conjectures [13, 14], has shed some light on
the stochastic (partial) realization problem through the development of an associated
Riccati-type equation, whose unique positive semidefinite solution has as its rank the
minimum dimension of a stochastic linear realization of the given rational covariance
extension [6]. In both its form as a complete parameterization of rational extensions
to a given covariance sequence and as an indefinite Riccati-type equation, one of the
principal problems which remains open is that of developing effective computational
methods for the approximate solution of this problem. In this paper, motivated by
the effectiveness of interior point methods for solving nonlinear convex optimization
problems, we recast the fundamental problem as such an optimization problem.

In section 2 we describe the principal results for the rational covariance extension
problem and set notation we shall need throughout. The only solution to this problem
for which there have been simple computational procedures is the so-called maximum
entropy solution, which is the particular solution that maximizes the entropy gain.
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212 C. BYRNES, S. GUSEV, AND A. LINDQUIST

In section 3 we demonstrate that the infinite-dimensional optimization problem for
determining this solution has a simple finite-dimensional dual. This motivates the
introduction in section 4 of a nonlinear, strictly convex functional defined on a closed
convex set naturally related to the covariance extension problem. We first show that
any solution of the rational covariance extension problem lies in the interior of this
convex set and that, conversely, an interior minimum of this convex functional will
correspond to the unique solution of the covariance extension problem. Our interest
in this convex optimization problem is, therefore, twofold: as a starting point for the
computation of an explicit solution and as a means of providing an alternative proof
of the rational covariance extension theorem.

Concerning the existence of a minimum, we show that this functional is proper
and bounded below, i.e., that the sublevel sets of this functional are compact. From
this, it follows that there exists a minimum. Since uniqueness follows from strict
convexity of the functional, the central issue which needs to be addressed in order to
solve the rational covariance extension problem is whether, in fact, this minimum is
an interior point. Indeed, our formulation of the convex functional, which contains
a barrier-like term, was inspired by interior point methods. However, in contrast
to interior point methods, the barrier function we have introduced does not become
infinite on the boundary of our closed convex set. Nonetheless, we are able to show
that the gradient, rather than the value, of the convex functional becomes infinite on
the boundary. The existence of an interior point which minimizes the functional then
follows from this observation.

In section 5, we apply these convex minimization techniques to the rational co-
variance extension problem, noting that, as hinted above, we obtain a new proof of
Georgiou’s conjecture. Moreover, this proof, unlike our previous proof [7] and the
existence proof of Georgiou [14], is constructive. Consequently, we have also obtained
an algorithmic procedure for solving the rational covariance extension problem. In
section 6 we report some computational results and present some simulations.

2. The rational covariance extension problem. It is well known that the
spectral density Φ(z) of a purely nondeterministic stationary random process {y(t)}
is given by the Fourier expansion

Φ(eiθ) =

∞∑
−∞

cke
ikθ(2.1)

on the unit circle, where the covariance lags

ck = E{yt+kyt}, k = 0, 1, 2, . . .(2.2)

play the role of the Fourier coefficients

ck =
1

2π

∫ π

−π
eikθΦ(eiθ)dθ.(2.3)

In spectral estimation [8], identification [2, 22, 32], speech processing [11, 25, 24,
29], and several other applications in signal processing and systems and control, we
are faced with the inverse problem of finding a spectral density which is coercive, i.e.,
positive on the unit circle, given only

c = (c0, c1, . . . , cn),(2.4)
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CONVEX OPTIMIZATION FOR RATIONAL COVARIANCE EXTENSIONS 213

which is a partial covariance sequence positive in the sense that

Tn =


c0 c1 · · · cn
c1 c0 · · · cn−1

...
...

. . .
...

cn cn−1 · · · c0

 > 0,(2.5)

i.e., the Toeplitz matrix Tn is positive definite.
In fact, the covariance lags (2.2) are usually estimated from an approximation

1

N − k + 1

N−k∑
t=0

yt+kyt

of the ergodic limit

ck = lim
T→∞

1

T

T∑
t=0

yt+kyt,

since only a finite string

y0, y1, y2, y3, . . . , yN

of observations of the process {y(t)} is available, and therefore we can only estimate
a finite partial covariance (2.4), where n << N .

The corresponding inverse problem is a version of the trigonometric moment
problem [1, 16]: Given a sequence (2.4) of real numbers satisfying the positivity
condition (2.5), find a coercive spectral density Φ(z) such that (2.3) is satisfied for
k = 0, 1, 2, . . . , n. Of course there are infinitely many such solutions, and we shall
shortly specify some additional properties which we would like the solution to have.

The trigonometric moment problem, as stated above, is equivalent to the
Carathéodory extension problem to determine an extension

cn+1, cn+2, cn+3, . . . ,(2.6)

with the property that the function

v(z) =
1

2
c0 + c1z

−1 + c2z
−2 + · · ·(2.7)

is strictly positive real, i.e., is analytic on and outside the unit circle (so that the
Laurent expansion (2.7) holds for all |z| ≥ 1) and satisfies

v(z) + v(z−1) > 0 on the unit circle.(2.8)

In fact, given such a v(z),

Φ(z) = v(z) + v(z−1)(2.9)

is a solution to the trigonometric moment problem. Conversely, any coercive spectral
density Φ(z) uniquely defines a strictly positive real function v(z) via (2.9).

These problems are classical and go back to Carathéodory [9, 10], Toeplitz [31],
and Schur [30]. In fact, Schur parameterized all solutions in terms of what are now
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214 C. BYRNES, S. GUSEV, AND A. LINDQUIST

known as the Schur parameters, or, more commonly in the circuits and systems liter-
ature, as reflection coefficients, and which are easily determined from the covariance
lags via the Levinson algorithm [27]. More precisely, modulo the choice of c0, there is
a one-to-one correspondence between infinite covariance sequences c0, c1, c2, . . . and
Schur parameters γ0, γ1, . . . such that

|γt| < 1 for t = 0, 1, 2, . . . ,(2.10)

under which partial sequences (2.4) correspond to partial sequences γ0, γ1, . . . , γn−1 of
Schur parameters. Therefore, covariance extension (2.6) amounts precisely to finding
a continuation

γn, γn+1, γn+2, . . .(2.11)

of Schur parameters satisfying (2.10). Each such solution is only guaranteed to yield
a v(z) which is meromorphic.

In circuits and systems theory, however, we are generally only interested in so-
lutions which yield a rational v(z) of at most degree n, or, equivalently, a ratio-
nal spectral density Φ(z) of at most degree 2n. Then the unique rational, stable,
minimum-phase function w(z) having the same degree as v(z) and satisfying

w(z)w(z−1) = Φ(z)(2.12)

is the transfer function of a modeling filter, which shapes white noise into a random
process with the first n + 1 covariance lags given by (2.4); see, e.g., [7, 6] for more
details.

Setting all free Schur parameters (2.11) equal to zero, which clearly satisfies the
condition (2.10), yields a rational solution

Φ(z) =
1

a(z)a(z−1)
,(2.13)

where a(z) is a polynomial given by

a(z) = a0z
n + a1z

n−1 + · · ·+ an (a0 > 0),(2.14)

which is easily computed via the Levinson algorithm [27]. This so-called maximum
entropy solution is an all-pole or AR solution, and the corresponding modeling filter

w(z) =
zn

a(z)
(2.15)

has all its zeros at the origin.
However, in many applications a wider variety in the choice of zeros is required

in the spectral density Φ(z). To illustrate this point, consider in Figure 2.1 a spectral
density in the form of a periodogram determined from a speech signal sampled over 20
milliseconds (in which time interval it represents a stationary process) together with a
maximum entropy solution corresponding to n = 6. As can be seen, the latter yields a
rather flat spectrum which is unable to approximate the valleys or the “notches” in the
speech spectrum, and therefore in speech synthesis, the maximum entropy solution
results in artificial speech which sounds quite flat. This is a manifestation of the fact
that all the zeros of the maximum entropy filter (2.15) are located at the origin and
thus do not give rise to a frequency where the power spectrum vanishes. However,
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CONVEX OPTIMIZATION FOR RATIONAL COVARIANCE EXTENSIONS 215
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Fig. 2.1. Spectral envelope of a maximum entropy solution.

were we able to place some zeros of the modeling filter reasonably close to the unit
circle, these would produce notches in the spectrum at approximately the frequency
of the arguments of those zeros.

For this reason, it is widely appreciated in the signal and speech processing com-
munity that regeneration of human speech requires the design of filters having non-
trivial zeros [3, p. 1726], [24, pp. 271–272], [29, pp. 76–78]. Indeed, while all-pole
filters can reproduce many human speech sounds, the acoustic theory teaches that
nasals and fricatives require both zeros and poles [24, pp. 271–272], [29, p. 105].

Therefore, we are interested in modeling filters

w(z) =
σ(z)

a(z)
,(2.16)

for which (2.14) and

σ(z) = zn + σ1z
n−1 + · · ·+ σn(2.17)

are Schur polynomials, i.e., polynomials with all roots in the open unit disc. In this
context, the maximum entropy solution corresponds to the choice σ(z) = zn.

An important mathematical question, therefore, is to what extent it is possible
to assign desired zeros and still satisfy the interpolation condition that the partial
covariance sequence (2.4) is as prescribed. In [13] (see also [14]), Georgiou proved
that for any prescribed zero polynomial σ(z) there exists a modeling filter w(z) and
conjectured that this correspondence would yield a complete parameterization of all
rational solutions of at most degree n, i.e., that the correspondence between v and a
choice of positive sequence (2.4) and a choice of Schur polynomial (2.14) would be a
bijection. This is a nontrivial and highly nonlinear problem, since generally there is
no method to see which choices of free Schur parameters will yield rational solutions.
In [7] we resolved this long-standing conjecture by proving the following theorem as
a corollary of a more general theorem on complementary foliations of the space of all
rational positive real functions of degree at most n.

Theorem 2.1 (see [7]). Given any partial covariance sequence (2.4) and Schur
polynomial (2.17), there exists a unique Schur polynomial (2.14) such that (2.16) is
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216 C. BYRNES, S. GUSEV, AND A. LINDQUIST

a minimum-phase spectral factor of a spectral density Φ(z) satisfying

Φ(z) = c0 +
∞∑
k=1

ĉk(zk + z−k),

where

ĉk = ck for i = 1, 2, . . . , n.

In particular, the solutions of the rational positive extension problem are in one-to-one
correspondence with self-conjugate sets of n points (counted with multiplicity) lying in
the open unit disc, i.e., with all possible zero structures of modeling filters. Moreover,
this correspondence is bianalytic.

Consequently, we not only proved Georgiou’s conjecture that the family of all
rational covariance extensions of (2.4) of degree at most n is completely parameterized
in terms of the zeros of the corresponding modeling filters w(z), but also that the
modeling filter w(z) depends analytically on the covariance data and the choice of
zeros, a strong form of well-posedness increasing the likelihood of finding a numerical
algorithm.

In fact, both Georgiou’s existence proof and our proof of Theorem 2.1 are non-
constructive. However, in this paper we present for the first time an algorithm which,
given the partial covariance sequence (2.4) and the desired zero polynomial (2.17),
computes the unique pole polynomial (2.14). This is done via the convex optimiza-
tion problem to minimize the value of the function ϕ : Rn+1 → R, defined by

ϕ(q0, q1, . . . , qn) = c0q0 + c1q1 + · · ·+ cnqn

− 1

2π

∫ π

−π
logQ(eiθ)|σ(eiθ)|2dθ(2.18)

over all q0, q1, . . . , qn such that

Q(eiθ) = q0 + q1 cos θ + q2 cos 2θ + · · ·+ qn cosnθ > 0 for all θ.(2.19)

In sections 4 and 5 we show this problem has a unique minimum. In this way we
shall also provide a new and constructive proof of the weaker form of Theorem 2.1
conjectured by Georgiou.

Using this convex optimization problem, a sixth-degree modeling filter with zeros
at the appropriate frequencies can be constructed for the speech segment represented
by the periodogram of Figure 2.1. In fact, Figure 2.2 illustrates the same periodogram
together with the spectral density of such a filter. As can be seen, this filter yields a
much better description of the notches than does the maximum entropy filter.

Before turning to the main topic of this paper, the convex optimization problem
for solving the rational covariance extension problem for arbitrarily assigned zeros,
we shall provide a motivation for this approach in terms of the maximum entropy
solution.

3. The maximum entropy solution. As a preliminary we shall first consider
the maximum entropy solution discussed in section 2. The reason for this is that, as
indicated by its name, this particular solution corresponds to an optimization problem.
Hence, this section will be devoted to clarifying the relation between this particular
optimization problem and the class of problems solving the general problem. Thus

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 1

60
.9

4.
45

.1
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CONVEX OPTIMIZATION FOR RATIONAL COVARIANCE EXTENSIONS 217

0 0.2 0.4 0.6 0.8 1
-60

-50

-40

-30

-20

-10

0

10

frequency

dB

Fig. 2.2. Spectral envelope obtained with appropriate choice of zeros.

our interest is not in the maximum entropy solution per se, but in showing that it
can be determined from a constrained convex minimization problem in Rn+1, which
naturally is generalized to a problem with arbitrary prescribed zeros.

Let us briefly recall the problem at hand. Given the partial covariance sequence

c0, c1, . . . , cn,

determine a coercive, rational spectral density

Φ(z) = ĉ0 +
∞∑
k=1

ĉk(zk + z−k)(3.1)

of degree at most 2n such that

ĉk = ck for i = 1, 2, . . . , n.(3.2)

Of course there are many solutions to this problem, and it is well known that the
maximum entropy solution is the one which maximizes the entropy gain

1

2π

∫ π

−π
log Φ(eiθ)dθ(3.3)

(see, e.g., [19]), and we shall now consider this constrained optimization problem.
We begin by setting up the appropriate spaces. Recall from classical realization

theory that a rational function

v(z) =
1

2
ĉ0 + ĉ1z

−1 + ĉ2z
−2 + · · ·

of degree n has a representation

ĉk = h′F k−1g k = 1, 2, 3, . . .

for some choice of (F, g, h) ∈ Rn×n×Rn×Rn. Therefore, if in addition v(z) is strictly
positive real, implying that all eigenvalues of F are less than one in modulus, ĉk tends
exponentially to zero as k →∞. Hence, in particular,

ĉ := (ĉ0, ĉ1, ĉ2, . . . )
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218 C. BYRNES, S. GUSEV, AND A. LINDQUIST

must belong to `1. Moreover, the requirement that (3.1) be a coercive spectral density
adds another constraint, namely that ĉ belongs to the set

F :=

{
ĉ ∈ `1 | ĉ0 +

∞∑
k=1

ĉk(eikθ + e−ikθ) > 0

}
.(3.4)

Now, let

ψ(ĉ) = − 1

2π

∫ π

−π
log

[
ĉ0 +

∞∑
k=1

ĉk(eikθ + e−ikθ)

]
dθ(3.5)

be a functional F → R, and consider the infinite-dimensional convex constrained
optimization problem to minimize ψ(ĉ) over F given the finite number of constraints
(3.2). Thus we have relaxed the optimization problem to allow also for nonrational
spectral densities.

Since the optimization problem is convex, the Lagrange function

L(ĉ, λ) = ψ(ĉ) +

n∑
k=0

λk(ĉk − ck)(3.6)

has a saddle point [26, p. 458] provided the stationary point lies in the interior of
F , and, in this case, the optimal Lagrange vector λ = (λ0, λ1, . . . , λn) ∈ Rn+1 can be
determined by solving the dual problem to maximize

ρ(λ) = min
ĉ∈F

L(ĉ, λ).(3.7)

To this end, first note that

∂L

∂ĉk
= − 1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ + λk for k = 0, 1, 2, . . . , n,(3.8)

and that

∂L

∂ĉk
= − 1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ for k = n+ 1, n+ 2, . . . .(3.9)

Then, setting the gradient equal to zero, we obtain from (3.9) that

1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ = 0 for |k| > n,

from which it follows that Φ−1 must be a pseudopolynomial

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(zn + z−n)(3.10)

of degree at most n, i.e.,

Φ−1(z) = Q(z),(3.11)

yielding a spectral density Φ which is rational and of at most degree 2n, and thus
belongs to the original (nonrelaxed) class of spectral densities. Likewise we obtain
from (3.8) that

λk =
1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ(3.12)
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for k = 0, 1, 2, . . . , n, which together with (3.11) yields

λk = qk for k = 0, 1, 2, . . . , n.(3.13)

However, the minimizing ĉ is given by

ĉk =
1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)Q(eiθ)−1dθ(3.14)

and consequently

n∑
k=0

qk ĉk =
1

2π

∫ π

−π
Q(eiθ)Q(eiθ)−1dθ = 1.(3.15)

To determine the optimal (saddle point) Lagrange multipliers we turn to the dual
problem. In view of (3.11), (3.13), and (3.15), the dual function is

ρ(q) =
1

2π

∫ π

−π
logQ(eiθ)dθ + 1− c′q,

where c ∈ Rn+1 is the vector with components c0, c1, . . . , cn. Consequently, the dual
problem is equivalent to minimizing

ϕ(q) = c′q − 1

2π

∫ π

−π
logQ(eiθ)dθ(3.16)

over all q ∈ Rn+1 such that the pseudopolynomial (3.10) is nonnegative on the unit
circle, i.e.,

Q(eiθ) > 0 for all θ,(3.17)

and, if the dual problem has an optimal solution satisfying (3.17), the optimal Q
solves the primal problem when inserted into (3.11).

The dual problem to minimize (3.16) given (3.17) is a finite-dimensional convex
optimization problem, which is simpler than the original (primal) problem. Clearly
it is a special case of the optimization problem (2.18)–(2.19), obtained by setting
|σ(eiθ)|2 = 1 as required for the maximum entropy solution. Figure 3.1 depicts a
typical cost function ϕ in the case n = 1. As can be seen, it is convex and attains
its optimum in an interior point so that the spectral density Φ has all its poles in the
open unit disc as required. That this is the case in general will be proven in section 5.

We stress again that the purpose of this section is not primarily to derive an
algorithm for the maximum entropy solution, for which we already have the simple
Levinson algorithm, but to motivate an algorithm for the case with prescribed zeros
in the spectral density. This is the topic of the next two sections.

4. The general convex optimization problem. Given a partial covariance
sequence c = (c0, c1, . . . , cn)′ and a Schur polynomial σ(z), we know from section 2
that there exists a Schur polynomial

a(z) = a0z
n + a1z

n−1 + · · ·+ an (a0 > 0)

such that

Φ(z) =
σ(z)σ(z−1)

a(z)a(z−1)
= c0 +

∞∑
k=1

ĉk(zk + z−k),(4.1)
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Fig. 3.1. A typical cost function ϕ(q) in the case n = 1.

where

ĉk = ck for k = 1, 2, . . . , n.(4.2)

The question now is: How do we find a(z)? In this section, we shall construct a
nonlinear, strictly convex functional on a closed convex domain. In the next section,
we shall show that this functional always has a unique minimum and that if such a
minimum occurs as an interior point, it gives rise to a(z).

As seen from (2.3), the interpolation condition (4.2) may be written

ck =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)

dθ for k = 0, 1, . . . , n,(4.3)

where

Q(z) = a(z)a(z−1),(4.4)

so the problem is reduced to determining the variables

q =


q0

q1

...
qn

 ∈ Rn+1(4.5)

in the pseudopolynomial

Q(z) = q0 +
1

2
q1(z + z−1) +

1

2
q2(z2 + z−2) + · · ·+ 1

2
qn(zn + z−n)(4.6)

so that the conditions (4.3) and

Q(eiθ) > 0 for all θ ∈ [−π, π](4.7)

are satisfied.
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Now, consider the convex functional ϕ(q) : Rn+1 → R defined by

ϕ(q) = c′q − 1

2π

∫ π

−π
logQ(eiθ)|σ(eiθ)|2dθ.(4.8)

Our motivation in defining ϕ(q) comes in part from the desire to introduce a barrier-
like term, as is done in interior point methods, and in part from our analysis of the
maximum entropy method in the previous section. As it turns out, by a theorem
of Szegö the logarithmic integrand is in fact integrable for nonzero Q having zeros
on the boundary of the unit circle, so that ϕ(q) does not become infinite on the
boundary of the convex set. On the other hand, ϕ(q) is a natural generalization of
the functional (3.16) in section 3, since it specializes to (3.16) when |σ(eiθ)|2 ≡ 1 as
for the maximum entropy solution. As we shall see, minimizing (4.8) yields precisely
via (4.4) the unique a(z) which corresponds to σ(z).

It is clear that if q ∈ D+
n , where

D+
n = {q ∈ Rn+1 | Q(z) > 0 for |z| = 1},(4.9)

then ϕ(q) is finite. Moreover, ϕ(q) is also finite when Q(z) has finitely many zeros on
the unit circle, as can be seen from the following lemma.

Lemma 4.1. The functional ϕ(q) is finite and continuous at any q ∈ D+
n except

at zero. The functional is infinite, but continuous, at q = 0. Moreover, ϕ is a C∞

function on D+
n .

Proof. We want to prove that ϕ(q) is finite when q 6= 0. Then the rest follows by
inspection. Clearly, ϕ(q) cannot take the value −∞; hence, it remains to prove that
ϕ(q) <∞. Since q 6= 0,

µ := max
θ
Q(eiθ) > 0.

Then setting P (z) := µ−1Q(z),

logP (eiθ) ≤ 0(4.10)

and

ϕ(q) = c′q − 1

2π
logµ

∫ π

−π
|σ(eiθ)|2dθ − 1

2π

∫ π

−π
logP (eiθ)|σ(eiθ)|2dθ,

and hence, the question of whether ϕ(q) <∞ is reduced to determining whether

−
∫ π

−π
logP (eiθ)|σ(eiθ)|2dθ <∞.

However, since |σ(eiθ)|2 ≤M for some bound M , this follows from∫ π

−π
logP (eiθ)dθ > −∞,(4.11)

which is the well-known Szegö condition: (4.11) is a necessary and sufficient condition
for P (eiθ) to have a stable spectral factor [17]. However, since P (z) is a symmetric
pseudopolynomial which is nonnegative on the unit circle, there is a polynomial π(z)

such that π(z)π(z−1) = P (z). But then w(z) = π(z)
zn is a stable spectral factor, and

hence (4.11) holds.
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222 C. BYRNES, S. GUSEV, AND A. LINDQUIST

Lemma 4.2. The functional ϕ(q) is strictly convex and defined on a closed, convex
domain.

Proof. We first note that q = 0 is an extreme point, but it can never be a minimum
of ϕ since ϕ(0) is infinite. In particular, in order to check the strict inequality

ϕ(λq(1) + (1− λ)q(2)) < λϕ(q(1)) + (1− λ)ϕ(q(2)),(4.12)

where one of the arguments is zero, we need only consider the case that either q(1) or
q(2) is zero, in which case the strict inequality holds. We can now assume that none
of the arguments is zero, in which case the strict inequality in (4.12) follows from

the strict concavity of the logarithm. Finally, it is clear that D+
n is a closed convex

subset.
Lemma 4.3. Let q ∈ D+

n , and suppose q 6= 0. Then c′q > 0.
Proof. Consider an arbitrary covariance extension of c such as, for example, the

maximum entropy extension, and let Φ(z) be the corresponding spectral density (2.9).
Then c is given by (2.3), which may also be written

ck =
1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)Φ(eiθ)dθ, k = 0, 1, . . . , n.

Therefore, in view of (4.6),

c′q =
1

2π

∫ π

−π
Q(eikθ)Φ(eiθ)dθ,(4.13)

which is positive whenever Q(z) ≥ 0 on the unit circle and q 6= 0.
Proposition 4.4. For all r ∈ R, ϕ−1(−∞, r] is compact. Thus ϕ is proper (i.e.,

ϕ−1(K) is compact whenever K is compact) and bounded from below.
Proof. Suppose q(k) is a sequence in Mr := ϕ−1(−∞, r]. It suffices to show that

q(k) has a convergent subsequence. Each Q(k) may be factored as

Q(k)(z) = λkā
(k)(z)ā(k)(z−1) = λkQ̄

(k)(z),

where λk is positive and ā(k)(z) is a monic polynomial, all of whose roots lie in the
closed unit disc. The corresponding sequence of the (unordered) set of n roots of each
ā(k)(z) has a convergent subsequence, since all (unordered) sets of roots lie in the
closed unit disc. Denote by ā(z) the monic polynomial of degree n which vanishes
at this limit set of roots. By reordering the sequence if necessary, we may assume
the sequence a(k)(z) tends to ā(z). Therefore, the sequence q(k) has a convergent
subsequence if and only if the sequence λk does, which will be the case provided the
sequence λk is bounded from above and from below away from zero. Before proving
this, we note that the sequences c′q̄(k), where q̄(k) is the vector corresponding to the
pseudopolynomial Q̄(k), and

1

2π

∫ π

−π
log Q̄(k)(eiθ)|σ(eiθ)|2dθ(4.14)

are both bounded from above and from below, respectively, away from zero and −∞.
The upper bounds come from the fact that {ā(k)(z)} are Schur polynomials and
hence have their coefficients in the bounded Schur region. As for the lower bound
of c′q̄(k), note that c′q̄(k) > 0 for all k (Lemma 4.3) and c′q̄(k) → α > 0. In fact,
Q̄(k)(eiθ) → |ā(eiθ)|2, where ā(z) has all its zeros in the closed unit disc, and hence
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it follows from (4.13) that α > 0. Then, since ϕ(q) <∞ for all q ∈ D+
n except q = 0

(Lemma 4.1), (4.14) is bounded away from −∞. Next, observe that

ϕ(q(k)) = λkc
′q̄(k) − 1

2π
log λk

∫ π

−π
|σ(eiθ)|2dθ − 1

2π

∫ π

−π
log Q̄(k)(eiθ)|σ(eiθ)|2dθ.

From this we can see that if a subsequence of λk were to tend to zero, then ϕ(q(k))
would exceed r. Likewise, if a subsequence of λk were to tend to infinity, ϕ would
exceed r, since linear growth dominates logarithmic growth.

5. Interior critical points and solutions of the rational covariance ex-
tension problem. In the previous section, we showed that ϕ has compact sublevel

sets in D+
n , so that ϕ achieves a minimum. Moreover, since ϕ is strictly convex and D+

n

is convex, such a minimum is unique. We record these observations in the following
statement.

Proposition 5.1. For each partial covariance sequence c and each Schur poly-

nomial σ(z), the functional ϕ has a unique minimum on D+
n .

In this paper we consider a question which is of independent interest: whether ϕ
achieves its minimum at an interior point. The next result describes an interesting
systems-theoretic consequence of the existence of such interior minima.

Theorem 5.2. Fix a partial covariance sequence c and a Schur polynomial σ(z).
If q̂ ∈ D+

n is a minimum for ϕ, then

Q̂(z) = a(z)a(z−1),(5.1)

where a(z) is the solution of the rational covariance extension problem.
Proof. Suppose that q̂ ∈ D+

n is a minimum for ϕ. Then

∂ϕ

∂qk
(q̂) = 0 for k = 0, 1, 2, . . . , n.(5.2)

Differentiating inside the integral, which is allowed due to uniform convergence, (5.2)
yields

ck − 1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)

|σ(eiθ)|2
Q̂(eiθ)

dθ = 0 for k = 0, 1, . . . , n,

where Q̂(z) is the pseudopolynomial (4.6) corresponding to q̂, or, equivalently,

ck =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q̂(eiθ)

dθ for k = 0, 1, . . . , n,(5.3)

which is precisely the interpolation condition (4.3)–(4.4), provided (5.1) holds.
As a corollary of this theorem, we have that the gradient of ϕ at any q̃ ∈ D+

n is
given by

∂ϕ

∂qk
(q̃) = ck − c̃k,(5.4)

where

c̃k =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q̃(eiθ)

dθ, k = 0, 1, 2, . . . , n(5.5)
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is the partial covariance sequence corresponding to a process with spectral density

Φ̃(eiθ) =
|σ(eiθ)|2
Q̃(eiθ)

,

where Q̃(z) is the pseudopolynomial corresponding to q̃. The gradient is thus the
difference between the true and calculated partial covariance sequences.

We now state the converse result, underscoring our interest in this particular
convex optimization problem.

Theorem 5.3. For each partial covariance sequence c and each Schur polynomial
σ(z), suppose that a(z) gives a solution to the rational covariance extension problem.
If

Q̂(z) = a(z)a(z−1),(5.6)

then the corresponding (n+ 1)-vector q̂ lies in D+
n and is a unique minimum for ϕ.

Proof. Let a(z) be the solution of the rational covariance extension problem
corresponding to c and σ(z), and let Q̂(z) be given by (5.6). Then c satisfies the
interpolation condition (5.3), which is equivalent to (5.2), as seen from the proof of
Theorem 5.2. However, since a(z) is a Schur polynomial, Q̂(z) > 0 on the unit circle,
and thus q̂ ∈ D+

n . Since ϕ is strictly convex on D+
n , (5.3) implies that q̂ is a unique

minimum for ϕ.
Since the existence of a solution to the rational covariance extension problem has

been established in [14] (see also [7]), we do in fact know the existence of interior
minima for this convex optimization problem. On the other hand, we know from

Proposition 5.1 that ϕ has a minimum for some q̂ ∈ D+
n , so to show that ϕ has a

minimum in the interior D+
n it remains to prove the following lemma.

Lemma 5.4. The functional ϕ never attains a minimum on the boundary ∂D+
n .

Proof. Denoting by Dpϕ(q) the directional derivative of ϕ at q in the direction p,
it is easy to see that

Dpϕ(q) := lim
ε→0

ϕ(q + εp)− ϕ(q)

ε
(5.7)

= c′p− 1

2π

∫ π

−π

P (eiθ)

Q(eiθ)
|σ(eiθ)|2dθ,(5.8)

where P (z) is the pseudopolynomial

P (z) = p0 +
1

2
p1(z + z−1) +

1

2
p2(z2 + z−2) + · · ·+ 1

2
pn(zn + z−n)

corresponding to the vector p ∈ Rn+1. In fact,

log(Q+ εP )− logQ

ε
=
P

Q
log

[(
1 + ε

P

Q

) 1
ε
Q
P

]
→ P

Q

as ε→ +0, and hence (5.7) follows by dominated convergence.
Now, let q ∈ D+

n and q̄ ∈ ∂D+
n be arbitrary. Then the corresponding pseudopoly-

nomials Q and Q̄ have the properties

Q(eiθ) > 0 for all θ ∈ [−π, π]
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and

Q̄(eiθ) ≥ 0 for all θ and Q̄(eiθ0) = 0 for some θ0.

Since qλ := q̄ + λ(q − q̄) ∈ D+
n for λ ∈ (0, 1], we also have for λ ∈ (0, 1] that

Qλ(eiθ) := Q̄(eiθ) + λ[Q(eiθ)− Q̄(eiθ)] > 0 for all θ ∈ [−π, π],

and we may form the directional derivative

Dq̄−qϕ(qλ) = c′(q̄ − q) +
1

2π

∫ π

−π
hλ(θ)dθ,(5.9)

where

hλ(θ) =
Q(eiθ)− Q̄(eiθ)

Qλ(eiθ)
|σ(eiθ)|2.

Now,

d

dλ
hλ(θ) =

[Q(eiθ)− Q̄(eiθ)]2

Qλ(eiθ)2
|σ(eiθ)|2 ≥ 0,

and hence hλ(θ) is a monotonically nondecreasing function of λ for all θ ∈ [−π, π].
Consequently, hλ tends pointwise to h0 as λ→ 0. Therefore,∫ π

−π
hλ(θ)dθ → +∞ as λ→ 0.(5.10)

In fact, if ∫ π

−π
hλ(θ)dθ → α <∞ as λ→ 0,(5.11)

then {hλ} is a Cauchy sequence in L1(−π, π) and hence has a limit in L1(−π, π)
which must equal h0 almost everywhere. However, h0, having poles in [−π, π], is not
summable and hence, as claimed, (5.11) cannot hold.

Consequently, by virtue of (5.9),

Dq−q̄ϕ(qλ)→ +∞ as λ→ 0

for all q ∈ D+
n and q̄ ∈ ∂D+

n , and hence, in view of Lemma 26.2 in [28], ϕ is essentially
smooth. Then it follows from Theorem 26.3 in [28] that the subdifferential of ϕ is
empty on the boundary of D+

n , and therefore ϕ cannot have a minimum there.
Thus we have proven the following result.
Theorem 5.5. For each partial covariance sequence c and each Schur polynomial

σ(z), there exists an (n+ 1)-vector q̂ in D+
n which is a minimum for ϕ.

Consequently, by virtue of Theorem 5.2, there does exist a solution to the rational
covariance extension problem for each partial covariance sequence and zero polynomial
σ(z), and, in view of Theorem 5.3, this solution is unique.

These theorems have the following corollary.
Corollary 5.6 (Georgiou’s conjecture). For each partial covariance sequence

c and each Schur polynomial σ(z), there is a unique Schur polynomial a(z) such that
(4.1) and (4.2) hold.

Hence, we have given an independent proof of the weaker version of Theorem 2.1
conjectured by Georgiou, but not of the stronger version of [7] which states that the
problem is well posed in the sense that the one-to-one correspondence between σ(z)
and a(z) is a diffeomorphism.
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6. Some numerical examples. Given an arbitrary partial covariance sequence
c0, c1, . . . , cn and an arbitrary zero polynomial σ(z), the constructive proof of Geor-
giou’s conjecture provides algorithmic procedures for computing the corresponding
unique modeling filter, which are based on the convex optimization problem to mini-
mize the functional (2.18) over all q0, q1, . . . , qn such that (2.19) holds.

In general such procedures will be based on the gradient of the cost functional ϕ,
which, as we saw in section 5, is given by

∂ϕ

∂qk
(q0, q1, . . . , qn) = ck − c̄k,(6.1)

where

c̄k =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)

dθ for k = 0, 1, 2, . . . , n(6.2)

are the covariances corresponding to a process with spectral density

|σ(eiθ)|2
Q(eiθ)

= c̄0 + 2
∞∑
k=1

c̄k cos(kθ).(6.3)

The gradient is thus the difference between the given partial covariance sequence
c0, c1, . . . , cn and the partial covariance sequence corresponding to the choice of vari-
ables q0, q1, . . . , qn at which the gradient is calculated. The minimum is attained when
this difference is zero.

The following simulations have been done by Per Enqvist, using Newton’s method
(see, e.g., [23, 26]), which of course also requires computing the Hessian (second-
derivative matrix) in each iteration. A straightforward calculation shows that the
Hessian is the sum of a Toeplitz and a Hankel matrix. More precisely,

Hij(q0, q1, . . . , qn) =
1

2
(di+j + di−j), i, j = 0, 1, 2, . . . , n,(6.4)

where

dk =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)2

dθ for k = 0, 1, 2, . . . , 2n(6.5)

and d−k = dk. Moreover, d0, d1, d2, . . . , d2n are the 2n+ 1 first Fourier coefficients of
the spectral representation

|σ(eiθ)|2
Q(eiθ)2

= d0 + 2
∞∑
k=1

dk cos(kθ).(6.6)

The gradient and the Hessian can be determined from (6.1) and (6.4), respectively, by
applying the inverse Levinson algorithm (see, e.g., [27]) to the appropriate polynomial
spectral factors of Q(z) and Q(z)2, respectively, and then solving the resulting linear
equations for c̄0, c̄1, . . . , c̄n and d0, d1, d2, . . . , d2n; see [12] for details.

To illustrate the procedure, let us again consider the sixth-order spectral envelopes
of Figures 2.1 and 2.2 together with the corresponding zeros and poles. Hence, Figure
6.1 illustrates the periodogram for a section of speech data together with the corre-
sponding sixth-order maximum entropy spectrum, which, since it lacks finite zeros,
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becomes rather “flat.” The location of the corresponding poles (marked by ×) in the
unit circle is shown next to it. The zeros (marked by ◦) of course all lie at the origin.

Now, selecting the zeros appropriately as indicated to the right in Figure 6.2, we
obtain the poles as marked, and the corresponding sixth-order modeling filter produces
the spectral envelope to the left in Figure 6.2. We see that the second solution has
a spectral density that is less flat and provides a better approximation, reflecting
the fact that the filter is designed to have transmission zeros near the minima of the
periodogram.

7. Conclusions. In [13, 14] Georgiou proved that to each choice of partial co-
variance sequence and numerator polynomial of the modeling filter there exists a
rational covariance extension yielding a pole polynomial for the modeling filter, and
he conjectured that this extension is unique so that it provides a complete parame-
terization of all rational covariance extensions. In [7] we proved this long-standing
conjecture in the more general context of a duality between filtering and interpolation
and showed that the problem is well posed in a very strong sense. In [6] we connected
this solution to a certain Riccati-type matrix equation that sheds further light on the
structure of this problem.
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However, our proof in [7], as well as the existence proof of Georgiou [14], is non-
constructive. In this paper we presented a constructive proof of Georgiou’s conjecture,
which, although it is weaker than our result in [7], provides us for the first time with
an algorithm for solving the problem of determining the unique pole polynomial cor-
responding to the given partial covariance sequence and the desired zeros.

This is done by means of a constrained convex optimization problem, which can
be solved without explicitly computing the values of the cost function and which
has the interesting property that the cost function is finite on the boundary but the
gradient is not. In this context, Georgiou’s conjecture is equivalent to establishing
that there is a unique minimum in the interior of the feasible region. Specialized to
the maximum entropy solution, this optimization problem was seen to be a dual to
the well-known problem of maximizing the entropy gain.
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