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A convex optimization framework for almost budget
balanced allocation of a divisible good

Anil Kumar Chorppath, Srikrishna Bhashyam and Rajesh Sundaresan

Abstract—We address the problem of allocating a single
divisible good to a number of agents. The agents have concave
valuation functions parameterized by a scalar type. The agents
report only the type. The goal is to find allocatively efficient,
strategy proof, nearly budget balanced mechanisms within the
Groves class. Near budget balance is attained by returning
as much of the received payments as rebates to agents. Two
performance criteria are of interest: the maximum ratio of
budget surplus to efficient surplus, and the expected budget
surplus, within the class of linear rebate functions. The goal is to
minimize them. Assuming that the valuation functions are known,
we show that both problems reduce to convex optimization
problems, where the convex constraint sets are characterized
by a continuum of half-plane constraints parameterized by
the vector of reported types. We then propose a randomized
relaxation of these problems by sampling constraints. The
relaxed problem is a linear programming problem (LP). We
then identify the number of samples needed for “near-feasibility”
of the relaxed constraint set. Under some conditions on the
valuation function, we show that value of the approximate LP
is close to the optimal value. Simulation results show significant
improvements of our proposed method over the Vickrey-Clarke-
Groves (VCG) mechanism without rebates. In the special case
of indivisible goods, the mechanisms in this paper fall back to
those proposed by Moulin, by Guo & Conitzer and by Gujar
& Narahari, without any need for randomization. Extension
of the proposed mechanisms to situations when the valuation
functions are not known to the central planner are also discussed.

Note to Practitioners– Our results will be useful in all re-
source allocation problems that involve gathering of information
privately held by strategic users, where the utilities are any
concave function of the allocations, and where the resource
planner is not interested in maximizing revenue, but in efficient
sharing of the resource. Such situations arise quite often in
fair sharing of internet resources, fair sharing of funds across
departments within the same parent organization, auctioning of
public goods, etc. We study methods to achieve near budget
balance by first collecting payments according to the celebrated
VCG mechanism, and then returning as much of the collected
money as rebates. Our focus on linear rebate functions allows for
easy implementation. The resulting convex optimization problem
is solved via relaxation to a randomized linear programming
problem, for which several efficient solvers exist. This relaxation
is enabled by constraint sampling. Keeping practitioners in
mind, we identify the number of samples that assures a desired
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level of “near-feasibility” with the desired confidence level. Our
methodology will occasionally require subsidy from outside the
system. We however demonstrate via simulation that, if the
mechanism is repeated several times over independent instances,
then past surplus can support the subsidy requirements. We
also extend our results to situations where the strategic users’
utility functions are not known to the allocating entity, a common
situation in the context of internet users and other problems.

Index Terms—Game theory, mechanism design, constraint
sampling, convex optimization, divisible good, resource allocation.

I. INTRODUCTION

A large number of resource allocation problems arise in
the internet and other communication networks where several
agents access shared resources. An efficient resource allocation
maximizes the aggregate utility of all the agents. Often, the
allocation depends on information privately held by the agents,
also known types. Strategic agents may misrepresent their
private information so as to maximize their own utility even if
at the expense of aggregate utility. Mechanism design theory
deals with the problem of designing mechanisms that induce
truthful reporting by agents of their private information. It
contains a social planner who collects bids (reported types)
from agents, knows (or assumes) value functions of agents,
allocates available resources, and collects payments. In the
Groves class of mechanisms [1], resources or goods are
allocated efficiently, and payments are constructed such that
the dominant strategy of each agent is to report the true value,
i.e., these are dominant strategy incentive compatible (DSIC).
The most celebrated mechanism in this class is the Vickrey-
Clarke-Groves (VCG) mechanism (see [2] and [3]). The VCG
mechanism maximizes the total payments from the agents to
the social planner. While this is indeed of interest in situations
where an auctioneer sells his goods to agents, our interest is
in scenarios where the resources have no owner and the social
planner unlike the auctioneer desires no surplus (i.e., he desires
budget balance). The well-known Green-Laffont impossibility
theorem [4], however, says that there is no mechanism in a
quasi-linear environment1 that is DSIC, achieves allocative
efficiency, and is budget balanced. Moulin [5] and Guo &
Conitzer [6] proposed mechanisms within the Groves class
for allocation of one or more homogeneous indivisible goods.
Their mechanisms are almost budget balanced. In this paper
we extend their mechanisms to more general situations when
goods are perfectly divisible.

Near budget balance is achieved by supplying rebates, or
redistribution of payments, back to the agents. This idea was

1Net utility is value of allocation minus payment.
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first proposed by Laffont & Maskin [7] and further studied
by Bailey [8], Cavallo [9], and others. Moulin [5] studied
rebates for allocation of m homogeneous indivisible goods
among n agents, where m < n, each with unit demand. The
VCG payments from agents are redistributed to the agents
as rebates to the extent possible. The mechanism remains
allocative efficient, individually rational, and DSIC. Moreover,
it minimizes the worst (maximum) ratio of budget surplus
to efficient surplus (sum of valuations) subject to the con-
straint that it is weakly budget balanced. Guo & Conitzer
[6] showed that the same mechanism maximizes the worst-
case (minimum) rebate redistribution fraction relative to the
VCG payments. The optimal rebate for a particular agent
is linear in the reported types of all other agents. Gujar &
Narahari [10] analyzed the allocation of m heterogeneous
goods among n agents (again m < n) when each agent
submits only a scalar bid. A valuation vector is constructed
by multiplying the scalar bid of each agent with a common
vector corresponding to the heterogeneity of the objects. They
showed the optimality of linear rebates in this more general
setting. Guo & Conitzer [11] proposed a different (but again
linear) redistribution mechanism that maximizes the average
rebate redistributions.

In this paper, we study linear redistribution mechanisms
when the resource is perfectly divisible and when the valuation
function of an agent is any concave function2. We first show
that the worst-case and average-case optimal linear rebate
functions are solutions to convex optimization problems. The
constraint set however is determined by an infinite number of
half-plane constraints, parameterized by the set of bid profiles.
We then propose a randomized approximate linear program
(LP) and argue that its constraint set is “near-feasible” with
high probability. We then show that, under a rather general
condition on the valuation function, the min-max value for
the approximate LP is close to the true value, with high
probability, with a similar statement for the average rebate
redistributions problem. Our proposed mechanisms reduce to
those proposed by Moulin, Guo & Conitzer, and Gujar &
Narahari in the corresponding special settings.

The assumption that the valuation function is known to
the central planner is often unrealistic. Reporting the entire
valuation function is a considerable communication burden
to the system (see Johari & Tsitsiklis [12]). Hence, mecha-
nisms for allocation of divisible goods, based only on scalar
signals (bids) from agents, are of interest. If the allocation
mechanism is based only on reported real values in quasi-
linear environment, then dominant strategy implementation
is not possible and the central planner should rely on Nash
equilibrium played by agents. Sanghavi & Hajek [13] focused
on one-dimensional real-valued bids as payment by agents,
and studied the Nash equilibrium implementation. Kelly [14]
proposed a mechanism where the central planner creates
surrogates for the valuation function from the one-dimensional
bids. The allocation and payment are derived using these
surrogate valuation functions. Yang & Hajek [15] proposed a

2Utility functions are usually nonlinear and concave in constrained re-
sources settings. Moreover, the concavity of utility functions, if they can be
shaped, is influenced by the degree of fairness desired.

VCG-Kelly mechanism by combining the one-dimensional bid
idea of Kelly with the VCG mechanism for the network rate
allocation problem. Johari & Tsitsiklis [12] analyzed the more
general convex environment, proposed a scalar strategy VCG
(SSVCG) mechanism, and obtained an efficient Nash equilib-
rium implementation. Our proposed almost budget balanced
mechanisms can be easily extended to this general setting as
well.

The rest of the paper is organized as follows. Section II
describes the system model and discusses efficient alloca-
tion mechanisms. Section III analyzes the worst-case optimal
mechanism and optimal-in-expectation mechanism under the
linear rebates setting and proposes the randomized approx-
imate LP. In section IV, we discuss the goodness of the
randomized approximation procedure. In section V, we argue
that our results of sections III and IV can be extended to the
case where the valuation functions are private to agents and
the agents report only a scalar value. Section VI discusses
the simulation setting and results. Section VII is a concluding
summary of the paper. The appendix contains the key proof
on the goodness of the proposed randomized scheme.

II. EFFICIENT ALLOCATION MECHANISMS

Consider a perfectly divisible good to be allocated to agents
{1, 2, . . . , n} = N . Agents report their types or scalar bids
{θ1, θ2, . . . , θn} with each θi ∈ Θ = [0, 1]. Since we consider
mechanisms only within the class of Groves mechanisms,
which are DSIC, we may assume that all agents report their
true private values. Agent i receives an allocation of resource
ai that will depend on the entire bid profile θ of size n×1. Let
a be the allocation vector of size n×1 and let A be the set of all
possible allocations, i.e., ai ≥ 0 for each i and

∑
i∈N ai ≤ 1,

with possibly further allocation restrictions. An agent obtains
a valuation, depending on her bid and the allocation received.

Assumption 1. The valuation function vi(·, θi) that maps
ai 7→ vi(ai, θi) is concave, nondecreasing in [0, 1], and
satisfies vi(ai, 0) = 0.

An allocation a∗ is efficient (or) socially optimal if it attains
the maximum aggregate value for given valuation functions
and bid vector, i.e.,

a∗(θ) = argmax
a∈A

∑
i∈N

vi(ai, θi). (1)

In this section, we focus our attention on mechanisms that
achieve allocative efficiency. Groves class of mechanisms are
the only efficient allocation mechanisms that are DSIC. Let
θ−i denote the bid vector with zero in the ith position of θ.
An allocation vector a−i ∈ A−i is obtained by considering
θ−i. Let a∗−i be the efficient allocation when the ith agent is
out of contention, i.e.,

a∗−i(θ−i) = arg max
a−i∈A−i

∑
j ̸=i

vj(a−i,j , θj),

where a−i,j is the jth component of a−i. The payment pi(θ)
for the ith agent under the VCG mechanism is given by

pi(θ) =
∑
j ̸=i

vj(a
∗
−i,j(θ−i), θj)−

∑
j ̸=i

vj(a
∗
j (θ), θj). (2)
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The VCG payment for an agent is the difference the agent
makes to the aggregate value of other agents by participating
in the mechanism. To make the mechanism more budget
balanced, a rebate (or) redistribution of payments is given
to the agents (see for example, Moulin [5]). A rebate func-
tion determines the redistributions of a portion of the VCG
payments back to the agents. The choice of these rebates
should be such that the DSIC property of the mechanism is
preserved. Moreover, the mechanism should be deterministic
and anonymous, i.e., two agents with identical bids should get
identical rebates. The condition for obtaining a deterministic,
anonymous, and DSIC rebate function is given in the following
theorem.

Theorem 1. Suppose that agents bid scalar values and that
the scalar parameterized value functions satisfy Assumption
1. Then, any mechanism with deterministic and anonymous
redistributions is DSIC if and only if the rebate function can
be written as

ri = f(θ1, θ2, . . . , θi−1, θi+1, . . . , θn)

for some f with arguments satisfying θ1 ≥ θ2 ≥ . . . ≥ θi−1 ≥
θi+1 ≥ . . . ≥ θn.

Proof: This is identical to Guo & Conitzer’s proof of
[6, Lem. 2]. In their proof, f is a function of the reported
valuations vi (prior to allocation) instead of types θi. But their
vi = θi, and so the same proof holds.

The payment for the new mechanism with rebates, one that
remains within the Groves class of mechanisms, is given by

pi(θ) =
∑
j ̸=i

vj(a
∗
−i,j(θ−i), θj)−

∑
j ̸=i

vj(a
∗
j (θ), θj)− ri(θ−i).

(3)
The rebate function in Theorem 1 should preserve all desirable
properties of the VCG mechanism. These are the following.

1) Feasibility (F) or Weak Budget Balance: This property
ensures that the mechanism need not be subsidized by external
supply of money. There is a net payment (budget surplus) from
the agents to the mechanism:∑

i∈N

pi(θ) ≥ 0, ∀ θ. (4)

Substitution of equation (3) in equation (4) yields∑
i∈N

ri(θ−i) ≤
∑
i∈N

∑
j ̸=i

vj(a
∗
−i,j(θ−i), θj)

−(n− 1)
∑
i∈N

vi(a
∗
i (θ), θi)

=: pV CG(θ), ∀ θ, (5)

where pV CG(θ) is the total VCG payment by all the agents.

2) Individual Rationality (or) Voluntary Participation (VP):
This property ensures that the utility of all agents is greater
than or equal to the utility they would get by dropping out of
the mechanism. The utility that agents get by not participating
in the mechanism is usually taken to be zero. Thus

vi(a
∗
i (θ), θi)− pi(θ) ≥ 0, ∀i ∈ N, ∀ θ. (6)

Substitution of equation (3) in equation (6) yields

ri(θ−i) ≥
∑
j ̸=i

vj(a
∗
−i,j(θ−i), θj)

−
∑
j∈N

vj(a
∗
j (θ), θj)

=: ni(θ), ∀ i ∈ N, ∀ θ. (7)

Adding all the n constraints in equation (7) and using equation
(5), we get

pV CG(θ)−
∑
i∈N

vi(a
∗
i (θ), θi) ≤

∑
i∈N

ri(θ−i)

≤ pV CG(θ), ∀ θ. (8)

We shall consider the case of a single divisible good
allocated to a number of agents. We assume that the valuation
function satisfies Assumption 1. The Moulin [5] and Guo &
Conitzer [6] mechanisms are for allocation of m homogeneous
indivisible goods to n agents, each demanding a unit good3,
where m ≤ n. This fits our framework when we divide the
single good into m equal parts with m ≤ n and take the piece-
wise linear valuation function vi(ai, θi) = θi min{ai, 1/m},
i.e., each agent’s valuation increases linearly, but saturates at
1/m. The Gujar & Narahari [10] mechanism for allocation
of m heterogeneous goods also fits into our framework when
we divide the good into m unequal parts, take the valuation
function to be vi(ai, θi) = θiai, and impose the allocation
constraint that each agent gets at most one of the unequal
parts.

III. LINEAR REDISTRIBUTION MECHANISMS

The redistribution function can take any form as specified
in Theorem 1. A linear form of redistribution function was
proposed by Moulin [5] and by Guo & Conitzer [6]. The
latter authors showed that for the worst-case problem, linear
redistribution mechanism is optimal among all Groves mech-
anisms that are feasible and individually rational. Optimality
was subsequently extended by Gujar & Narahari [10] to the
heterogeneous goods case where the reported type is a scalar
that multiplies a common valuation vector. Motivated by these
optimality results, the simplicity of linear rebate functions, and
their tractability as we shall soon see, we too shall focus on
a linear redistribution function4.

The rebate for the ith agent is given by

ri(θ−i) = c0 + c1θ1 + . . .+ ci−1θi−1 + ciθi+1 + . . .+ cn−1θn

where θ1 ≥ θ2 ≥ . . . ≥ θn. Consequently, we have∑
i∈N

ri(θ−i) = nc0 +
n−1∑
i=1

ci(iθi+1 + (n− i)θi). (9)

3Guo & Conitzer [6] do address multiunit demand, but the worst-case
reduces to that of single unit demand.

4Optimality of linear rebates, and if suboptimal, the goodness of the
proposed linear rebates, remain open questions. Our approach is similar
to Cavallo’s [16]: focus on simpler, easily implementable, but possibly
suboptimal redistribution schemes. In a situation different from ours where
types are vectors, Gujar & Narahari [10] showed that linear rebates are
suboptimal when goods are heterogeneous.
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After substitution of equation (9) in equations (5) and (7),
constraints F and VP in the linear redistribution case become

(F) nc0 +

n−1∑
i=1

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

(VP) c0 +

i−1∑
j=1

cjθj +

n−1∑
j=i

cjθj+1 ≥ ni(θ),

∀ θ, ∀i ∈ N.

Let ek = (1, 1, . . . , 1, 0, 0, . . . , 0) with k 1s. Setting θ = e0,
we get c0 = 0 from F and VP constraints. Setting θ = e1, we
get pV CG(θ) = 0 and ni(θ) = 0 for any i ≥ 2. Therefore,
using constraint F, we get (n− 1)c1 ≤ 0. On the other hand,
using constraint VP, we get r2(θ−2) = c1 ≥ 0, yielding c1 =
0. Furthermore,

Lemma 1. The following systems of inequalities are equiva-
lent.

(a) ri(θ−i) ≥ ni(θ), ∀ θ, ∀ i ∈ N.

(b)
k∑

i=2

ci ≥ 0, k = 2, 3, . . . , n− 1.

Proof: (a) ⇒ (b): The definition of ni(θ) in the right-
hand side of equation (7) yields

ni(θ) =
∑

j∈N\{i}

vj(a
∗
−i,j(θ−i), θj)−

n∑
j=1

vj(a
∗
j (θ), θj) ≤ 0,

(10)
because a∗−i(θ−i) is an inefficient allocation in comparison to
a∗(θ) when all the n agents are active.

Consider θ = ek for k = 2, 3, . . . , n − 1. The rebates for
these bids, i.e., after substitution in (9), are

rk+1(θ−(k+1)) =
k∑

i=2

ci.

Moreover,

nk+1(θ)

=
∑

j∈N\{k+1}

vj(a
∗
−(k+1),j(θ−(k+1)), θj)−

n∑
j=1

vj(a
∗
j (θ), θj)

=
k∑

j=1

vj(a
∗
−(k+1),j(θ−(k+1)), θj)−

k∑
j=1

vj(a
∗
j (θ), θj)

= 0,

because vj(aj , 0) = 0 for j ≥ k + 1, and therefore

a∗−(k+1)(θ−(k+1)) = a∗(θ)

as a consequence of the fact that θ−(k+1) = θ = ek.
Substitution of these in the VP constraint yields

∑k
i=2

ci ≥ 0
for k = 2, 3, . . . , n− 1.

(b) ⇒ (a): From Guo & Conitzer [6, Lem. 1], if
∑k

i=2
ci ≥

0 for all k = 2, 3, . . . , n− 1 then

c2θ2 + . . .+ ci−1θi−1 + ciθi+1 + . . .+ cn−1θn ≥ 0

for all θ1 ≥ θ2 ≥ θ3 ≥ . . . ≥ θn. Consequently, ri(θ−i) ≥
0 for all i ∈ N and the reverse implication follows from
equation (10). This proves the lemma.

A. Worst-case optimal mechanism

Moulin [5] proposed a mechanism that minimizes the worst-
case efficiency loss. We shall now describe this objective. Let
the efficient surplus be

σv(θ) =
∑
i∈N

vi(a
∗(θ), θi). (11)

The worst-case efficiency loss is the maximum ratio of budget
surplus to the efficient surplus over all possible θ, i.e.,

L(n) = sup
θ∈ΘN\{0}

∑
i
pi(θ)

σv(θ)
. (12)

Moulin [5] minimized this objective function L(n) subject to F
and VP constraints, but under the homogeneous goods setting.
To generalize this to the perfectly divisible case with the linear
redistribution constraint, i.e., we shall solve

min
c2,...,cn−1

sup
θ∈ΘN\{0}

pV CG(θ)−
n−1∑
i=2

ci(iθi+1 + (n− i)θi)

σv(θ)
(13)

subject to

1)
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

2)
k∑

i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1.

In arriving at the constraints for this min-max problem, we
used Lemma 1 and ek profiles. The min-max problem can be
rewritten as a minimization problem by adding an additional
constraint:

min
c2,...,cn−1,L(n)

L(n) (14)

subject to

1)
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

2)
k∑

i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1,

3)
n−1∑
i=2

ci(iθi+1+(n− i)θi)+L(n)σv(θ) ≥ pV CG(θ), ∀ θ.

In constraint 1) of problem (14), let C1(θ) be a set of
feasible coefficients for a given value of θ. This defines a half
plane, a convex set. Thus the intersection of these half plane
constraints C1 =

∩
θ C1(θ) is also a convex set. In constraint

3), if C2(θ) is the set of feasible coefficients for a given θ,
then C2 =

∩
θ C2(θ) is also a convex set, and C1

∩
C2, the

set of coefficients that satisfy both constraints 1) and 3), is
a convex set. Finally, the n − 2 conditions in constraint 2)
define a polygon, another convex set, and the minimization
problem in (14) subject to constraints 1), 2) and 3) is a convex
optimization problem. Let us denote the convex constraint set
by C.

In problem (14), constraints 1) and 3) are each half-space
constraints parameterized by θ ∈ ΘN . What we then have is a
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Fig. 1. Feasible region of c2 and c3 for number of agents=8 obtained with
different number of uniformly random generated θ’s and ek profiles.

continuum of half-space constraints whose intersections, along
with those of constraint 2), yield the overall convex constraint
set C. Guo & Conitzer [6] proved that the constraints obtained
with θ profiles ek = (1, 1, . . . , 1, 0, . . . , 0) having k 1s, for
k = 0, 1, . . . , n, are enough to specify the feasible region in
the case of indivisible goods. While these significantly narrow
the constraint set, they do not fully characterize the feasible
region for the divisible goods case; see Figure 1. Moreover,
an explicit solution via the method of Lagrange multipliers
does not appear likely because the coefficient σv(θ) and the
constant pV CG(θ) are themselves functions of θ arising out
of optimizations over allocations and without any apparent
structure.

We propose a relaxation by considering all of constraint 2),
and only a subset of constraints 1) and 3) parameterized by
a subset W of ΘN . This subset W contains ek profiles that
helped reduce the optimization problem to (14). In addition,
we sample random values of θ according to some probability
measure on ΘN , and include them in W . The resulting
constraints yields an approximation Ĉ of C. The relaxed
constraint set Ĉ is a clearly polyhedron, and the corresponding
minimization problem is an LP.

The natural questions that arise are a) the goodness of the
approximation Ĉ as the number of random samples increases,
and b) the number of samples needed for a desired degree
of precision. Both of these are addressed in the next section.
Section VI provides some simulation results.

In Figure 1, the number of agents n = 8, the variables are
c2, c3, . . . , c7 and L(n), and for pictorial depiction, only the
c2-c3 region is plotted after disregarding the constraints on
other variables. Figure 1 gives a sequence of approximations
to the feasible region for c2 and c3. The coarsest is the one
that merely uses the ek profiles. This region is progressively
refined with 500, 5000, and 6000 samples of θ ∈ [0, 1]n. We
observe that the difference between the regions for 5000 and
6000 samples is small.

B. Optimal-in-expectation Mechanism

In some scenarios, the worst-case θ profiles may seldom
occur. An optimistic approach is to minimize the efficiency
loss in an expected sense. In this subsection, we design another
mechanism, also in the class of Groves mechanisms, that is
optimal in expectation. The prior distribution of the agents’
types is assumed to be known and the objective is to minimize
the expected efficiency loss given by

E

[
pV CG(θ)−

n∑
i=1

ri(θ−i)

]
E [σv(θ)]

, (15)

subject to the same constraints (F) and (VP) as in the worst-
case problem. By using the same form of linear rebate function
as proposed above, the objective function becomes (with
variables c2, · · · , cn−1)

E [pV CG(θ)]− E

[
N−1∑
i=2

ci(iθi+1 + (N − i)θi)

]
E [σv(θ)]

. (16)

Given prior distributions, the quantities E[θi], E[σv(θ)] and
E[pV CG(θ)] are constants. Thus the problem becomes

max
c2,...,cn−1

n−1∑
i=2

ci(iE[θi+1] + (n− i)E[θi]) (17)

subject to

1)
n−1∑
i=2

ci(iθi+1 + (n− i)θi) ≤ pV CG(θ), ∀ θ,

2)
k∑

i=2

ci ≥ 0, ∀ k = 2, 3, . . . , n− 1.

In the convex optimization problem (17), constraint 1) is the
same as in the worst-case problem. As done for that problem,
an approximate feasible region can be obtained via sampling.
The problem can then be solved numerically to obtain the
optimal linear rebate function coefficients. Goodness of the
approximation is discussed briefly in the next section. Simu-
lation results are discussed in section VI.

IV. GOODNESS OF SAMPLED APPROXIMATION

In the previous section, we suggested a randomized proce-
dure to solve the convex optimization problem (14) that had
an infinite number of constraints. We now study the goodness
of the randomized relaxation. The optimization is over the
variables c2, c3, . . . , cn−1, L(n) which we compactly denote
as c. They take values in the constraint set C obtained via
intersections of constraints 1) - 3) over all θ ∈ ΘN .

Recall C1(θ) and C2(θ) as the sets of c that satisfy
constraint 1) and constraint 3), respectively. Let C12(θ) =
C1(θ) ∩ C2(θ). Let ψ be a probability measure on ΘN . Let
θ(1), θ(2), . . . , θ(m) be m random values obtained by sampling
independently and according to the measure ψ, and define

W = {θ(1), θ(2), . . . , θ(m)} ∪ {ek, k = 0, 1, . . . , n}.
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Let Ĉ be the (random) approximate constraint set obtained via
the intersections of constraints 1) - 3) over all θ ∈W , i.e.,

Ĉ =
∩
θ∈W

C12(θ).

The set W is random and so is the approximate constraint
set Ĉ. Clearly, the optimization of (14) over Ĉ is a linear
programming problem. Let V̂ be its value. For any c ∈ Ĉ,
there is a possibility that constraints are violated for some
θN ∈ Θ \W . Our first quantity of interest is the following
degree of tolerance: for any c in the approximate constraint
set Ĉ, the set of violating types has measure at most ε, i.e.,

sup
c∈Ĉ

ψ {θ : c /∈ C12(θ)} ≤ ε. (18)

As Ĉ itself is random, the condition (18) is a near-feasibility
random event. We can only ask that this random event occurs
with high probability, say at least 1 − δ. We then have the
following restatement of de Farias & van Roy’s [17, Th. 2.1]:

Theorem 2. For any δ ∈ (0, 1), ε ∈ (0, 1), and

m ≥ 4

ε

(
(n− 1) ln

12

ε
+ ln

2

δ

)
, (19)

the event (18) occurs with probability at least 1− δ.

This follows immediately from a result of Anthony & Biggs
[18, Cor. 8.4.2] and the fact that the Vapnik-Chervonenkis
(VC) dimension of the collection of sets{

{(a, b) : aT c+ b ≥ 0} : c ∈ Rn−1
}

is n− 1, a result due to Dudley [19].
Observe that no assumptions are made on the individual

valuation functions, and no use is made of the nature of
the constraints in 1) and 3). Theorem 2 thus states, in full
generality, the number of samples needed so that with high
confidence (1 − δ), a violation for a randomly sampled θ
occurs with small probability (ε). This violation may be
either constraint 1), i.e., the mechanism needs a subsidy from
outside the system, or constraint 3), the sampled θ has a larger
efficiency loss than the value of the approximate optimization
problem.

We next address the goodness of the approximate value.
This requires some assumptions on the valuation functions and
exploits the specific structure of the constraints.

For an arbitrary ν ∈ [0, 1], define

ΘN (ν) :=

{
θ ∈ ΘN :

n∑
i=2

|θσi | ≥ ν

}
∪ {0},

where σ is the permutation that orders θ in the decreasing
order. Define the worst-case efficiency loss, restricted over
ΘN (ν), to be

L(n; ν) = sup
θ∈ΘN (ν)\{0}

∑
i pi(θ)

σv(θ)
.

This is the same as (12), but with the maximum over the
restricted set ΘN (ν). Analogously consider modifications of
the min-max problem in (13) and the convex optimization

problem in (14), where θ ∈ ΘN (ν). Let C(ν) and V (ν) be the
constraint set and value of the modified optimization problem,
respectively. V (ν) is then corresponding min-max value for
the modification of (13).

Let θ be such that the second highest component is 0, i.e.,
θσ2 = θσ3 = · · · = θσn = 0. Clearly constraint 1) and 3) are
satisfied for such a θ. It follows as a consequence that

C =
∩
ν>0

C(ν),

and therefore V (ν) → V as ν → 0 because V (ν) and V
are minima of projections of C(ν) and C, respectively, on
the L(n) component direction. So V (ν) is close to V for
sufficiently small ν.

Consider now the random independent sampling of m points
via a measure ψ on ΘN (ν). Let Ĉ(ν) be the corresponding
constraint set for the linear programming problem, and let
V̂ (ν) be the corresponding value of the optimization prob-
lem. We next address the proximity of Ĉ(ν) and C(ν), and
similarly V̂ (ν) and V (ν). To this end, let us define d(c,Ω) as
the distance of c from a set Ω, i.e., d(c,Ω) = infa∈Ω ||c− a||.
Our interest will be in sets Ω that are closed, bounded, and
convex, and the infimum is attained at the projection of c onto
Ω. We now state our main result.

Theorem 3. For all n ≥ 1, N = {1, 2, . . . , n}, let the value
of the optimum allocation σv : ΘN → R be Lipschitz5 with
a Lipschitz constant K0(n). Let ψ be the probability measure
with uniform density on ΘN (ν). Then, there exists a constant
K1(n) such that, for any τ > 0, δ ∈ (0, 1), and any m
satisfying (19) with ε = K1(n)ν

nτn, the event

sup
c∈Ĉ(ν)

d(c, C(ν)) ≤ τ

occurs with probability at least 1− δ. Consequently,

Pr{|V (ν)− V̂ (ν)| ≤ τ} ≥ 1− δ. (20)

Theorem 3 says that if we (conveniently) restrict attention
to the min-max value outside a small region around the origin,
i.e., in ΘN (ν), then we can guarantee proximity of value of
the approximate problem V̂ (ν) to actual value V (ν), with high
probability. As the restriction parameter ν → 0, we need a
greater number of samples for the same confidence and degree
of tolerance.

Our method to prove the above result will exploit Theorem
2, and is relegated to the Appendix.

We must point out some limitations of our theory and some
methods to redress them. While one can make V (ν) close to
V (and therefore V̂ (ν) close to V with high probability) by
choosing a small enough ν, no results are available yet on
what ν should be to make V − V (ν) less than a given target,
say τ . The above theorem only claims proximity of the value
of the randomized procedure V̂ (ν) to the weaker V (ν), with
high probability, for a given ν.

Another drawback is that the number of samples needed for
fixed τ, ν, and δ grows exponentially in n. The growth of the

5Recall that a function g is Lipschitz over a domain if there exists a constant
K such that |g(x)− g(y)| ≤ K||x− y|| for all x and y in the domain. K
is the Lipschitz constant.
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constant K1(n) with n is also an issue. A heuristic argument
(see Chorppath [20, Sec. 3.1.1]) indicates that for large n,
there is a concentration of σv and pV CG when the underlying
measure ψ on ΘN is the probability measure with constant
density; in particular,

σv ≃ n

4

[
−2 log λ(n)− 1 + λ2(n)

]
, (21)

pV CG ≃ n(n− 1)/4
[
−2 log λ(n− 1) + λ2(n− 1)

+2 log λ(n)− λ2(n)
]
, (22)

with

λ(n) = 1 +
1−

√
2n+ 1

n
,

and both σv(θ) and pV CG(θ) tend to 1 as n → ∞. Observe
that the right-hand sides in (21) and (22) are independent of
θ. This concentration relaxes the problem to a simpler linear
programming problem, a fact that can be shown as in Guo &
Conitzer [6], and might alleviate the exponential increase in
the required number of samples. The exact tradeoff is beyond
the scope of this paper. Alternatively, one could get better
bounds on m that exploit the structure of the linear constraints
instead of the general bound via the VC-dimension result of
Dudley; this is another avenue for future study.

Despite the above drawbacks, Theorem 3 is a useful result
because it suggests a baseline number of samples needed for
V̂ (ν) to be close to V (ν), for an arbitrary ν and a desired
level of confidence.

A statement almost verbatim to Theorem 3 can be made for
the optimal-in-expectation problem, with the only difference
being a multiplicative factor to τ in (20). See remark at the
end of the proof of Theorem 3 in the appendix.

We end this section with an example family of valuation
functions vi(θi, ai) for which σv is Lipschitz.

Theorem 4. Let vi(θi, ai) = θiU(ai) where U is a strictly
concave and strictly increasing function on [0, 1] with U(0) =
0. Then σv is Lipschitz with a Lipschitz constant that depends
on the number of agents n and the function U .

Proof: Recall the definition of efficient surplus from (11)
and (1). Use the shorthand a and a′ for the optimal allocations
under profiles θ and θ′, respectively. Then

∑
i vi(ai, θ

′
i) ≤

σv(θ
′) because the latter is the value under the optimal

allocation for θ′, and so

σv(θ)− σv(θ
′) ≤

∑
i∈N

θiU(ai(θ))−
∑
i∈N

θ′iU(ai(θ))

=
∑
i∈N

(θi − θ′i)U(ai(θ))

≤ U(1)
∑
i∈N

|θi − θ′i|

= U(1)∥θ − θ′∥1.

Reversing the role of θ and θ′ and using the symmetry of
∥θ−θ′∥1, we have |σv(θ)−σv(θ′)| ≤ U(1)∥θ−θ′∥1. Finally,
Cauchy-Schwarz inequality gives ∥θ− θ′∥1 ≤

√
n∥θ− θ′∥, in

terms of Euclidean norm. This proves the Lipschitz property
with constant U(1)

√
n.

V. SCALAR STRATEGY, EFFICIENT AND ALMOST BUDGET
BALANCED MECHANISMS

We now consider the case when the valuations functions are
private information of the agents. Each agent reports a scalar
value that is used to choose a surrogate valuation function from
a single parameter family of valuation functions as in Johari
& Tsitsiklis [12]. As the true valuation functions are unknown
to the social planner, dominant strategy implementation is not
possible. Instead, an efficient Nash equilibrium implementa-
tion, that is almost budget balanced, can be achieved.

To be consistent with Johari & Tsitsiklis [12], we let A be a
compact and convex set. Let Ui(ai) be the valuation for agent
i when ai is allocated, where Ui : [0,∞) → R is concave,
strictly increasing, and differentiable on (0,∞). An efficient
allocation is a solution to the following problem:

max
a∈A

∑
i∈N

Ui(ai). (23)

Let the efficient allocation be av .
Each agent sends a one-dimensional bid θi to the social

planner. From the reported bids, the central planner constructs
a surrogate valuation function vsi (ai, θi), where vs(·, ·) is as
follows [12]: (i) for every θ > 0, vs(·, θ) is strictly concave,
strictly increasing, continuous, and differentiable in (0,∞), (ii)
for every γ ∈ (0,∞) and a ≥ 0, there exists a θ > 0 such that
(∂/∂a)vs(a, θ) = γ, where (∂/∂a)vs(a, θ) is the derivative
of vs(a, θ) with respect to a. The allocation and payment
are calculated according to VCG mechanism, but using the
surrogate valuation functions. These mechanisms are generally
referred to as scalar strategy VCG (SSVCG) mechanisms [12].
A special case is the VCG-Kelly mechanism introduced in
Yang & Hajek in [15] where vsi (ai, θi) = θiU i(ai) for agent
i, and the U i’s are strictly increasing, concave, and twice
differentiable over (0,∞). In our mechanism, we include a
rebate function as in Section III to obtain an almost budget
balanced mechanism.

Let us represent the optimal allocation using surrogate
valuation functions by

as = argmax
a∈A

∑
i∈N

vsi (ai, θi),

where the dependence of as on θ is understood and suppressed.
The payment of ith agent after rebate is

psi (v
s, as) =

∑
j ̸=i

vsj (a
s
−i, θj)−

∑
j ̸=i

vsj (a
s, θj)− ri(θ−i)

= hi(θ−i)−
∑
j ̸=i

vsj (a
s, θj)

where
as−i = arg max

a−i∈A−i

∑
j∈N,j ̸=i

vsj (aj , θj).

The actual utility obtained by agent i is

ui(θi, θ−i) = Ui(a
s
i )− psi (v

s, as)

= Ui(a
s
i ) +

∑
j ̸=i

vsj (a
s
j , θj)− hi(θ−i).
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Finally, the profile θNE is a Nash equilibrium if and only if

ui(θ
NE
i , θNE

−i ) ≥ ui(θi, θ
NE
−i ), ∀ θi, ∀ i ∈ N.

Johari & Tsitsiklis [12, Lem. 2] showed that, for any
SSVCG mechanism, the bid vector θ is a Nash equilibrium
if and only if the corresponding as, which implicitly depends
on θ, satisfies

as ∈ argmax
a∈A

Ui(ai) +
∑
j ̸=i

vsj (aj , θj) ∀ i ∈ N.

Indeed, this result holds even for our proposed mechanism
with rebates because even when the hi(·) includes rebates
it remains independent of the value reported by agent i.
Further, [12, Cor. 3] states the existence of an efficient Nash
equilibrium determined as follows. Agent i chooses θi such
that (∂/∂a)vsi (a

v
i , θi) = U ′

i(a
v
i ), i.e., each agent chooses

her bid so that the declared marginal utility equals the true
marginal utility. The resulting allocation satisfies as = av .
Therefore, the resulting θ is an efficient Nash equilibrium
point. Thus, by using the rebate functions proposed in our
paper, we will obtain an almost budget balanced and efficient
Nash equilibrium point.

VI. SIMULATION SETUP AND RESULTS

Worst-case efficiency loss of our proposed worst-case op-
timal mechanism is obtained by simulation for the valuation
function vi = θi log(1 + ai). We return to A being the set of
all allocation vectors that satisfy

∑
i
ai = 1.

The worst-case efficiency loss (L(n)) and coefficients
c2, c3, . . . , cn−1 are obtained by solving the approximate LP’s
numerically over the approximate feasible region obtained
using the ek profiles and m = 2836n randomly generated
θ samples6. For the optimal-in-expectation mechanism, the
feasibility region is obtained in an analogous fashion. Since θ
is uniformly distributed on ΘN and then subsequently ordered,
the ordered quantities satisfy

E[θi] =
n− i+ 1

n+ 1
, i = 1, 2, . . . , n,

which enables the calculation of the expected rebates in (17).
The worst-case optimal mechanism is compared with mean-

field approximation mechanism explained in Section IV, VCG
mechanism and optimal-in-expectation mechanism in Figure 2
for worst-case efficiency loss. (500,000 independently sampled
θ values were used to estimate the worst-case efficiency loss
for the optimal-in-expectation mechanism). As number of
agents increases, the worst-case efficiency loss reduces for the
worst-case optimal mechanism. On the other hand, the worst-
case efficiency loss converges to 1 for the VCG mechanism.
As expected, the optimal-in-expectation performs poorly in
the worst-case sense when compared with worst-case optimal
mechanism, especially for large number of agents. It can
be observed that with mean-field approximation the resulting
mechanism is not worst case optimal.

In Figure 3, the expected efficiency loss of the optimal-
in-expectation mechanism obtained by uniform sampling of θ

6Set ε = 0.01, δ = ε/6 in (19) to get m ≥ 2836n.
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Fig. 3. Expected efficiency loss of optimal-in-expectation, worst-case optimal
and VCG mechanisms

and mean-field approximation is compared with the worst-case
optimal and VCG mechanisms. (Again, 500,000 independently
sampled θ values were used to estimate E[σv(θ)] and thence
the expected-sense efficiency loss of the worst-case optimal
mechanism). Figure 3 shows that the optimal-in-expectation
mechanism obtained by uniform sampling of θ outperforms the
other three mechanisms in the expectation sense. The expected
efficiency loss of the optimal-in-expectation and worst-case
optimal mechanisms reduce as the number of agents increases.
On the other hand, the expected efficiency loss of the VCG
mechanism increases as the number of agents increase.

Figure 4 shows the mean surplus, averaged over 500,000
samples of θ, for the approximate versions of optimal-in-
expectation and worst-case optimal mechanisms. Note that in
both cases, the average surplus is positive. If the mechanism is
repeated several times, then, on the average, budget surpluses
more than make up for the subsidies needed when profiles
violate the feasibility constraint. Figure 5 shows three curves.
The solids represent the number of violations of the feasibility
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constraint for each (approximate) mechanism. The dashed
curve is the number of samples for which the efficiency loss
was lower than the computed approximate min-max value.
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VII. CONCLUSIONS

In this paper we proposed mechanisms for allocation of a
single divisible resource to a number of agents when the agents
report only scalar values. We proposed a mechanism within the
Groves class that is almost budget balanced as it minimizes the
worst-case efficiency loss. The proposed mechanism is feasible
and has voluntary participation and anonymity properties. The
mechanism is applicable to allocation of divisible or indivisible
goods and simplifies to the mechanism proposed by Moulin [5]
and Guo & Conitzer [6] for the indivisible goods case. In these
special cases, constraint sampling randomization is not needed.
A mechanism that is optimal-in-expectation is also proposed
by assuming that distribution of the values are known. The
resulting convex optimization problems are numerically solved
to obtain the optimal coefficients of the linear rebate function.
This is done over an approximate feasible region via sampling

of constraints. We provided a lower bound on the number
of samples for near-feasibility, and showed under a Lipschitz
assumption for the optimal valuation function that the value of
the approximate LP is close to optimum, with high probability.

The proposed approximations of the worst-case optimal
and optimal-in-expectation mechanisms are compared with
each other and with the VCG mechanism, in both worst-case
and optimal-in-expectation senses. A significant reduction in
efficiency loss is obtained for both linear rebate mechanisms
when compared to the VCG mechanism. As number of agents
increases the efficiency loss tends to zero. The question
of existence or otherwise of nonlinear rebate functions that
achieve better budget balance than linear rebates is open.

We also discussed extensions of our proposed mechanisms
to a case where the valuation functions are private information
to agents. The agents report only scalar values and surrogate
valuation functions are constructed from them (Johari &
Tsitsiklis in [12]). A similar optimization will yield almost
budget balanced and efficient Nash equilibrium implementa-
tion for this setting. Mechanisms outside Groves class that are
more competitive but inefficient were proposed in [21]. These
involve either partial wastage of resources, or partitioning of
agents and goods into two parts, where money collected from
one set of the partition is returned to the other as rebates. Their
usefulness in the divisible goods setting appears to be limited,
and is discussed in thesis of Chorppath [20, Ch.6].

APPENDIX A
PROOF OF THEOREM 3

The main steps of the proof are as follows. Note that ψ
is the probability measure with uniform density on ΘN (ν).
Consider an arbitrary c ∈ Ĉ(ν) \ C(ν). Let its projection
onto C(ν) be c∗. On account of the convexity of C(ν), c∗

lies on its boundary. But all the constraints in 2) are met by
all elements of C(ν) as well as Ĉ(ν). It then follows that
there is a θ∗ ∈ ΘN (ν) and a constraint, either 1) or 3), such
that the associated hyperplane separates c from C(ν), and is
supported at c∗. In other words, for this θ∗, we have that c
violates a constraint (either 1) or 3)) with strict inequality
(in the appropriate direction). The Lipschitz property of σv
implies a similar property for pV CG, and enables us to identify
a ball around θ∗ for all of whose elements c continues to
violate the constraint. Thanks to the Lipschitz properties and
the fact that θ∗ ∈ ΘN (ν), the radius of this constraint violating
ball is proportional to the distance of c from C(ν). Since the
volume of this ball must be small due to Theorem 2, it must be
the case that the distance between c and C(ν) is small. Since
c was arbitrary, and the objective function is a continuous
function (in fact linear, because it is merely the projection of
the vector onto the L(n) direction), V̂ (ν) and V must be close
to each other. We now fill in the details.

Lemma 1. If σv is Lipschitz for each n with a constant that
depends on n, then so is pV CG.

Proof: Let the Lipschitz constant for σv be K(n) when
there are n agents. For two profiles θ and θ′, applying the
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definition of pV CG in (5), we get

|pV CG(θ)− pV CG(θ
′)|

≤
∑
i∈N

|σv(θ−i)− σv(θ
′
−i)|+ (n− 1)|σv(θ)− σv(θ

′)|

≤ K(n− 1)
∑
i∈N

||θ−i − θ′−i||+ (n− 1)K(n)||θ − θ′||

≤ (nK(n− 1) + (n− 1)K(n))||θ − θ′||,

where the last inequality follows because ||θ−i−θ
′
−i|| ≤ ||θ−

θ′|| for all i.

Lemma 2. The sets C,C(ν), Ĉ(ν) are all bounded.

Proof: We first argue that we may restrict attention to
L(n) ∈ [0, 1]. Indeed, from constraint 3), we have

L(n)σv(θ) ≥ pV CG(θ)−
n−1∑
i=1

ci(iθi+1 + (n− 1)θi) ≥ 0,

where the last inequality is merely constraint 1). Since σv is
nonnegative, we have L(n) ≥ 0. To see L(n) ≤ 1, observe that
the first inequality in (8) implies that constraint 3) holds with
L(n) = 1 for any c ∈ C (resp., C(ν) and Ĉ(ν)). The vector
at which the minimum is attained must then have L(n) ≤ 1,
because the objective is to minimize this component.

For the ck variables, k = 2, 3, . . . , n − 1, observe that
pV CG(ek) are nonnegative, and bounded by a constant, say
B(n), that depends only on n and the nature of the functions
vi. With θ = ek, constraint 1) becomes

n

k−1∑
i=2

ci + (n− k)ck ≤ pV CG(ek), k = 2, 3, . . . , n− 1,

n
n−1∑
i=2

ci + ncn ≤ pV CG(en), k = n,

which together with constraint 2) and the fact that pV CG(ek) is
bounded implies that ck ≤ B(n)/(n−k) for k = 2, 3, . . . , n−
1 and cn ≤ B(n)/n. To prove a lower bound on each variable,
note that constraint 2) gives c2 ≥ 0 and

ck ≥ −
k−1∑
j=2

cj ≥ −
k−1∑
j=2

B(n)/(n− j) ≥ −B(n) log n,

for k = 3, 4, . . . , n− 1.
We now return to the proof of the Theorem 3. Recall that

c∗ is the projection of c onto C(ν) and θ∗ is the parameter for
which either constraint 1) or 3) is violated for c, satisfied for
all elements of C(ν), and satisfied with equality for c∗. We
shall show our arguments assuming constraint 1) is violated.
A similar argument holds if constraint 3) is violated.

The supporting hyperplane at c∗ separating C(ν) and c is
therefore

n−1∑
i=2

xi(iθ
∗
i+1 + (n− i)θ∗i ) = pV CG(θ

∗), (24)

and we have the violation for c given by
n−1∑
i=2

ci(iθ
∗
i+1 + (n− i)θ∗i ) > pV CG(θ

∗). (25)

From elementary analytical geometry, the distance between c
and the plane (24), and therefore c∗, is

τ(c) = G(θ∗)−1

(
n−1∑
i=2

ci(iθ
∗
i+1 + (n− i)θ∗i )− pV CG(θ

∗)

)
,

(26)
where

G(θ∗) =

[
n−1∑
i=2

(iθ∗i+1 + (n− i)θ∗i )
2

]1/2
is the norm of the coefficients for the equation in the plane.

We now look for a ball around θ∗ such that constraint 1)
continues to be violated for this c for all ξ in the ball. Consider
the plane of ξ ∈ ΘN (ν) given by

n−1∑
i=2

ci(iξi+1 + (n− 1)ξi) = pV CG(θ
∗).

This does not contain θ∗ because of (25). Elementary analyti-
cal geometry once again tells us that the distance between θ∗

and the above plane is

τ ′(c) = H(c)−1

[
n−1∑
i=2

ci(iθ
∗
i+1 + (n− i)θ∗i )− pV CG(θ

∗)

]
,

(27)
where

H(c) =

[
c22(n− 2)2 +

n−1∑
i=3

((i− 1)ci−1 + (n− i)ci)
2

+c2n−1(n− 1)2
]1/2

, (28)

is the norm of the coefficients of the plane equation.
Let pV CG be Lipschitz with constant K(n). Consider the

open ball around θ∗ of radius r given by

r = τ ′(c)
H(c)

K(n) +H(c)
= τ(c)

G(θ∗)

K(n) +H(c)
. (29)

Clearly r < τ ′(c), and so the entire ball remains on one side
of the ξ-plane. Further, any point ξ in this open ball has a
distance strictly greater than τ ′(c)− r from the ξ-plane, i.e.,

H(c)−1

[
n−1∑
i=2

ci(iξi+1 + (n− i)ξi)− pV CG(θ
∗)

]
> τ ′(c)−r.

(30)
It follows that, for all ξ in this open ball,

n−1∑
i=2

ci(iξi+1 + (n− i)ξi)− pV CG(ξ)

=
n−1∑
i=2

ci(iξi+1 + (n− i)ξi)− pV CG(θ
∗)

+ pV CG(θ
∗)− pV CG(ξ)

> H(c)(τ ′(c)− r)−K(n)||ξ − θ∗||
≥ H(c)(τ ′(c)− r)−K(n)r

= 0,

where the second (strict) inequality comes from the Lipschitz
property of pV CG and (30), the following inequality comes
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from the fact that ||ξ − θ∗|| ≤ r, and the last equality follows
via substitution of (29). Consequently, all ξ in the open ball
violate constraint 1).

The choice of r depends on c through τ(c) and through
H(c) and G(θ∗). To make the choice of the radius dependent
of c only through τ(c), observe that H(c) ≤ B(n)(n −
1)3/2 log n using Lemma 2. Next, for every θ ∈ ΘN (ν),
Cauchy-Schwarz inequality and nonnegativity of the θi’s imply

G(θ) ≥ 1

(n− 2)1/2

n−1∑
i=2

(iθ∗i+1 + (n− 1)θ∗i ) (31)

= (n− 2)1/2
n∑

i=2

θ∗i (32)

≥ (n− 2)1/2ν. (33)

Thus any ξ in the smaller ball of radius r0 given by (cf. (29))

r0 = τ(c)
(n− 2)1/2ν

K(n) +B(n)(n− 1)3/2 logn
= K2(n)ντ(c)

violates constraint 1). Note that the dependence on c is
now only through its distance from C(ν). This ball has
measure K3(n)ν

nτ(c)n for some constant K3(n). The in-
tersection of this ball with ΘN (ν) has measure at least
K3(n)ν

nτ(c)n/2n = K1(n)ν
nτ(c)n, where the division by

2n corresponds to the worst case measure when θ∗ is an
extreme point of ΘN (ν) where the intersection of the ball
with ΘN (ν) may yield in the worst case only one orthant.

From Theorem 2 due to de Farias & van Roy [17], for any
c ∈ Ĉ(ν), for any δ ∈ (0, 1), ε ∈ (0, 1), and any number of
samples m satisfying (19), the event

K1(n)ν
nτ(c)n ≤ ε

occurs with probability at least 1 − δ. Set τ so that ε =
K1(n)ν

nτn, take the supremum over c ∈ Ĉ(ν), to get that
the event

sup
c∈Ĉ(ν)

d(c, C(ν)) = sup
c∈Ĉ(ν)

τ(c) ≤ τ (34)

occurs with probability at least 1− δ.
If the violating constraint was constraint 3), a similar

argument holds with a Lipschitz constant K(n) replaced by
the Lipschitz constant for the function σv+pV CG. This proves
the first statement.

Finally, since the objective function of the argument c is
merely L(n), it follows that event (34) implies the event
|V (ν) − V̂ (ν)| ≤ τ . To see this, let ĉopt and copt attain the
mimima for problems with constraint sets Ĉ(ν) and C(ν),
respectively, with objective function components L̂opt(n) and
Lopt(n), respectively. Let c∗ be the projection of ĉopt onto
C(ν) with objective function component L∗(n). Clearly

|L̂opt(n)− L∗(n)| ≤ ||ĉopt − c∗|| ≤ τ,

and therefore

V̂ (ν) = L̂opt(n) ≥ L∗(n)− τ ≥ Lopt(n)− τ = V (ν)− τ.

or V (ν) − V̂ (ν) ≤ τ . Also, V (ν) ≥ V̂ (ν). Thus, the event
|V (ν)− V̂ (ν)| ≤ τ occurs with probability at least 1−δ. This
completes the proof of Theorem 3. �

Remark: For the analogous statement for the optimal-in-
expectation problem, only constraint 1) is of interest. Further-
more, the objective function is aT c for some a that depends on
the expectations of ordered θi; see (23). The error in the value
V (ν) at the optimum point ĉ and the value at its projection
c∗ is upper bounded via Cauchy-Schwarz inequality as

|(ĉ− c∗)Ta| ≤ d(ĉ, C(ν))||a||.

So a statement analogous to Theorem 3 holds with a multipli-
cation factor for τ given by ||a||.
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