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Abstract A solution to the power flow problem is imper-

ative for many power system applications and several

iterative approaches are employed to achieve this objec-

tive. However, the chance of finding a solution is depen-

dent on the choice of the initial point because of the non-

convex feasibility region of this problem. In this paper, a

non-iterative approach that leverages a convexified relaxed

power flow problem is employed to verify the existence of

a feasible solution. To ensure the scalability of the pro-

posed convex relaxation, the problem is formulated as a

sparse semi-definite programming problem. The variables

associated with each maximal clique within the network

form several positive semidefinite matrices. Perturbation

and network reconfiguration schemes are employed to

improve the tightness of the proposed convex relaxation in

order to validate the existence of a feasible solution for the

original non-convex problem. Multiple case studies

including an ill-conditioned power flow problem are

examined to show the effectiveness of the proposed

approach to find a feasible solution.

Keywords Convex relaxation, Ill-conditioned power flow,

Power flow, Network reconfiguration

1 Introduction

Power flow is the underlining problem for power system

analysis. Integration of intermittent renewable energy

resources and possible network contingencies further

highlight the merit of providing an efficient framework to

solve this nonlinear problem. The power flow problem is

formulated as a set of nonlinear equations. Several iterative

approaches including Gauss–Seidel (GS) and Newton–

Raphson (NR) were adopted to solve this problem. How-

ever, the convergence and stability of these approaches

could not be guaranteed. NR is the most popular approach

to solve this system of equations as it provides a better

convergence rate compared to other techniques. Employing

NR to solve the power flow problem leads to the following

scenarios: � a unique solution exists that can be found

regardless of the initial point; ` multiple solutions exist

and one of the solutions is returned based on the initial

point; ´ no solution exists; ˆ unique or multiple solutions

exist while no solution can be procured because of

improper initial point that renders a singular Jacobean

matrix in the iterative process. The latter scenario presents

an ill-conditioned power flow problem.
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Several research works were focused to solve the power

flow problem. Lower-upper (LU) factorization is a direct

approach to solve NR that is computationally expensive

and impractical for large-scale problems. Krylov subspace

method [1] is a nonstationary iterative method that con-

verges in at most NB iterations, where NB is the number of

buses in the network. The Newton-generalized minimal

residual (GMRES) method is one of the Krylov methods

utilized to solve the power flow problem. The adaptive

preconditioning schemes to update the preconditioners for

the linearized equations of the next iteration and a flexible

inner-outer preconditioned GMRES were proposed in [2]

and [3], respectively, to improve the convergence of the

Krylov methods. Another approach is to utilize incomplete

LU factorization as a preconditioner for the Krylov–New-

ton methods as presented in [4]. The continuous Newton’s

method proposed in [5] formulates the power flow problem

as a set of ordinary differential equations.

Finding a proper preconditioning for the Krylov meth-

ods to procure a feasible solution for the power flow

problem is challenging. Although many research works

addressed the feasibility of the power flow problem [6–8],

the proposed approaches for finding a feasible solution or

providing a certificate for the infeasibility of the problem

are not yet effective for ill-conditioned power flow prob-

lems. Iterative approaches are incapable of handling the ill-

conditioned power flow problems [5, 9].

The analytical approaches (e.g. convex relaxation [10])

can address the singularity issue with the ill-conditioned

power flow problems. However, improving the scalability

of these approaches is a challenging task [11]. The solution

rendered by leveraging the semi-definite programming

(SDP) relaxation may not be a tight one that is feasible for

the non-convex power flow problem. Therefore, more

cutting planes may be needed to obtain a feasible solution

with reasonable computational time. A high order of the

Lasserre hierarchy could be used to find a feasible solution

for the relaxed power flow problem [12]. However, the

large computation burden of leveraging higher orders of

the Lasserre hierarchy restricts the application of this

approach for small-scale power networks. Nevertheless,

exploiting the sparsity in power flow equations facilitates

large-scale application of the SDP relaxation i.e. first order

of Lasserre hierarchy [13].

In this paper, an efficient convex relaxation approach is

presented to find a feasible solution for the power flow

problem. The convex relaxation is tightened using appro-

priate perturbation functions along with a network recon-

figuration scheme. The solution rendered by the tight

convex relaxation problem is feasible for the original non-

convex problem. The contributions of this paper are as

follows:

1) A convex relaxation formulation for the power flow

problem is presented, where a set of lifting variables is

defined for the nonlinear terms in the power flow

formulation. The introduced lifting variables are

utilized in the lowest order of moment relaxation to

find a solution to a relaxed power flow problem.

2) By exploiting the sparsity in the power network, the

size of moment relaxation matrices employed to

formulate the relaxed problem is substantially reduced.

This reduction in the size of the problem facilitates the

scalability of the presented convex relaxation

approach.

3) A perturbation scheme is presented to improve the

tightness of the presented relaxed problem. Once the

original power flow problem is formulated as an

optimization problem, the objective is zero. The

presented relaxation for this optimization problem

might not be tight with the lowest order of the moment

relaxation. Presenting a perturbation function to

tighten to relaxation does not negatively impact the

procured solution to the relaxed problem as the

objective of the relaxed optimization problem is zero.

4) A network reconfiguration scheme is implemented to

improve the tightness of the presented relaxation. The

network reconfiguration eliminates the zero-injection

buses within the network. The procured voltages with

the original topology are the same as those with the

reconfigured topology. It is shown that removing the

zero-injection buses along with perturbation improves

the tightness of the presented sparse convex relaxation

for the power flow problem.

5) A specific tightness measure is introduced to evaluate

the effectiveness of the presented solution method to

obtain a feasible solution to the original power flow

problem. Moreover, a recovery process is presented to

procure the solution to the original power flow

problem from the solution provided by the relaxed

problem.

A set of work addressed the optimal power flow problem

in the literature [14–19], using SDP and SOCP relaxations,

however, the objective of optimal power flow problem is

different from power flow feasibility problem. The focus of

the optimal power flow problem is to find the dispatch of

generation units with minimum cost. Employing pertur-

bation for the optimal power flow problem will undermine

the optimality of the procured solution, while it is not an

issue for the power flow problem.

This paper is organized as follows: Section 2 presents

the power flow problem formulation. Section 3 presents a

solution methodology to evaluate the existence of a feasi-

ble solution and find a solution to the power flow problem.

Section 4 presents the numerical results to show the

1400 Saeed D. MANSHADI et al.

123



effectiveness of the proposed approach, and the conclu-

sions are presented in Section 5.

2 Problem formulation

The problem formulation for the power flow problem is

presented in (1). If the power network has NB buses, there

are 2NB known parameters and 2NB unknown variables in

the power flow equations. The magnitude and angle of the

voltage for the slack/reference bus, the voltage magnitude

and real power injection at voltage-controlled buses, and

real and reactive power injections at load buses are the

known parameters for the power flow problem. The

unknown variables are the real and reactive power injec-

tions for the slack buses, voltage angle and reactive power

injection for the voltage-controlled buses, and the voltage

magnitude and voltage angle for the load buses. Real and

reactive power injections are not usually enforced for the

slack bus as they supposed to compensate for the real and

reactive power mismatches in the network. The slack bus is

considered as a reference bus to calculate the voltage angle

for the load and voltage-controlled buses. The voltage for

the slack/reference bus is enforced as shown in (1). The

real power balance for the voltage-controlled and load

buses is given in (2). The reactive power balance for the

load buses is shown in (3). The voltage magnitudes for the

voltage-controlled buses are enforced by (4). The reactive

power generation limits for the generation units connected

to voltage-controlled buses are shown in (5). If the reactive

power generation of a unit reaches its limits, the reactive

power generation is fixed to the limit and the corresponding

bus becomes a load bus.

Vd
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where Vd
i and V

q
i are the real and imaginary parts of the

voltage phasor at bus i, respectively; Vd
ref and V

q
ref are the

real and imaginary parts of the voltage phasor at reference

bus, respectively; V 0
i

�

�

�

� is the voltage magnitude at voltage-

controlled bus i; PG0
i is the real power generation at bus i;

PD
i is the real power demand at bus i; Bij is the element of

the susceptance matrix; Gij is the element of the conduc-

tance matrix; PQ is the set of load buses; PV is the set of

voltage-controlled buses; QD
i is the reactive power demand

at bus i; QG
i;min and QG

i;max are the minimum and maximum

reactive power generations at bus i.

Solving (1)–(5) could be challenging under certain cir-

cumstances as discussed earlier and iterative approaches

may fail to find a feasible solution. Thus, a non-iterative

solution methodology is presented in the next section

which tried to address this challenge.

3 Solution methodology

To find the solution for (1)–(5), it is reformulated as a

convex optimization problem that could render a feasible

solution for the power flow problem in polynomial time.

Particularly, a sparse SDP relaxation for the problem pre-

sented in (1)–(5) is formulated with a suggested perturba-

tion function. A topology reconfiguration scheme is

proposed to improve the tightness of the presented convex

relaxation. The details of the proposed solution method-

ology are presented in the following subsections.

3.1 Convex relaxation

A promising approach for solving polynomial opti-

mization problems is the Lasserre hierarchy of moment

relaxation, where SDP relaxation represents the first order

of relaxation in this hierarchy [12]. Theoretically, with the

increase in the order of the relaxation to infinity, the

relaxation becomes tighter and the procured solution is

feasible for the original polynomial optimization problem.

However, the large computation burden of introducing

higher orders of moment relaxation makes this approach

impractical for large-scale applications. The computation

complexity of first order of moment relaxation (i.e. SDP

relaxation) is O(n3), where n is the number of monomials

which is twice as the number of buses for the relaxed

power flow problem. Exploiting the network sparsity mit-

igates the computation burden. Several sparse moment

matrices associated with each maximal clique are defined.

A clique, by definition, is a set of nodes within a graph that

are all adjacent to each other. The maximal clique is a

clique that its set of nodes is not a subset of any other
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clique. Here, the problem is reformulated as a first-order

moment relaxation problem (SDP problem). The nonlinear

terms in (1)–(5) are represented by respective lifting vari-

ables in the SDP relaxation matrix as formulated for the

relaxed problem in (6)–(19). If all sparse SDP relaxation

matrices are near-rank-1, the presented relaxation in (6)–

(19) is tight and a feasible solution for the power flow

problem in (1)–(5) is procured.

min
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where PG
i;min and P

G
i;max are the minimum and maximum real

power generations at bus i; QG0
i is the reactive power

generation at bus i; S is the set of slack/reference buses;

Vi;min and Vi;max are the minimum and maximum voltage

magnitudes at load bus i; c is the index for each maximal

clique within the network graph; |c| is the number of buses

within clique c; u
Q
i;max is the auxiliary binary variable, 1 if

the reactive power generation at bus i reaches its maximum

value, otherwise 0; u
Q
i;min is the auxiliary binary variable, 1

if the reactive power generation at bus i reaches its mini-

mum value, otherwise 0; e is an arbitrary small constant.

The objective of the perturbed convex relaxation is

given in (6), where the lifting terms associated with the

square of real and imaginary parts of voltage on each bus is

employed. The choice of perturbation plays an important

role in procuring a near-rank-1 solution. An SDP relaxation

for the rank minimization problem is presented in [20],

which may not render a feasible solution for the power flow

problem. The choice of the perturbation is not unique;

however, various functions may lead to various near-rank-1

solutions [21]. This choice depends on the system operator

preferences to obtain a particular solution among multiple

solutions that may exist for the power flow problem. The
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system operator does not need to know about the superi-

ority of one of the perturbations over another. However,

they might have various preferences and technical con-

siderations to choose a perturbation function. Here, the

perturbation matrix is employed in the objective function to

determine a feasible solution in which the voltage magni-

tudes on the buses are close to 1 p.u.. This choice can be

the last known voltage of the system, a desired voltage

profile, 1 p.u. voltage for all buses, etc. The nonlinear

terms in (1)–(5) are presented by their associated lifting

variables in (2)–(19), and the SDP matrices associated with

each maximal clique given in (19) contain the lifting

variables. For example, V
q
i V

d
j is a nonlinear term in (1)–(5)

which is replaced by a lifting variable cVq

i
Vd
j
as defined in

the semi-definite matrix constraint (19).

The voltage for the slack/reference bus is enforced by

(7). Although, the real power balance for the slack bus is

ignored in (1)–(5), enforcing the generation capacity limits

for the slack bus will ensure the feasibility of the solution

procured by solving the relaxed problem. Enforcing these

limits will avoid procuring a solution that is impractical.

The power flow problem demonstrates the state of the

system, where slack bus cannot provide real and reactive

power beyond its generation capacity limits. Thus, the real

and reactive power generation capacities of the unit con-

nected to the slack bus is enforced by (8) and (9), respec-

tively. The real power balance for the voltage-controlled

and load buses is presented in (10). The reactive power

balance for the load buses is shown in (11). The voltage

limits for load buses are not usually considered for the

power flow problem. However, the power flow problem

might have multiple solutions, where some of them are low

voltage solution vulnerable to voltage collapse [22]. Thus,

to ensure system security and the technical feasibility of the

procured solution, the voltage limits for the load buses is

presented in (12). For the voltage-controlled buses, the

voltage magnitude is enforced by (13) and (14). Once the

reactive power of the generation units connected to a

voltage-controlled bus reaches its limits, the voltage-con-

trolled bus will transform into a load bus with a fixed

reactive power and unknown voltage magnitude. This

condition is captured by two auxiliary binary variables for

each voltage-controlled bus to check if any of the upper

and lower limits for the reactive power generation of the

generation units are reached. The reactive power genera-

tion of the units connected to voltage-controlled buses is

enforced by (15)–(18). Here once the reactive power gen-

eration reaches the upper or lower limits, the auxiliary

binary variable becomes 1.

Considering the auxiliary binary variable for voltage-

controlled buses, the convex relaxation problem is formu-

lated as a mixed-integer semi-definite programming

(MISDP) problem. The solver developed for solving the

MISDP problem is not very efficient for solving large-scale

problems. There are two possible separate sets of actions to

address this challenge. The first way is to utilize a branch

and bound approach similar to those adopted in mixed-

integer linear programming and mixed-integer quadratic

programming problems [23]. To solve the MISDP problem,

a branch and bound algorithm can be employed. The sub-

problem in each node of the branch and bound algorithm is

an SDP problem with sparse SDP relaxation matrices.

Although employing the branch and bound algorithm is

promising for small to medium size networks, its perfor-

mance will be deteriorated with the increase in the number

of voltage-controlled buses in the network. The alternative

technique to address this challenge is to relax the binary

variable, u, as a continuous variable, ur, as given in (20).

Then enforce a non-convex constraint to ensure the con-

tinuous variable takes values 0 and 1 as given in (21).

Then, employing a convex relaxation approach to con-

vexify the non-convex feasibility region. To tighten such

relaxation regularization linearization technique (RLT) and

valid constraints [24] are leveraged. As the convex relax-

ation problem formulated in the sparse form, relaxing the

binary variables would be a better choice for large-scale

applications.

0� ur � 1 ð20Þ

urð Þ2¼ ur ð21Þ

3.2 Tightness measure

The solution procured from the problem presented in

(6)–(19) is feasible for the original power flow problem

when the convex relaxation is tight, and the rank of all SDP

relaxation matrices is near one. The rank of a matrix is

equal to the number of its non-zero eigenvalues. The rank

of a matrix is exactly one when it has only one non-zero

eigenvalue. The measure for the tightness of the solution

procured from (6)–(19) is the ratio of two largest eigen-

values of the procured SPD relaxation matrices as shown in

(22), where TRc is the tightness measure for each clique c

and kccj j is the eigenvalue of the SDP matrix associated with

maximal clique c.

TRc ¼ lg
kccj j

kccj j�1

 !

ð22Þ

A large ratio in (22) indicates that the second eigenvalue

is very small compared to the first eigenvalue and can be

neglected. Thus, if the ratio is a large number, the rank of

the SDP matrix is near-one and the relaxation is tight.

Alternatively, the gap between the derived solution and the
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original solution can be procured using the reciprocal of the

presented tightness measure.

3.3 Recovering solution to original power flow

problem

To recover the solution to the original power flow

problem, the matrix of lifting variables procured as a

solution to the relaxed problem is utilized. The voltages for

the original problem can be procured using the Cholesky

decomposition of the sparse matrices of lifting variables

[25]. The vector of real and imaginary parts of voltages

within a clique is procured by (23). If the rank of the sparse

SDP matrix is near one, the largest eigenvalue of each

sparse matrix will dominate the other eigenvalues. Thus, to

recover the solution to the original problem within a

maximal clique, the dominant eigenvalue is multiplied by

the associated eigenvectors. The procured vector is the

vector of voltages for the maximal clique which is the

solution to the original power flow problem in (1)–(5).

1;Vd
i ; . . .;Vd

cj j;V
q
i ; . . .;V

q

cj j

h iT

� 1;Vd
i ; . . .;Vd

cj j;V
q
i ; . . .;V

q

cj j

h i

¼ qccj jk
c
cj j qccj j

� �T
ð23Þ

where qc
cj j is the eigenvector of the SDP matrix associated

with maximal clique c.

3.4 Network reconfiguration

Formulating the convex relaxation for the power flow

problem in sparse form along with the proposed perturba-

tion would improve the tightness of the proposed relaxation

to find a feasible solution. However, to further improve the

tightness, a network reconfiguration is proposed to avoid

employing the higher order moment relaxation. A number

of transshipment buses exist in the power network to

facilitate the connection between the generation and load

buses while they have zero power injection. In many

occasions, the outcome of the relaxed problem is not near-

rank-1 if the maximal cliques have load buses with zero

real and reactive power injections. The reason is that the

zero injection buses increase the degree of freedom for the

set of power flow equations by introducing (24) and (25).

This leads to a solution with a rank higher than one for the

SDP matrix corresponding to the maximal clique contain-

ing these buses.

0 ¼
X

NB

j¼1

Gij cVd
i
Vd
j
þ cVq

i
V
q

j

� �

� Bij cVd
i
V
q

j
� cVq

i
Vd
j

� �h i

ð24Þ

0 ¼
X

NB

j¼1

�Bij cVd
i
Vd
j
þ cVq

i
V
q

j

� �

� Gij cVd
i
V
q

j
� cVq

i
Vd
j

� �h i

ð25Þ

To tackle this challenge, a network reconfiguration is

proposed to eliminate the load buses with zero injection

from the network. The procured topology is equivalent to

the original network topology.

The following cases in which the degree of the load bus

with zero power injection in the graph associated with the

power network is equal to 1, 2, and 3 are considered. If the

degree of the zero-injection load bus j is 1, as shown in

Fig. 1, the bus can be removed from the network. The flow

of the line connected to this bus is zero, and the voltage of

this bus is equal to the bus connected to it. If the set of

zero-injection buses with connectivity degree of 1 is X1

and �k k0 indicates the number of nonzero elements, the

voltage of the zero-injection bus can be further recovered

as a function of the adjacent bus voltage using (26) and

(27), where cVd
i
and cVq

i
are procured from the solution of

the reconfigured network.

Gij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Bij cVd
i
V
q
j � cVq

i
Vd
j

� �

¼ 0 ð26Þ

�Bij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Gij cVd
i
V
q
j � cVq

i
Vd
j

� �

¼ 0 ð27Þ

where j 2 X1; Gij 6¼ 0; Bij 6¼ 0; Gij

	

	

	

	

0
¼ Bij

	

	

	

	

0
¼ 1.

If the degree of the zero-injection load bus j is 2, as

shown in Fig. 2a, the load bus with zero injection can be

removed from the network while the two lines connected to

this bus will merge into a single line in the reconfigured

topology, as shown in Fig. 2b. Here, impedance zik= zij? zjk
and the Y bus of the configured network is further adjusted.

The voltage of this bus can be further recovered as a func-

tion of the adjacent bus voltages using (28) and (29), where

X2 is the set of zero-injection load buses with connectivity

degree of 2. Here, two unknowns i.e. Vd
j and V

q
j , could be

found once cVd
i
and cVq

i
are procured from the power flow

solution of the reconfigured network.
X

i

Gij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Bij cVd
i
V
q
j � cVq

i
Vd
j

� �h i

¼ 0

ð28Þ

Power 

network

ji

Fig. 1 Zero-injection load bus with degree 1
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X

i

�Bij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Gij cVd
i
V
q
j � cVq

i
Vd
j

� �h i

¼ 0

ð29Þ

where j 2 X2; Gij 6¼ 0; Bij 6¼ 0; Gij

	

	

	

	

0
¼ Bij

	

	

	

	

0
¼ 2.

If the degree of the zero-injection load bus j is 3, as

shown in Fig. 3a, the load bus with zero injection can be

removed from the network by changing the network

topology to its equivalent shown in Fig. 3b. The branch

impedances are procured using Y–4 conversion shown in

(30) [26] and Y bus of the reconfigured network is con-

structed accordingly.

Zim ¼ ZijZjmðZij þ Zjk þ ZjmÞ
�1

Zik ¼ ZijZjkðZij þ Zjk þ ZjmÞ
�1

Zkm ¼ ZkjZjmðZij þ Zjk þ ZjmÞ
�1

8

<

:

ð30Þ

The voltage of the removed buses can be recovered as a

function of the adjacent bus voltages using the (31) and

(32), where X3 is the set of zero-injection load buses with

connectivity degree of 3. Here, two unknowns, i.e. Vd
j and

V
q
j , could be found once cVd

i
and cVq

i
are procured from the

solution of the reconfigured network.
X

i

Gij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Bij cVd
i
V
q
j � cVq

i
Vd
j

� �h i

¼ 0

ð31Þ
X

i

�Bij cVd
i
Vd
j þ cVq

i
V
q
j

� �

þ Gij cVd
i
V
q
j � cVq

i
Vd
j

� �h i

¼ 0

ð32Þ

where j 2 X3; Gij 6¼ 0; Bij 6¼ 0; Gij

	

	

	

	

0
¼ Bij

	

	

	

	

0
¼ 3.

4 Numerical results

To illustrate the effectiveness of the proposed method-

ology, several case studies are presented. The presented

problem formulation is solved using MOSEK [27]. The

tightness of the solutions to the power flow problem is

compared in the following cases: � Case 1, relaxation

without perturbation and network reconfiguration; ` Case

2, relaxation with perturbation but without network

reconfiguration; ´ Case 3, relaxation without perturbation

but with network reconfiguration; ˆ Case 4, relaxation

with perturbation and network reconfiguration.

The comparison among the results for Case 2 and Case 3

with those for Case 4 presents the impact of perturbation

and network reconfiguration individually.

4.1 Ill-conditioned 13-bus system

The power flow for this network is addressed in [9] as an

ill-conditioned problem. An inappropriate choice of initial

point leads to the divergence of power flow problem. The

numbers of maximal cliques are 13, 13, 11, and 11 for Case

1, Case 2, Case 3, and Case 4, respectively. The maximal

cliques within the network before and after network

reconfiguration are respectively shown in Figs. 4 and 5

with dotted lines. Here, buses 2, 3, 4, 7, and 13 are the zero-

injection buses that are removed in the reconfigured

topology.

Power 

network

Power 

network

ji k

(a)

Power 

network

Power 

network

i

Zik

k

(b)

Fig. 2 Zero-injection load bus with degree 2 and its reconfigured

network

(a)

(b)

Power 

network

Power 

network

ji k

Power 

network

m

Zjm

Zij Zik

Power 

network

Power 

network

i k

Power 

network

m

Zik

Zim Zmk

Fig. 3 Zero-injection load bus with degree 3 and its reconfigured

network
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The tightness measure results of the sparse relaxation

matrices given in Fig. 6 show the effectiveness of the

proposed methodology to tackle the ill-conditioned power

flow problem. The impact of perturbation is notable by

comparing the tightness of various cases in Fig. 6. Here,

the relaxation of Case 2 and Case 4 is much tighter than

that for Case 1 and Case 3. It should be noted that cliques

1, 2, 3, 4, and 11 in Case 3 and Case 4 contain the load

buses with zero injection that are removed from the net-

work. Here, the essence of network reconfiguration and

perturbation techniques to determine a feasible power flow

solution is shown. Applying the perturbation in Case 2

leads to a tighter relaxation in clique 6, compared to that in

Case 1. It is worth noting that the cliques in Case 2 and

Case 4 are different as Case 4 shows the clique after net-

work reconfiguration. Thus, pair-wise comparison among

the cliques is not possible for these cases. However, the

average tightness measure results for Case 4 are improved

compared to those for Case 2. The voltage magnitude and

angle for Case 2 and Case 4 are given in Fig. 7a and b,

respectively. Comparison of the voltage profile procured by

the presented approach with traditional approach is not

available for this ill-conditioned test case [9]. The average

solution time of for this case is 0.75 s.

To illustrate the voltage recovery process from the

solution of the relaxed problem, the maximal clique which

includes bus 11 and bus 12 is selected. The procured

solution for the sparse SDP matrix associated with this

clique is presented in (33).

1:0000 1:0896 1:0257 0:0387 �0:0288

1:0896 1:1873 1:1177 0:0421 �0:0314

1:0257 1:1177 1:0521 0:0397 �0:0295

0:0387 0:0421 0:0397 0:0015 �0:0011

�0:0288 �0:0314 �0:0295 �0:0011 0:0008

2

6

6

6

6

4

3

7

7

7

7

5

ð33Þ

The eigenvalues of the procured solution of the clique

are 2.2617 9 10-9, 1.2243 9 10-8, 9.1753 9 10-8,

9.7194 9 10-8, and 3.2417. Here, there is only one

eigenvalue which is much greater than zero. The

Fig. 4 13-bus system before reconfiguration

Fig. 5 13-bus system after reconfiguration

Fig. 6 Tightness measure results of Cases 1–4 in 13-bus system Fig. 7 Profiles of voltage magnitude and angle for 13-bus system
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tightness ratio for this clique defined in (22) is 7.52.

Therefore, the presented solution to the relaxed problem is

near-rank-1. The eigenvector associated with the largest

eigenvalue is [- 0.5554, - 0.6051, - 0.5696, - 0.0214,

0.0159]. According to (23), the recovered voltages from the

dominant eigenvalue and its associated eigenvector are the

same as (33) up to seven-digit precision. The real and

imaginary parts of the voltage of bus 11 are 1.0896 and

0.0387, respectively. The real and imaginary parts of the

voltage of bus 12 are 1.0257 and - 0.0288, respectively.

Converting the rectangular form of voltages to polar form

returns 1:0903\2:0322� and 1:0261\1:6071� for bus 11

and bus 12, respectively.

4.2 IEEE 30-bus system

The data provided in [28] is utilized in this case. The

numbers of maximal cliques are 29, 29, 27, and 27 for Case

1, Case 2, Case 3, and Case 4, respectively. The tightness

measure results for the sparse SDP matrices are given in

Fig. 8. As shown in this figure, the perturbation in Case 4

leads to a tighter relaxation for the power flow problem

compared to Case 1, Case 2, and Case 3. By comparing

Case 1 with Case 3, and Case 2 with Case 4, it is shown

that network reconfiguration provides a tighter measure for

the SDP relaxation of the power flow problem. Here, the

sparse SDP matrices associated with cliques 9, 25, and 26

are tighter compared to those cliques for Case 1. As shown

in Fig. 9, comparing the voltage profiles of Case 4 and NR

algorithm reveals that the network reconfiguration along

with perturbation enable finding of a feasible solution for

the power flow problem. The voltage profile of Case 4 is a

solution to the original power flow problem. The average

solution time for Case 4 is 0.81 s.

4.3 IEEE 57-bus system

The data provided in [28] is utilized in this case. The

numbers of maximal cliques are 62, 62, 59, and 59 for Case

1, Case 2, Case 3, and Case 4, respectively. The tightness

measure results of the sparse SDP matrices of various cases

are given in Fig. 10. The effect of the perturbation on the

tightness of the presented relaxation for the power flow

problem is shown by comparing the tightness measure

results for Case 4 with those for Case 3. By comparing

Case 2 with Case 4, and Case 1 with Case 3, it is shown

that network reconfiguration improves the tightness of SDP

relaxation. Here, the voltage deviations are smaller in Case

4 compared to Case 3. Moreover, the voltage angles are

closer to each other in Case 4 compared to Case 3. As

shown in Fig. 11, comparing the voltage profiles of Case 4

and NR algorithm shows the merit of the proposed

approach, where the voltage for the slack bus and voltage-

controlled buses are very close in the two approaches. The

average solution time for Case 4 is 0.85 s.

4.4 200-bus system

This case addresses a synthetic 200-bus network pro-

vided in [29]. The numbers of maximal cliques are 223,

223, 213, and 213 for Case 1, Case 2, Case 3, and Case 4,

Fig. 8 Tightness measure results of Cases 1–4 in IEEE 30-bus

system

Fig. 9 Comparison of voltage profiles of Case 4 and NR algorithm in

IEEE 30-bus system

Fig. 10 Tightness measure results of Cases 1–4 in IEEE 57-bus

system
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respectively. The tightness measure results of the sparse

SDP matrices for Case 3 and Case 4 are given in Fig. 12.

The average and standard deviations of voltage magnitude

of the buses in Case 4 are 1.0109 and 0.0107 p.u.,

respectively. The average and standard deviations of volt-

age magnitude for the buses in Case 3 are 0.9794 and

0.0503 p.u., respectively. The average and standard devi-

ations of voltage angle for Case 4 are 1.0974� and 1.1740�,

respectively. As shown in Fig. 13, comparing the voltage

profiles of Case 4 and NR algorithm demonstrates that the

voltage magnitudes for the solution procured by the

approach presented in this paper are closer to 1 p.u. with

less deviation compared to the solution procured by the NR

algorithm. The average solution time for Case 4 is 1.11 s.

4.5 2383-bus system

This case addresses the Polish power network with 2383

buses [28]. The number of maximal cliques is 2640 for

Case 3 and Case 4. The tightness measure results of the

sparse SDP matrices of Case 3 and Case 4 are given in

Fig. 14. The effect of perturbation on the tightness of the

relaxation is shown by comparing the tightness measure

results in Case 4 with those in Case 3. This verifies the

merit of proposed approach shown in Case 4. As shown in

Fig. 15, comparing the voltage profiles of Case 4 and NR

algorithm reveals that the solution procured by the NR

algorithm violates the limits presented in the datasheet

which should be between 0.94 and 1.12. The voltage profile

of the solution procured by the approach presented in this

paper remains within those limits. The voltage procured by

the NR algorithm is a low-voltage solution that may

threaten the security of the system as discussed in [22]. The

average solution time for Case 4 is 11.63 s.

5 Conclusion

This paper presents a convex relaxation approach to

determine the feasibility of the power flow and yields a

solution for this problem. The presented approach is

Fig. 11 Comparison of voltage profiles of Case 4 and NR algorithm

in IEEE 57-bus system

Fig. 12 Tightness measure results of Cases 1–4 in 200-bus system

Fig. 13 Comparison of voltage profiles of Case 4 and NR algorithm

in 200-bus system

Fig. 14 Tightness measure results of Cases 3 and 4 in 2383-bus

system

Fig. 15 Comparison of voltage profiles of Case 4 and NR algorithm

in 2383-bus system
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scalable for large-scale applications. The near-rank-1

relaxation is procured by using the presented perturbation

and network reconfiguration techniques. Leveraging these

techniques helps avoiding employment of higher orders of

moment relaxation and improves the computation effi-

ciency of the presented relaxation for large networks. The

effectiveness of the proposed approach is illustrated for

well-conditioned IEEE test cases as well as for an ill-

conditioned case.
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