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Abstract: The localization of continuous objects and the scheduling of resources are challenging
issues in wireless sensor networks (WSNs). Due to the irregular shape of the continuous target
area and the sensor deployment in WSNs, the sensor data are always discrete and sparse, and most
network resources are also limited by the node energy. To achieve faster detection and tracking
of continuous objects, we propose a convolution-based continuous object localization algorithm
(named CCOL). Moreover, we implement the idea of greedy and dynamic programming to design
an energy-saving and efficient strategy model (named MSSM) to respond to emergencies caused
by multiple continuous targets in most specific WSNs. The simulation experiments demonstrate
that CCOL is superior to other localization algorithms in terms of time complexity and execution
performance. Furthermore, the feasibility of the multinode scheduling strategy is verified by setting
different mobile nodes to respond to the target area in certain green WSNs.

Keywords: convolution; dynamic scheduling; green WSNs; multi-target localization

1. Introduction

The application of wireless sensor networks (WSNs) has been promoted and popu-
larized [1] in daily life. WSNs can cover a vast monitoring area [2] and produce a number
of data from numerous sensors in a compact manner [3,4]. WSNs usually remotely sense
sensitive events or targets to complete tasks of special functions (forest fire warning, en-
vironment monitoring, atmospheric pollutant detection, gas leakage monitoring, data
collection of smart cities and predictions, etc.) [5].

However, the discreteness of sensing data makes the detection and localization of
continuous target(s) a challenging and topical issue. For example, to detect the leakage of
toxic gas in real time, deployed sensors sense the context of the concentration of different
areas at different times [6]. Due to the unbalanced density and random sampling of sensors,
the collected data are usually discontinuous [7], especially for large monitoring areas with
a limited number of sensors (monitoring of marine pollutants in the sea or fire monitoring
in the forest, etc.). However, the continuous objects in WSNs, such as toxic gases or streams
of people, are still maintained in an integrated state, so deviations and errors commonly
appear during target detection [8,9]. For these reasons, it is valuable to detect emergencies
rapidly and perform some imperative work in many special scenarios of WSNs.

Studies have mainly focused on improving the positioning and accuracy of the edge
area for continuous target detection in wireless sensor networks. Most algorithms are based
on geometric theories, such as planarization [6], and downsize the target area by analyzing
the data of boundary sensor nodes [7]. For instance, Z. Zhou et al. proposed an iterative
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method to precisely achieve the target edge [10] by repeatedly updating the candidate
nodes to boundary nodes.

B. Liu et al. provided an interpolating and inserting virtual sensor node algorithm
to improve the accuracy of the continuous object boundary region [11] by reducing the
dispersion and insufficiency of boundary data.

Additionally, service scheduling is one of the important approaches for green comput-
ing in WSNs. Scheduling is a balanced problem between effectively addressing emergencies
of sensitive areas and saving energy during target location. A few low-latency, efficient
algorithms and scheduling strategies have been proposed while slightly reducing the per-
formance of WSNs. The sink mobility-aware node scheduling (SMNS) algorithm increases
the utilization of network resources [12]. The packet scheduling algorithm improves the
performance of WSNs by a protocol [13]. All of these localization methods are based on
the topology of the network and the position relationship of the sensors nodes, so that the
target location in WSNs depends on the structure of the network and the distribution of
sensors [14]. In this paper, we establish a dynamic serving model for emergencies in WSNs
and propose a scheme based on multiple mobile nodes to address sensitive areas. The
research on these issues is of great significance in some practical applications, including
evacuation in densely populated areas, traffic control in emergency situations, personnel
control of toxic gas leakage, etc. [15,16].

Considering the irregular and sporadic shape of the continuous objects in WSNs, in this
article, we focus on the boundary of the shape of targets and propose a target localization
algorithm that used convolution to solve the discontinuity of data corresponding to different
grids in wireless sensor networks. Furthermore, we discuss the scheduling strategy of
emergency areas in WSNs and give an efficient and speedy multiple mobile node approach.
The simulated results demonstrate the feasibility of the scheme. In this essay, our main
work and contributions include the following:

(1) Proposing a fast method based on convolution for the positioning of continuous
targets in WSNs.

(2) Putting forward a multiple mobile node dispatch model for emergencies in WSNs.
(3) Comparing the results of the algorithm performance and energy consumption of

the network nodes and verifying the feasibility of the perspective.
Section 2 introduces the background of the problem and related works. Then, Section 3

explains the theoretical basis of the algorithm and the establishment of the model. The
remaining sections elaborate on the core algorithms and simulation tests and prove the
feasibility of the proposed scheme.

2. Research Background and Related Work
2.1. Continuous Object Localization in WSNs

According to the appearance of detected targets, they are classified into single ob-
jects and continuous objects [11]. In practice, the target detection methods are different
depending on the shape or type of objects.

The solution to the single-target positioning problem is relatively simple. When
the scale of the network is large enough, the detected target, such as one point, can be
monitored by more than one sensor node in the area. For example, through certain static
and dynamic sink nodes, M. Akter et al. proposed a trilateral measurement-based green
algorithm to discover and track a single target such as a mobile car, and so on [17].

In contrast, detecting a continuous target is more complex [18]. The change in con-
tinuous targets, such as pollutants, gases, and human flow, always presents a strong
randomness in its trace and shape. Therefore, the study of localization for irregular tar-
gets is more valuable [19]. However, the issue of the target track is the same problem as
localization because the track can be regarded as a relocalization process at different times.
Clustering collects the sensor data and defines the boundary of the target by constructing
many clusters around the target range, but this method requires a large amount of infor-
mation exchange between sensors during cluster construction, so it results in excessive
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energy consumption [20,21]. J. Xiang et al. proposed an interpolation-based accurate
and energy-efficient localization algorithm that wakes up sensor nodes selectively in the
boundary coverage area to refine the abnormal area [22]. The experiments show that the
nodes’ lifetimes are obviously extended; however, the complexity of the algorithm is higher
than that of others [22]. S. Lei et al. also introduced a method to locate the edge of leaked
gas in special areas and summarized a variety of continuous target positioning algorithms
based on a gas diffusion model [23]. In [24], O.J. Pandey et al. proposed a novel method of
time synchronized node localization which is based on small world characteristics. This
approach could reduce the erroneous node location estimates during the process of data
transfer. Similarly, P. Hao et al. proposed a two-stage boundary area detection scheme
based on planarization methods for discovering the position and regulating the boundary
lines of continuous targets [25]. Most of the location approaches mentioned above are
based on the construction of geometric polygons, they planarize the sensors network where
the target appears, and then improve the accuracy of the node polygon area. This kind of
planarization methods usually requires a lot of sensor data to outline the target area, so
that these solutions are more suitable for network with dense sensor distribution. However,
convolution approach proposed in this article is a grid-based positioning method which
takes the data in each cell grid as the feature of entire grid after gridding; thereby, we will
perceive the target appearance. This novel operation could effectively avoid the error of
target positioning caused by insufficient data of sparse WSNs, and also make up for the
inadequacy of the data hole during target location.

Most of the target positioning algorithms ignore the feature of dispersion and subjoin
the workload of data computation. To resolve these problems, we observe and analyze
the data of the continuous target in WSNs and use the discovered features as the primary
consideration. The characteristics of sensor data can be summarized as follows:

(1) Discreteness
Due to the spatial distribution of the sensors in WSNs, each single sensor is an indi-

vidual point source in the network, and all of the sensor data constitute a noncontinuous
data set correspondingly. In particular, the non-continuity of sensor data is more obvious
after assigning them to different grids of the WSNs.

(2) Sparseness
Many object detection algorithms are based on grid analysis and processes. This means

that each sensor node is mapped to a grid cell according to its geographic coordinates.
Therefore, sensor data in the WSNs are maintained in a sparse state, which causes deviations
and errors during the localization and tracking of continuous targets.

(3) Irregularity and randomness
The essential characteristics of continuous objects determine the irregularity of shapes.

In contrast to the regular shape, a continuous target is a no-rules graph in WSNs, and
it always changes randomly in the actual environment. This situation also increases the
difficulty of applying the Euclidean geometry theorem to target positioning in WSNs.

Additionally, the data in WSNs have a certain degree of randomness. It is difficult
to describe the boundary precisely. As shown in Figure 1, for the convenience of data
processing, the whole region of the city is divided into different grids. In this way, every
grid could represent an area of the city during the calculating of the target position. There
are lots of sensors randomly distributed in this area, which are also allotted to different
grids. Once there is an emergency in the monitoring area, such as the gray region in
Figure 1, the corresponding grid data will be abnormal. This kind of scenarios is very
common, for example, the the leakage of dangerous gas from factories, the monitoring
of urban pollutants and so on, we need to detect and deal with these dangers promptly.
Therefore, the localization of the continuous target still is an important issue.
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Figure 1. Sensitive area in WSNs.

2.2. Definition of Concepts

It is a primary and common way to estimate the position of the targets by the informa-
tion of sensor nodes [26], and the energy consumption of communication mainly depends
on the Euclidean distance between different nodes. K. Hadi et al. used the average distance
between sensor nodes to estimate the target area [27]. The following context will introduce
the key concepts and symbols appearing in the subsequent sections.

• Sensitive Areas (SA)

The monitoring area is a sensitive area (named SA), which is usually an irregular
pattern, and the position of sensitive areas may shift or change throughout the WSNs
within a certain time. Figure 1 shows that the marked range belonging to SA is called
region of interest (named RoI), and sensor data are transmitted to the upper node through
the backbone node in the WSNs [28]. The scenario of locating the SA involves acquiring
the coordinates or grids of the sensitive areas in the WSNs through the preset threshold
and the value of each sensor in the network.

• Sensor Sparse Matrix (SSM)

The sensor network provides a channel for data sinking from each single sensor node;
however, the process and analysis of the data usually are arranged on the remote cloud or
several high-performance clusters. Then, the above network can be abstracted into a digital
matrix. Since most elements in the matrix are zero in the actual scenario, we call it a sparse
matrix or sensor sparse matrix (SSM).

As shown in Figure 2, the entire WSN is divided into many grid cells, and every cell
is associated with some sensors while building the WSN. Accordingly, we establish an
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N × N matrix model for clusters, and the value of each element of the matrix is the sum of
all sensor data in one grid. There are many elements in the matrix that are 0 or below the
threshold because of the data merger. The convolution-based continuous object localization
algorithm (CCOL) proposed in this article works on this sparse matrix, and the convolution
operation in CCOL rapidly achieves the position of target.

Figure 2. Distribution of sensor data.

• Convolution Kernel Matrix (CKM)

The matrix scope is related to the real size of WSNs. In other words, the larger
the network scale is, the greater the number of grids, and the larger the corresponding
matrix. Given the large size of the general grid matrix mentioned above in terms of the
spatial distribution and mathematical operations, for example, in the sensor distribution in
Figure 2, there is a 100× 100 SSM correspondingly. However, this type structure, or the size
of the rows and columns of the two-dimensional matrix, could restrict the performance of
the positioning algorithm to a certain extent. The convolution in the algorithm of CCOL
slides the default kernel matrix through the original SSM (N × N), and generates a new
matrix that is smaller than the original. Therefore, the original matrix is partitioned into
different blocks, and the sum of each block forms the result matrix. These serial operations
complete the lossless fusion of sensor data and avoid the dispersion of continuous target
data in the adjacent grids of WSNs.

In Equation (1), A, the initial matrix of sensor data, is transformed to B through C.
This process is the convolution explained above. Meanwhile, it assumes that the default
kernel matrix C is a 3× 3 matrix. After the convolution operation, the rows and columns of
the result matrix B can be reduced to one-third of the original matrix. Therefore, the shrink
ratio of A is related to the rank of the convolution kernel C.
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Am×n × C3×3 = Bk×r, where

Am×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



C3×3 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33



Bk×r =


b11 b12 · · · b1r
b21 b22 · · · b2r

...
...

. . .
...

bk1 bk2 · · · bkr



(1)

From the matrix calculation in Formula (1), the data volume of the entire WSN de-
creases exponentially after the slide convolution. This decrease in turn reduces the work-
load of the computing nodes and saves energy in the sensor nodes.

• Mobile Nodes (MNs)

The mobile nodes(MNs) are mentioned when some emergency occurs in the target
areas. The algorithm of MSSM addresses these problems. Once the target appears in some
regions, it will inevitably cause anomalies in sensor data. The data are then aggregated
and transmitted to the cloud servers or other clusters through the wireless network. After
computing by the clusters, the mobile nodes respond to SA in accordance with the optimal
energy consumption scheduling strategy. In the following experiments, we set different
numbers of mobile nodes randomly in an N × N network (for example, the four red
symbols of “X” shown in Figure 2), and customize and design a service scheduling strategy
for WSNs.

2.3. Contribution and Solutions

In many references related to localization and tracking, the first step of most scenarios
is planarization, and then, accurate positioning of the boundary follows. There are some
popular planarization algorithms, including the Gabriel graph (G-G), relative neighborhood
graph (RNG) and k-localized Delaunay graph (LDelk), etc. [29]. All of them can find
the targets in WSNs but need to promote the accuracy of the object boundary. A large
number of researchers, such as the authors of [10], have done a considerable amount of
work based on these algorithms to improve the precise algorithm of the boundary area of
continuous targets.

In this paper, our localization algorithm learns the algorithms [10,29] mentioned above
in the storage and classification of sensor data; in particular, we employ the convolution
matrix method to achieve the position perception of targets, and the proposed algorithm
also has strong applicability in deployment schemes. The main research content and ideas
of our work will be listed in the following context.

(1) Main research content
In the early stage, we surveyed the solution of continuous target localization and

dispatching strategy of MNs in response to emergencies in WSNs. With the specific
implementation of many algorithms proposed in different references, our research in this
essay can be summarized as follows:

• Data fusion of continuous targets between grids

The value of grid data corresponding to the area where the target appears may be zero
because of the random distribution or failure of sensors. Figure 3a shows that the irregular
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area covered by the black points is an SA, and there is a blue grid without any sensor in
this region (in fact, this area should also be the subject of our supervision). Figure 3b shows
a rough scope of the target combined by gray grids, and the red dotted line marks the
boundary of the target; however, there is a blank grid mapping to the blue grid in Figure 3a.
Assuming the size of CKM is 2× 2, through the convolution operation, the grid matrix
(8× 8) in Figure 3b becomes the result matrix of Figure 3c whose size is 4× 4. Interestingly,
the special blank grid in Figure 3b disappears in Figure 3c.

• Matrix deflation

The value of each sensor node is transmitted by the sink nodes, and the cluster
maps the data to the grids used in the localization algorithm according to the coordinate
relationship. After the gridding, every sensor node belongs to one cell and is stored
in a two-dimensional matrix. Along with the expansion of WSNs, the data may grow
exponentially, which requires a vast computing resources of the clusters. However, we
notice that most elements of the matrix in WSNs are zero, which is why we call this matrix
a sparse matrix. Specifically, it is for this reason that we provide a good idea to reduce the
order of the matrix.

Convolution

sensor with data

sensors without data

non-zero grid

zero-value grid areas without sensor

target areas without sensor data

b

c

a

Figure 3. Fusion process of sensor data. (a) is the original network and the distribution of the sensors
data; (b) is the marked SA including a special grid without sensor; (c) is the fusion result of the
sensors data.

The sliding convolution proposed in this essay is employed to solve the excessive
calculations. It divides the matrix into several sub-matrices of the same size as the con-
volution kernel matrix, sums the sub-matrices, maps the result to a new matrix (matrix
B in Formula (1)), and completes the deflation of the initial matrix. This matrix is also an
important part of the simulated experiments.

• Strategy of multi-node and service scheduling

The scheduling of emergency node(s) is another crucial problem that we study [24].
We focus on how to improve the response rate of emergencies of WSNs in this article and
try to establish a scheduling mechanism that makes the resource consumption of the whole
network as small as possible. Many researchers are concerned about this issue; for example,
an approach of path planning for mobile nodes was proposed in [27] that could efficiently
solve network congestion.

The area of continuous objects in the network is divided into several adjacent grid
matrices under the sliding influence of the convolution kernel. Moreover, the strategy of
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the mobile scheduling is a simulation of the emergency response process. This simulation
could improve the overall reaction speed of the WSNs and the allocation efficiency of the
resource when some events occur. In addition, this approach has a great significance in
practice, such as in the manual intervention evacuation of human traffic or the spread of
dangerous targets.

(2) CCOL Model
The algorithm of CCOL works on the grid data of WSNs, and the detailed process

has been discussed in the above sections. Given the discreteness and sparseness of data in
the sensor grids, rapid matrix degradation is attractive when the volume of data in WSNs
is massive. Therefore, it is natural that detection and tracking for continuous objects will
be completed by this operation. However, if the continuous target area is very large, the
number of grids is more than the size of the convolution kernel matrix, and the whole SA
may be decomposed into multiple feature grids.

The research in this article has been divided into the following two steps: target
localization and multiple node scheduling. The former mainly accomplishes the reduction
of a matrix for sensor data grids and builds the relationship between the convolutional
characteristic region and the real areas in WSNs. The latter step verifies the strategy of multi-
MNs in WSNs, and the simulation experiment has been designed to justify the rationality.

Additionally, we assume that the energy consumption in the MN scheduling abides
by the following Equation (2) in the experiments.

E =
Dcoll(si)

dcoll
+

Dcom(si, sj)

dcom
+

Dexe(si)

dexe
(2)

In Equation (2), dcoll , dcom, dexe are constants; dcoll represents the total data that can be
collected by consuming a unit of energy; dcom represents the total data transferred from si
to sj by consuming a unit of energy; dexe represents the total data computed at si by using a
a unit of energy. Meanwhile, Dcoll(si) is the amount of data collected at si; Dcom(si, sj) is
the amount of data transferred from si to sj; Dexe(si) is the amount of data executed at si.

The algorithms proposed in this paper will efficiently save the energy consumed in
computations for the whole network. In this model, the main energy cost in WSNs is spent
on the data collection and transmission, and this MN scheduling approach will expand the
lifetime of WSNs. Therefore, the optimization of the MN’s emergency dispatching scheme
mainly refers to the geographic distance to the sensitive area and real-time working status
of the MN. Subsequently, the strategy will plan the motion trajectory for the MNs in WSNs.

3. Problem Formulation and System Model

In this section, we mainly discuss the data processing model of the CCOL algorithm.
In the initial state, each sensor node reports its position to the clusters deployed in the
cloud. Then, each sensor node enters the dormant state until an emergency occurs at a
certain time point, at which the node is woken up and uploads the sensor data to the
sink nodes periodically or when they sense some abnormalities. According to different
models, the algorithm running on the computing centers will fulfill the target localization
and scheduling.

3.1. Settings for the Convolution Kernel

The settings of the convolution kernel are one of the important issues in our research.
A large discrepancy in the calculation results of the original data matrix will occur when
the algorithm employs different convolution kernels. The results of the operation of the
original data matrix by different convolution kernels will be very different. In this essay,
we take a matrix that is a K× K unit square (K = 3 in the experiment), and the scale of the
original matrix is reduced by 1/K. However, the process of setting the value of K depends
on the specific size of the WSNs. Generally, the parameter K and the coverage of WSNs
are proportional. Consequently, the value of K should increase or decrease as the size of
WSNs changes.
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The convolution matrix can effectively compensate for the lack of data in continuous
target areas. For example, a continuous target may dominate multiple grids; once the sensor
in this area fails or the distribution is missing, it is not appropriate to localize the boundary
solely according to real sensor data from WSNs. Convolution might merge the neighbor
grids, which have no data but cover the target areas, into one element in the convolution
matrix. Due to following the formula (Equation (4)), the operation will non-destructively
retain the original features of the continuous targets during the whole convolution process.

3.2. Sensor Data Processing Model

The sensor data processing model converts the data collected by the sensors into a
matrix for target positioning, and it can be roughly divided into the two stages listed in the
following context.

(1) Mapping to the grids
Sensors are randomly distributed throughout the network in WSNs, and each sensor

can correspondingly gain a value. These values are assigned to different grids in accordance
with their position. Briefly, one grid is taken as the minimum unit for data processing in this
paper, and the value of the grid is the cumulative sum of all sensor data in it (Equation (3)).

aij = ∑
i≤x≤i+1,j≤y≤j+1

Sxy (3)

In Equation (3), i, j is the index of the row and column of the grids, respectively; Sxy
is single value of the grid (x, y), in which the x and y are limited by i ≤ x ≤ i + 1 and
j ≤ y ≤ j + 1, respectively. Each aij is the cumulative sum of grid (x, y).

(2) Sliding convolution
According to the computing method involved in Equation (3), the entire network

is replaced by the following matrix in Equation (4). Each element (aij) in the matrix is
obtained by superposing several Sxy. The sliding convolution operation serves to ensure
that the CKM multiplies a matrix that has the same size as CKM and is combined by aij.
The whole calculation process is divided into two parts:

Step 1: Pre-arrangement of the matrix
Once the WSN is blocked by the default size, the number of rows or columns of the

aforementioned matrix can be ensured.
a11 a12 · · · a1(nK)
a21 a22 · · · a2(nK)
...

...
. . .

...
a(mK)1 a(mK)2 · · · a(mK)(nK)

 (4)

In this paper, if the number of rows and columns of the original sensor data matrix
is not an integer multiple of the number of rows and columns of the CKM, it will insert
certain zero rows or columns into the source matrix to facilitate subsequent operations.

For example, a 100× 100 network is blocked by a 5× 5 grid, which will yield a 20× 20
matrix. If the size of CKM is 3× 3, we should add one zero-row and one zero-column to
obtain a 7× 7 convolution result matrix. As shown in the formula, if the CKM is a K× K
square matrix, the size of the original matrix will be prepared as mK× nK.

Step 2: Convolution
During the processing of convolution, the original matrix in Equation (4) has been

distributed to m× n blocks following the rule illustrated in Equation (5). Therefore, each
block Aij is a K× K square matrix marked by A, and the matrix (Equation (4)) shrinks to A
(Equation (6)).



Electronics 2022, 11, 1031 10 of 21

Aij =


a(i×K)(j×K) · · · a(i×K)((j+1)×K−1)

a(i×K+1)(j×K) · · · a(i×K+1)((j+1)×K−1)
...

. . .
...

a((i+1)×K−1)(j×K) · · · a((i+1)×K−1)((j+1)×K−1)

 (5)

A =


A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

 (6)

We symbolize the CKM as matrix C (Equation (7)), a unit square of K× K, of which all
elements are 1.

C =

 1 · · · 1
...

. . .
...

1 · · · 1


K×K

(7)

Equation (8) gives the calculation method of rij, which is a numerical value that
corresponds to the result of each Aij (Equation (6)) multiplied by C (Equation (7)).

rij = ∑
i×K≤w≤(i+1)×K−1
j×K≤y≤(j+1)×K−1

awl×cwl (8)

Compared to the original matrix (Equation (4)), the result matrix R (Equation (9)) has
the same size of A (Equation (6)). In other words, it has been shrunk by K. Therefore, this
approach can solve the problem of matrix deflation.

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

 (9)

R in Equation (9) is the result matrix, and each element rij in matrix R can represent
an area of (K×gsize)2 in WSNs, where K is the number of rows of the CKM, and gsize
is the side length of each mesh in WSNs. Then, the value of Rwl can be considered as
the eigenvalue of the corresponding region. Thus, when a continuous target arises in
the surveillance area, a certain Rwl corresponding to the target will differ with respect to
the neighboring areas. Therefore, this is the primary reason that object detection can be
accomplished by using this model.

3.3. Multimobile Service Node Scheduling Model (MSSM)

The MSSM refers to the treatment method in [30] and adopts a dynamic and greedy
idea. Its purpose is to keep each MN as busy as possible at the same time and to reduce the
waiting time for emergency events in sensitive areas. This section will describe this model
in detail.

At the beginning, we make the following assumptions: Set(Mi) is the set of MNs,
Set(Oi) is the set of grids of SA, and the Set(Mk, Ol) is the set of distances from any MN to
the target areas.

This model (shown in Figure 4) mainly involves the operations among Set(Mi), Set(Oi)
and Set(Mk, Ol). According to the minimum element of Set(Mk, Ol), it iterates and updates
the Set(Mi), and removes the element Oω from Set(Oi). This process is repeated until the
Set(Oi) = ∅ and is then terminated.



Electronics 2022, 11, 1031 11 of 21

Set (Mi) Set (Oi)
Mi Oi

Set (Mk,Ol)

Min {Path (Mk,Ol)}

(Mm,Ow)

Update (Mm) Set (Oi)\{ Ow}

Figure 4. Multimobile service node scheduling model.

The greedy algorithm will find a suitable mobile service node and one shortest schedul-
ing path to respond the SA, and it can also decrease the number of leisure service nodes
and minimize the energy consumption throughout the scheduling process.

4. Core Algorithm

The two algorithms of CCOL and MSSM discussed in this paper address the target
detection and emergency scheduling in WSNs. The following context will explain the
principle and process of each algorithm.

4.1. Pretreatment of Sensor Data

The pretreatment of sensor data in WSNs contains two tasks: blocking the WSNs and
rounding the numbers of the row or column of the matrix. After the preprocessing step, we
gain a new blocked grid matrix. The formula of this step refers to the model in Section 3.

After padding and aligning, Algorithm 1 returns a new matrix (U_Matrix_Gridcell),
whose rows and columns can be divided by the number of rows and columns of the
convolution matrix. In addition, the sensor’s data are mapped to the grids.

4.2. Convolution-Based Continuous Object Localization Algorithm (CCOL)

After the process of Algorithm 1, the sensor data are stored in Matrix_Gridcell. Accord-
ing to the index (i,j) in the array of R_matrix, it converts the coordinates of the first element
(mod× i, mod× j) and the last element (mod× i + mod, mod× j + mod) of the matrix sub-
block involved in each convolution and then obtains the subblocks c that will take part in
the convolution with kernel_matrix. At the end, the result will be stored in R_matrix[i][j],
and Algorithm 2 will return the entire array of R_matrix.

In fact, the nonzero elements in the R_matrix should be focused on. Each nonzero
element relates to an SA in WSNs, and the SAs in WSNs are marked in the R_matrix by the
grid index. Therefore, the reverse process is the localization for continuous targets. For
instance, one nonzero value may be mapped to an emergency (a gas disaster, the dense
flow of a crowd or an abnormal environmental event and so on), and the system scheduling
will take some emergency measures to react to the SA in the special scenario.
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Algorithm 1: Pretreatment for sensor data
Input:

Sensors_data_list: data set of sensors in the WSNs
gsize: the length of the grid side
mod: the size of the Convolution Matrix

Output:
U_Gridcell: a new 2D array in which the numbers of rows and columns are

multiples of M or N
1 M,N← extract the lines and columns of matrix grid ;
2 Matrix_Gridcell[i][j]← sum sensor data in the same grid;
3 Divide Sensors_data_list[i] into Matrix_Gridcell[i][j];
4 Copy the Matrix_Gridcell to the U_Gridcell;
5 if M/mod 6= 0 then
6 for i ∈ (1, M%mod) do
7 //Append a blank line containing N zeros to U_Matrix_Gridcell
8 Append_row(U_Gridcell,0);
9 Update M;

10 end
11 end
12 if N/mod 6= 0 then
13 for j ∈ (1, N%mod) do
14 //Append a blank column containing M zeros to U_Matrix_Gridcell
15 Append_col (U_Gridcell,0);
16 Update N;
17 end
18 end
19 return U_Gridcell;

Algorithm 2: Convolution-based Continuous Objection Localization
Input:

Matrix_Gridcell: data matrix pretreated by Algorithm 1
mod: the model of the convolution matrix

Output:
R_matrix: the convolution result of Matrix_Gridcell and kernel_matrix

1 row← count_rows(Matrix_Gridcell);
2 col←count_columns(Matrix_Gridcell);
3 init(kernel_matrix,1);
4 init(R_matrix,0);
5 for i ∈ (0, row) do
6 for j ∈ (0, col) do
7 //cut a piece from the Matrix_Gridcell according to the size of

kernel_matrix
8 c← sub_Matrix(mod * i:mod * i + mod,mod * j:mod * j + mod);
9 //compute convolution result of c and kernel to R_matrix [i][j]

10 R_matrix [i][j]←convolution_matrix(c, kernel);
11 end
12 end
13 return R_matrix;
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4.3. Multimobile Service Node Scheduling Algorithm (MSNS)

Following the convolution of Algorithm 2, we set an alert threshold such that Sxy is
either 0 or 1 (shown in Equation (10)).

Sxy =

{
0 i f the target exists
1 i f the target does not exist

(10)

The data of the matrix A are accumulated by Equation (8), and the cumulative result
reflects the degree of the SA emergency. Once the present threshold is reached, it will
start the process of scheduling and reply to the SAs. Moreover, convolution can overcome
the shortage of discreteness of sensor data in the localization such that one continuous
target maybe divided into several neighboring elements in the result matrix. Therefore, this
condition provides a solution for MN scheduling. Accordingly, the dynamic scheduling
algorithm is divided into two situations for different sizes of SAs:

(1) Limited in one grid
If the target is a single object (such as a car or fire point), Algorithm 3 is a special case

of the multimobile service node scheduling algorithm. The sensitive area corresponding to
the target is so small that there is only one grid corresponding to it. In this case, the scheme
is relatively simple: we simply select a node that is closest to the SA with the most energy
to provide services. The detailed algorithm is described in the following (Algorithm 3).

Algorithm 3: Mobile Schedule for a Single Target
Input:

Mobile_list: set of MNs
R_matrix: the convolution result computed in Algorithm 2

Output:
Service_mobile: a service node for the SA

1 //find the maximum index of the convolution result matrix
2 max_grid←max_index(R_matrix);
3 min_dis← dist(max_grid,mobile_list[0]);
4 min_info←mobile_list[0].info;
5 for i ∈ (0, row) do
6 //get the distance from the max_grid to the mobile_list[i]
7 new_dis← dist(max_grid,mobile_list[i]);
8 if new_dis > min_dis then
9 min_dis← new_dis;

10 min_info←mobile_node[i].info;
11 end
12 end
13 min_info← get_servicenode(min_dis,min_info);
14 return min_info;

Once the SA is served by the MN, this service node will move to the area marked by
min_info that corresponds to the emergency. Moreover, it updates the remnant of energy
and the current position.

(2) Covering many grids
Algorithm 4 is a general case of multimobile service node scheduling. The SA always

exists throughout several grids and has an irregular shape.
Convolution will map the target to some adjacent grids whose values exceed the

threshold, which will greatly narrow the search range of the target area. This effect could
increase the efficiency of the emergency response capability in coupling with the MSNS
algorithm. The details of Algorithm 4 are as follows.

The difference between Algorithms 3 and 4 is that line 19 (Algorithm 4) takes some
threads to serve the SAs, and the rest of them are almost the same.
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Algorithm 4: Mobile Schedule for Multiple Targets
Input:

Mobile_list: set of MNs
R_matrix: the convolution result computed in Algorithm 2
max_grid_list: queue of grids in which the data exceed the threshold

Output:
Service_path_list: several paths from every (or some) MNs

1 temp←Sort(R_matrix);
2 //select the grids whose data exceed the threshold and insert them into the

max_grid_list
3 max_grid←grids_ex_threshold(temp);
4 for node∈max_grid_list and max_grid_list 6= φ do
5 f← the index of the first leisure MN //the distance from the max_grid to the

first leisure MN in the mobile_list
6 min_dis← dist(max_grid,f);
7 min_info← f.info;
8 for i ∈ (0,mobile_list.length) do
9 max_node←Max_item(max_grid_list);

10 if mobile_list[i].Isbusy()==FALSE then
11 new_dis←dist(max_grid,mobile_list[i])
12 end
13 if new_dis > min_dis then
14 min_dis← new_dis;
15 min_info←mobile_node[i].info;
16 end
17 end
18 //Start a process to serve the sensitive area
19 Start_SApro ();
20 remove_grid (max_grid_list,min_info);
21 update (mobile_node[i]);
22 min_info← get_servicenode(min_dis,min_info);
23 Insert (Service_path_list, min_info.index());
24 end
25 return Service_path_list;

5. Experimental Simulation and Analysis

Based on the aforementioned discussion, simulation and verification of the experiment
are proposed in this section. We compare the performance of CCOLto the G-G and RNG,
analyze the consumption of different strategies, and prove the feasibility of the algorithm
proposed in the article.

5.1. Simulation Experiment

The experiment simulates a 500× 500 wireless sensor network that randomly deploys
300 sensors. The 500× 500 network represent a region related to the size of the grid, we do
regard it as a residential area or an urban area. Without loss of generality, 300 sensors are
assigned to different grids randomly. In the program, there is a variable length list of MNs,
in which the position and the remaining energy of the node are stored. The size of the grid
is 20× 20, so the whole network is divided into 25× 25 grids, and a square matrix of which
all elements are 1 is appointed as the CKM. The detailed experimental process is as follows:

Step 1: Sensor maps to the grid
The position of the sensors is random. To facilitate the sliding convolution, sensor data

need to be preprocessed at the beginning. According to Algorithm 1, the network (25× 25)
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is expanded with different kernel matrices. In our experiment, we takes two CKMs (2× 2
or 3× 3) to deal with data grid corresponding to the original network.

Step 2: Convolution with the CKM
The processed data in the matrix are convolved with the 3× 3 operator and generate a

result matrix that is only one-third of the original grid matrix.
Step 3: Localization of the SA
If there are some values that exceed the threshold, the program will revert to the

original position from the location of exceeded values.
Step 4: Scheduling MNs
In the above steps, the SAs in WSNs are detected. A dynamic and greedy scheme is

implemented, and several MNs in the list should be selected to respond to the different
SAs (Algorithms 3 and 4).

5.2. Results of the Experiment

(1) Data of the matrix
The cumulative sum determines the data in each grid, each sensor will be set to a

random value (0 or 1), and then, we accumulate the results in one grid unit that has the
important reference data in the target localization.

Figure 5 presents a visual representation of the matrix (25× 25), and grid areas without
sensors are indicated by black, while the gray denotes the areas with sensors. Then, the
program can judge whether the value of the grid exceeds the threshold.

Figure 5. Original data grid.

According to the steps in Section 5.1, different CKMs need different sizes of Prepos-
sessed data grid. As shown in Figure 6a is the pre-processing matrix required by the
2× 2 CKM, and Figure 6b is the pre-processing matrix required by the 3× 3 CKM.

(2) Localization of SAs
In the experiment, we assume the warning threshold is 3. The grids whose value

reaches the threshold are indicated in these matrix. As shown in Figure 7, when we take
2× 2 and 3× 3 CKM, the position, number and the areas of targets in the grid are various.
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(a) (b)

Figure 6. Data of grid. (a,b) is different pre-processing results with different CKMs, there is one
more blank row and column a than that of b. (a) Pre-processing data grid with 2× 2 kernel. (b) Pre-
processing data grid with 3× 3 kernel.

(a) (b)

Figure 7. Convolution result matrix. Because of the various sizes of CKM, the number of row and
column of result matrices is different. (a) Convolution result Matrix with 2× 2 kernel. (b) Convolution
result Matrix with 3× 3 kernel.

In Figure 7a,b, the darker areas are the SAs whose value exceeds the threshold, and
they are the areas that we should closely monitor. The lighter areas and the blank areas
are the SAs whose value does not reach the threshold, and we should not pay attention to
these areas. Obviously, the darker areas in Figure 7a,b respond the range of the SAs are
not equal.Therefore, the smaller the convolution kernel, the more accurate the positioning
accuracy should be in theory. When the size of CKM is increases, the its corresponding area
also becomes larger, and the positioning accuracy decreases.

According to the CCOL algorithm, we can get darker areas shown in Figure 8. Each
darker region corresponds to a certain area in Figure 7, this process is the inverse of CCOL.
So we can mark the darker areas by red dotted lines in Figure 8.

In Figure 8, the continuous targets can be distinguished by the darker grids, since they
usually are localized by a series of irregular contiguous darker grids because of differences
in shapes or sizes. Figure 8a,b are the location of SAs marked by different CKMs in the
original network.

(3) Selecting Service nodes and Scheduling Paths
As a result of the aforementioned steps, they have proved that the size of CKM could

impact the accuracy of target location in WSNs. However, the improvement of accuracy
will inevitably increase the calculation of convolution operation. Therefore, a optimal CKM
is very necessary. In order to verify the method mentioned above, we design a multi-node
service scheduling. The scheduling with various numbers (1, 2, 4, and 8) of MNs serves
the SAs in Figure 8, so we can plan the paths of MNs and record the energy consumption
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under different policies. We take Figure 8b as an example, and find 19 SAs that need to be
served in total. The following is the path selection of different numbers of MNs.

(a) (b)

Figure 8. Marked SAs. (a) Marked SAs with 2× 2 kernel. (b) Marked SAs with 3× 3 kernel.

• Path for a single node

The position of the single node was randomly set at (2.3, 5.01), according to the
strategy and distribution of WSN, and its mobile path is drawn in Figure 9 by blue arrows.

Figure 9. Path of a single node.

• Path for double nodes

If there are two service nodes, their position is set at (2.3, 5.01) and (250, 258.85). Since
the same scheme is used, 19 SAs in Figure 8b were responded to. One of the nodes deals
with 8 SAs, and the other node served 11 SAs. Their paths are drawn by different lines in
Figure 10.
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Figure 10. Path of a double node.

When the number of nodes increases to 4 or 8, the experimental results are similar to
the above two cases, so we do not describe them redundantly.

5.3. Comparison and Analysis

In this section, the CCOLis compared with G-G and RNG algorithms, the depletion of
each stratagem is counted, and the advantage and feasibility of the solution proposed in
this essay are analyzed.

(1) Time Complexity
G-G and RNG are classical algorithms among the target localization approaches in

WSNs, and a rough boundary can be found by them, similar to the CCOL. However, the
CCOL is better than others in terms of the cost of time or execution. In Table 1, we find the
merits of CCOL.

Table 1. Performance comparison.

Algorithm Time Complexity Recursion

G-G O(nlogn) Yes
RNG O(n3) No

CCOL O(n2) No

(i) G-G is lower than CCOL in terms of time complexity. However, the cost of the G-G
is much more than the others because of the recursive call.

(ii) However, while RNG executes in the same manner as CCOL, the time complexity
of O(n3) is higher than that of G-G and CCOL.

What needs to be emphasized is that G-G and RNG are based on geometry theory;
however, the CCOL is generally based on grids. There may be some differences between
them. If we want to obtain more accurate SAs, a precise algorithm must be employed to
address the results of these algorithms.

Despite the advantages of CCOL compared with G-G and RNG, CCOL’s time com-
plexity is still O(n2) which can be further optimized, while CCOL is usually deployed on
high-performance devices such as remote servers or edge servers, considering the low-



Electronics 2022, 11, 1031 19 of 21

coupling correlation of grid data in the convolution process, parallelized program may be a
better optimization solution whose time complexity is not changed nevertheless.

(2) Energy consumption of the WSN
In comparison to other algorithms, the CCOL proposed in this article might prolong

the lifetime of the network. All of the WSNs will lose the same energy to complete
the collection, transmission and so on. In the same network topology, other algorithms
increasingly need more nodes to participate, but the CCOL does not. Most jobs of CCOL
are finished on the center nodes or cloud servers; therefore, it is not necessary for any nodes
to cooperate. Consequently, this approach could improve the utilization of the sensors
in WSNs.

(3) Energy Comparison of MNs
In the experiment in this essay, each node is set at 4000 points as the initial energy,

and the energy consumption is calculated according to the distance (E(d) = dis(p1, p2))
from the service node to the SA. Figure 11 is the energy change of different numbers of
nodes. Judging from the changing trend, as the number of mobile nodes increases, their
total energy consumption tends to decrease dramatically.

(i) The change is obvious from 1 to 4, but this trend becomes gentle with the increase
in the number of nodes.

(ii) When the number of MNs reaches 8, there are two service nodes that are not
working, which is a waste of resources.
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Figure 11. Trend of energy consumption.

Given all of the above, the advantages of the algorithm of CCOL and the MSNS are
manifest, and they are also feasible in practical applications. The experimental data also
support this viewpoint; however, there are some promotion and improvements for CCOL
and MSNS. For example, although CCOL could acquire the position of the continuous
targets efficiently in the network based on the data on the sensors in the grid, the accuracy
of the target boundary depends on the resolution of the mesh. In other words, if the
resolution is small, the area covered by the grid become too large, respectively, which may
cause a large error in the contour of the continuous target, but this defect will be avoided
by increasing the resolution of the grid; In addition, the performance of the greedy node
scheduling algorithm is restricted by the number of target area and nodes participating in
the scheduling, and MSNS is difficult to adapt to certain special scenario such as constantly
changing networks or unknown number of available resources, and so on. Therefore, a
more flexible and optimized algorithm is desired in the follow-up work. We are preparing
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to use interpolation to improve our algorithm to reduce the impact of mesh roughness on
positioning accuracy.

6. Conclusions

This essay proposes a convolution-based localization method and multi-mobile service
node scheduling approach that are applied to continuous targets in WSNs. From the
simulation experiment, the method and approach show potential in effectively solving the
above problems. The main conclusions can be summarized in the following aspects:

(1) Convolution can conveniently address the issue of matrix deflation in WSNs.
(2) At a certain network scale, the number of mobile nodes that can be utilized in

schedules can be found in a reasonable interval.
(3) There is some information loss during the convolution, but the degree is related to

the size of the CKM.
Ultimately, although the localization and detection of continuous targets is a challeng-

ing issue in WSNs, this paper introduces convolution into continuous target localization
and demonstrates the rationality of this approach. This type of method might also play
a more efficient role in sensor data processing and fusion with the development of self-
learning and AI in WSNs. However, there are a few limitations in CCOL and the current
multi-node scheduling model that demand future research effort. Firstly, in order to delin-
eate the position of the continuous targets more accurately in WSNs, some algorithms to
refine the boundary of targets should be intensely studied in the following works, which
can enhance the application value of CCOL in practice. Secondly, it is necessary to explore
a dynamic model that can adapt to more complex network scheduling by improving the
existing model (MSSM), so that the constraint relationship between the network scale,
the number of targets and the number of nodes participating in the scheduling should be
formulated precisely in our future research.
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