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Abstract
Attention mechanisms in neural networks have

proved useful for problems in which the input

and output do not have fixed dimension. Often

there exist features that are locally translation in-

variant and would be valuable for directing the

model’s attention, but previous attentional archi-

tectures are not constructed to learn such features

specifically. We introduce an attentional neural

network that employs convolution on the input to-

kens to detect local time-invariant and long-range

topical attention features in a context-dependent

way. We apply this architecture to the problem

of extreme summarization of source code snip-

pets into short, descriptive function name-like

summaries. Using those features, the model se-

quentially generates a summary by marginalizing

over two attention mechanisms: one that predicts

the next summary token based on the attention

weights of the input tokens and another that is

able to copy a code token as-is directly into the

summary. We demonstrate our convolutional at-

tention neural network’s performance on 10 pop-

ular Java projects showing that it achieves bet-

ter performance compared to previous attentional

mechanisms.

1. Introduction

Deep learning for structured prediction problems, in which

a sequence (or more complex structure) of predictions need

to be made given an input sequence, presents special dif-

ficulties, because not only are the input and output high-

dimensional, but the dimensionality is not fixed in ad-

vance. Recent research has tackled these problems us-

ing neural models of attention (Mnih et al., 2014), which

†Work partially done while author was as an intern at the Uni-
versity of Edinburgh.

have had great recent successes in machine translation

(Bahdanau et al., 2015) and image captioning (Xu et al.,

2015). Attentional models have been successful because

they separate two different concerns: predicting which in-

put locations are most relevant to each location of the out-

put; and actually predicting an output location given the

most relevant inputs.

In this paper, we suggest that many domains contain

translation-invariant features that can help to determine the

most useful locations for attention. For example, in a re-

search paper, the sequence of words “in this paper, we sug-

gest” often indicates that the next few words will be im-

portant to the topic of the paper. As another example, sup-

pose a neural network is trying to predict the name of a

method in the Java programming language from its body.

If we know that this method name begins with get and

the method body contains a statement return ____ ; ,

then whatever token fills in the blank is likely to be useful

for predicting the rest of the method name. Previous ar-

chitectures for neural attention are not constructed to learn

translation-invariant features specifically.

We introduce a neural convolutional attentional model, that

includes a convolutional network within the attention mech-

anism itself. Convolutional models are a natural choice

for learning translation-invariant features while using only

a small number of parameters and for this reason have

been highly successful in non-attentional models for im-

ages (LeCun et al., 1998; Krizhevsky et al., 2012) and text

classification (Blunsom et al., 2014). But to our knowledge

they have not been applied within an attentional mecha-

nism. Our model uses a set of convolutional layers —

without any pooling — to detect patterns in the input and

identify “interesting” locations where attention should be

focused.

We apply this network to an “extreme” summarization prob-

http://arxiv.org/abs/1602.03001v2
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lem: We ask the network to predict a short and descriptive

name of a source code snippet (e.g. a method body) given

solely its tokens. Source code has two distinct roles: it not

only is a means of instructing a CPU to perform a compu-

tation but also acts as an essential means of communica-

tion among developers who need to understand, maintain

and evolve software systems. For these reasons, software

engineering research has found that good names are impor-

tant to developers (Liblit et al., 2006; Takang et al., 1996;

Binkley et al., 2013). Additionally, learning to summarize

source code has important applications in software engi-

neering, such as in code understanding and in code search.

The highly structured form of source code makes convo-

lution naturally suited for the purpose of extreme summa-

rization. Our choice of problem is inspired by previous

work (Allamanis et al., 2015a) that tries to name existing

methods (functions) using a large set of hard-coded fea-

tures, such as features from the containing class and the

method signature. But these hard-coded features may not

be available for arbitrary code snippets and in dynamically

typed languages. In contrast, in this paper we consider a

more general problem: given an arbitrary snippet of code

— without any hard-coded features — provide a summary,

in the form of a descriptive method name.

This problem resembles a summarization task, where the

method name is viewed as the summary of the code. How-

ever, extreme source code summarization is drastically dif-

ferent from natural language summarization, because un-

like natural language, source code is unambiguous and

highly structured. Furthermore, a good summary needs to

explain how the code instructions compose into a higher-

level meaning and not naïvely explain what the code does.

This necessitates learning higher-level patterns in source

code that uses both the structure of the code and the iden-

tifiers to detect and explain complex code constructs. Our

extreme summarization problem may also be viewed as a

translation task, in the same way that any summarization

problem can be viewed as translation. But a significant dif-

ference from translation is that the input source code se-

quence tends to be very large (72 on average in our data)

and the output summary very small (3 on average in our

data). The length of the input sequence necessitates the ex-

traction of both temporally invariant attention features and

topical sentence-wide features and — as we show in this pa-

per — existing neural machine translation techniques yield

sub-optimal results.

Furthermore, source code presents the challenge of out-of-

vocabulary words. Each new software project and each new

source file introduces new vocabulary about aspects of the

software’s domain, data structures, and so on. This vocab-

ulary often does not appear in the training set. To address

this problem, we introduce a copy mechanism, which uses

the convolutional attentional mechanism to identify impor-

Emt

Kl1

Dw1

RELU

Kl2

k1
w2

ht−1

k2

k2

Kα

Kκ

SOFTMAX
Lfeat attention features

α

κ

attention weight vectorsattention weight vectors

Figure 1. The architecture of the convolutional attentional net-

work. attention_features learns location-specific attention fea-

tures given an input sequence {mi} and a context vector ht−1.

Given these features attention_weights —using a convolutional

layer and a SOFTMAX— computes the final attention weight vec-

tors such as α and κ in this figure.

tant tokens in the input even if they are out-of-vocabulary

tokens that do not appear in the training set. The decoder,

using a meta-attention mechanism, may choose to copy to-

kens directly from the input to the output sequence, resem-

bling the functionality of Vinyals et al. (2015).

The key contributions of our paper are: (a) a novel convo-

lutional attentional network that successfully performs ex-

treme summarization of source code; (b) a comprehensive

approach to the extreme code summarization problem, with

interest both in the machine learning and software engineer-

ing community; and (c) a comprehensive evaluation of four

competing algorithms on real-world data that demonstrates

the advantage of our method compared to standard atten-

tional mechanisms.

2. Convolutional Attention Model

Our convolutional attentional model receives as input a

sequence of code subtokens1
c = [c<S>, c1, . . . cN , c</S>]

and outputs an extreme summary in the form of a con-

cise method name. The summary is a sequence of subto-

kens m = [m<s>,m1 . . .mM ,m</s>], where <s> and </s>

are the special start and end symbols of every subtoken

1Subtokens refer to the parts of a source code token e.g.
getInputStream has the get, Input and Stream subtokens.
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sequence. For example, in the shouldRender method

(top left of Table 3) the input code subtokens are c =
[<S>, try, {, return, render, requested, . . .] while the tar-

get output is m = [<s>, should, render, </s>]. The neural

network predicts each summary subtoken sequentially and

models P (mt|m<s>, . . . ,mt−1, c). Information about the

previously produced subtokens m<s>, . . . ,mt−1 is passed

into a recurrent neural network that represents the input

state with a vector ht−1. Our convolutional attentional neu-

ral network (Figure 1) uses the input state ht−1 and a se-

ries of convolutions over the embeddings of the tokens c

to compute a matrix of attention features Lfeat, (Figure 1)

that contains one vector of attention features for each se-

quence position. The resulting features are used to com-

pute one or more normalized attention vectors (e.g. α in

Figure 1) which are distributions over input token locations

containing a weight (in R
(0,1)) for each subtoken in c. Fi-

nally, given the weights, a context representation is com-

puted and is used to predict the probability distribution over

the targets mi. This model is a generative bimodal model

of summary text given a code snippet.

2.1. Learning Attention Features

We describe our model from the bottom-up (Figure 1).

First we discuss how to compute the attention features

Lfeat from the input c and the previous hidden state

ht−1. The basic building block of our model is a convo-

lutional network (LeCun et al., 1990; Collobert & Weston,

2008) for extracting position and context-dependent fea-

tures. The input to attention_features is a sequence of

code subtokens c of length LEN(c) and each location is

mapped to a matrix of attention features Lfeat, with size

(LEN(c) + const)× k2 where the const is a fixed amount

of padding. The intuition behind attention_features is that

given the input c, it uses convolution to compute k2 fea-

tures for each location. By then using ht−1 as a multiplica-

tive gating-like mechanism, only the currently relevant fea-

tures are kept in L2. In the final stage, we normalize L2.

attention_features is described with the following pseu-

docode:

attention_features (code tokens c, context ht−1)

C ← LOOKUPANDPAD(c, E)

L1 ← RELU(CONV1D(C, Kl1))

L2 ← CONV1D(L1,Kl2)⊙ ht−1

Lfeat ← L2/ ‖L2‖2
return Lfeat

Here E ∈ R
|V |×D contains the D dimensional embed-

ding of each subtoken in names and code (i.e. all possi-

ble cis and mis). The two convolution kernels are Kl1 ∈
R

D×w1×k1 and Kl2 ∈ R
k1×w2×k2 , where w1, w2 are

the window sizes of the convolutions and RELU refers

to a rectified linear unit (Nair & Hinton, 2010). The vec-

tor ht−1 ∈ R
k2 represents information from the previ-

ous subtokens m0 . . .mt−1. CONV1D performs a one-

dimensional (throughout the length of sentence c) narrow

convolution. Note that the input sequence c is padded

by LOOKUPANDPAD. The size of the padding is such

that with the narrow convolutions, the attention vector (re-

turned by attention_weights) has exactly LEN(c) compo-

nents. The ⊙ operator is the elementwise multiplication of

a vector and a matrix, i.e. B = A ⊙ v for v ∈ R
M and

A a M × N matrix, Bij = Aijvi. We found the normal-

ization of L2 into Lfeat to be useful during training. We

believe it helps because of the widely varying lengths of in-

puts c. Note that no pooling happens in this model; the in-

put sequence c is of the same length as the output sequence

(modulo the padding).

To compute the final attention weight vector — a vector

with non-negative elements and unit norm — we define at-
tention_weights as a function that accepts Lfeat from at-
tention_features and a convolution kernel K of size k2 ×
w3×1. attention_weights returns the normalized attention

weights vector with length LEN(c) and is described by the

following pseudocode:

attention_weights (attention features Lfeat, kernel K)

return SOFTMAX(CONV1D(Lfeat,K))

Computing the State ht. Predicting the full summary m

is a sequential prediction problem, where each subtokenmt

is sequentially predicted given the previous state contain-

ing information about the previous subtokens m0 . . .mt−1.

The state is passed through ht ∈ R
k2 computed by a Gated

Recurrent Unit (Cho et al., 2014) i.e.

GRU(current input xt, previous state ht−1)

rt ← σ(xtWxr + ht−1Whr + br)
ut ← σ(xtWxu + ht−1Whu + bu)
ct ← tanh(xtWxc + rt ⊙ (ht−1Whc) + bc)
ht ← (1− ut)⊙ ht−1 + ut ⊙ ct

return ht

During testing the next state is computed by ht =
GRU(Emt

,ht−1) i.e. using the embedding of the current

output subtoken mt. For regularization during training, we

use a trick similar to Bengio et al. (2015) and with proba-

bility equal to the dropout rate we compute the next state as

ht = GRU(n̂,ht−1), where n̂ is the predicted embedding.

2.2. Simple Convolutional Attentional Model

We now use the components described above as build-

ing blocks for our extreme summarization model. We

first build conv_attention, a convolutional attentional

model that uses an attention vector α computed from

attention_weights to weight the embeddings of the to-

kens in c and compute the predicted target embedding

n̂ ∈ R
D. It returns a distribution over all subtokens in
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V .

conv_attention (code c, previous state ht−1)

Lfeat ← attention_features(c,ht−1)
α←attention_weights (Lfeat,Katt)
n̂←

∑
i αiEci

n← SOFTMAX(E n̂
⊤ + b)

return TOMAP(n, V )

where b ∈ R
|V | is a bias vector and TOMAP returns a

map of each subtoken in vi ∈ V associated with its prob-

ability ni. We train this model using maximum likelihood.

Generating from the model works as follows: starting with

the special m0 = <s> subtoken and h0, at each timestep

t the next subtoken mt is generated using the probabil-

ity distribution n returned by conv_attention (c,ht−1).
Given the new subtoken mt, we compute the next state

ht = GRU(Emt
,ht−1). The process stops when the spe-

cial </s> subtoken is generated.

2.3. Copy Convolutional Attentional Model

We extend conv_attention by using an additional attention

vector κ as a copying mechanism that can suggest out-of-

vocabulary subtokens. In our data a significant proportion

of the output subtokens (about 35%) appear in c. Motivated

by this, we extend conv_attention and allow a direct copy

from the input sequence c into the summary. Now the net-

work when predictingmt, with probabilityλ copies a token

from c into mt and with probability 1 − λ predicts the tar-

get subtoken as in conv_attention. Essentially, λ acts as

a meta-attention. When copying, a token ci is copied into

mt with probability equal to the attention weight κi. The

process is the following:

copy_attention (code c, previous state ht−1)

Lfeat ← attention_features (c,ht−1)
α←attention_weights (Lfeat,Katt)
κ←attention_weights (Lfeat,Kcopy)
λ← max(σ(CONV1D(Lfeat,Kλ)))
n̂←

∑
i αiEci

n← SOFTMAX(E n̂
⊤ + b)

return λPOS2VOC(κ, c) + (1− λ)TOMAP(n, V )

where σ is the sigmoid function, Katt, Kcopy and Kλ

are different convolutional kernels, n ∈ R
|V |, α,κ ∈

R
LEN(c), POS2VOC returns a map of each subtoken in c

(which may include out-of-vocabulary tokens) to the prob-

abilities κi assigned by the copy mechanism. Finally, the

predictions of the two attention mechanisms are merged, re-

turning a map that contains all potential target subtokens

in V ∪ c and interpolating over the two attention mech-

anisms, using the meta-attention weight λ. Note that α

and κ are analogous attention weights but are computed

from different kernels, and that n is computed exactly as in

conv_attention.

Objective. To obtain signal for the copying mechanism

and λ, we input to copy_attention a binary vector Ic=mt

of size LEN(c) where each component is one if the code

subtoken is identical to the current target subtoken mt. We

can then compute the probability of a correct copy over the

marginalization of the two mechanisms, i.e.

P (mt|ht−1, c) = λ
∑

i

κiIci=mt
+ (1 − λ)µrmt

where the first term is the probability of a correct copy

(weighted by λ) and the second term is the probability of

the target token mt (weighted by 1−λ). We use µ ∈ (0, 1]
to penalize the model when the simple attention predicts

an UNK but the subtoken can be predicted exactly by the

copy mechanism, otherwise µ = 1. We arbitrarily used

µ = e−10, although variations did not affect performance.

2.4. Predicting Names

To predict a full method name, we use a hybrid breath-

first search and beam search. We start from the special

m0 = <s> subtoken and maintain a (max-)heap of the high-

est probability partial predictions so far. At each step, we

pick the highest probability prediction and predict its next

subtokens, pushing them back to the heap. When the </s>

subtoken is generated the suggestion is moved onto the list

of suggestions. Since we are interested in the top k sugges-

tions, at each point, we prune partial suggestions that have

a probability less than the current best kth full suggestion.

To make the process tractable, we limit the partial sugges-

tion heap size and stop iterating after 100 steps.

3. Evaluation

Dataset Collection. We are interested in the extreme sum-

marization problem where we summarize a source code

snippet into a short and concise method-like name. Al-

though such a dataset does not exist for arbitrary snippets of

source code, it is natural to consider existing method (func-

tion) bodies as our snippets and the method names picked

by the developers as our target extreme summaries.

To collect a good dataset of good quality, we cloned 11

open source Java projects from GitHub. We obtained the

most popular projects by taking the sum of the z-scores

of the number of watchers and forks of each project, us-

ing GHTorrent (Gousios & Spinellis, 2012). We selected

the top 11 projects that contained more than 10MB of

source code files each and use libgdx as a development

set. These projects have thousands of forks and stars, being

widely known among software developers. The projects

along with short descriptions are shown in Table 1. We

used this procedure to select a mature, large, and diverse

corpus of real source code. For each file, we extract the

Java methods, removing methods that are overridden, are

http://github.com
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abstract or are the constructors of a class. We find the

overridden methods by an approximate static analysis that

checks for inheritance relationships and the @Override

annotation. Overridden methods are removed, since they

are highly repetitive and their names are easy to predict.

Any full tokens that are identical to the method name

(e.g. in recursion) are replaced with a special SELF to-

ken. We split and lowercase each method name and code

token into subtokens {mi} and {ci} on camelCase and

snake_case. The dataset and code can be found at

groups.inf.ed.ac.uk/cup/codeattention.

Experimental Setup. To measure the quality of our sug-

gestions we compute two scores. Exact match is the per-

centage of the method names predicted exactly, while the

F1 score is computed in a per-subtoken basis. When sug-

gesting summaries, each model returns a ranked list. We

compute exact match and F1 at rank 1 and 5, as the best

score achieved by any one of the top suggestions (i.e. if the

fifth suggestion achieves the best F1 score, we use this one

for computing F1 at rank 5). Using BLEU (Papineni et al.,

2002) would have been possible, but it would not be differ-

ent from F1 given the short lengths of our output sequences

(3 on average). We use each project separately, training one

network for each project and testing on the respective test

set. This is because each project’s domain varies widely

and little information can be transferred among them, due

to the principle of code reusability of software engineering.

We note that we attempted to train a single model using

all project training sets but this yielded significantly worse

results for all algorithms. For each project, we split the

files (top-level Java classes) uniformly at random into train-

ing (65%), validation (5%) and test (30%) sets. We op-

timize hyperparameters using Bayesian optimization with

Spearmint (Snoek et al., 2012) maximizing F1 at rank 5.

For comparison, we use two algorithms: a tf-idf algorithm

that computes a tf-idf vector from the code snippet subto-

kens and suggests the names of the nearest neighbors using

cosine similarity. We also use the standard attention model

of Bahdanau et al. (2015) that uses a biRNN and fully con-

nected components, that has been successfully used in ma-

chine translation. We perform hyperparameter optimiza-

tions following the same protocol on libgdx.

Training. To train conv_attention and copy_attention
we optimize the objective using stochastic gradient

descent with RMSProp and Nesterov momentum

(Sutskever et al., 2013; Hinton et al., 2012). We use

dropout (Srivastava et al., 2014) on all parameters, para-

metric leaky RELUs (Maas et al., 2013; He et al., 2015)

and gradient clipping. Each of the parameters of the model

is initialized with normal random noise around zero, except

for b that is initialized to the log of the empirical frequency

of each target token in the training set. For conv_attention

the optimized hyperparameters are k1 = k2 = 8, w1 = 24,

w2 = 29, w3 = 10, dropout rate 50% and D = 128.

For copy_attention the optimized hyperparameters are

k1 = 32, k2 = 16, w1 = 18, w2 = 19, w3 = 2, dropout

rate 40% and D = 128.

3.1. Quantitative Evaluation

Table 1 shows the F1 scores achieved by the different meth-

ods for each project while Table 2 shows a quantitative eval-

uation, averaged across all projects. “Standard Attention”

refers to the machine translation model of Bahdanau et al.

(2015). The tf-idf algorithm seems to be performing very

well, showing that the bag-of-words representation of the

input code is a strong indicator of its name. Interestingly,

the standard attention model performs worse than tf-idf

in this domain, while conv_attention and copy_attention
perform the best. The copy mechanism gives a good F1

improvement at rank 1 and a larger improvement at rank

5. Although our convolutional attentional models have an

exact match similar to tf-idf, they achieve a much higher

precision compared to all other algorithms.

These differences in the data characteristics could be the

cause of the low performance achieved by the model of

Bahdanau et al. (2015). Although source code snippets re-

semble natural language sentences, they are more struc-

tured, much longer and vary greatly in length. In our train-

ing sets, each method has on average 72 tokens (median

25 tokens, standard deviation 156) and the output method

names are made up from 3 subtokens on average (σ = 1.7).

OOV Accuracy. We measure the out-of-vocabulary

(OOV) word accuracy as the percentage of the out-

of-vocabulary subtokens that are correctly predicted by

copy_attention. On average, across our dataset, 4.4% of

the test method name subtokens are OOV. Naturally, the

standard attention model and tf-idf have an OOV accuracy

of zero, since they are unable to predict those tokens. On

average we get a 10.5% OOV accuracy at rank 1 and 19.4%

at rank 5. This shows that the copying mechanism is useful

in this domain and especially in smaller projects that tend

to have more OOV tokens. We also note that OOV accuracy

varies across projects, presumably due to different coding

styles.

Topical vs. Time-Invariant Feature Detection. The dif-

ference of the performance between the copy_attention
and the standard attention model of Bahdanau et al. (2015)

raises an interesting question. What does copy_attention
learn that cannot be learned by the standard attention

model? One hypothesis is that the biRNN of the standard

attention model fails to capture long-range features, espe-

cially in very long inputs. To test our hypothesis, we shuffle

the subtokens in libgdx, essentially removing all features

that depend on the sequential information. Without any lo-

http://groups.inf.ed.ac.uk/cup/codeattention/
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Project Name Git SHA Description

F1

tf-idf Standard Attention conv_attention copy_attention
Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

cassandra 53e370f Distributed Database 40.9 52.0 35.1 45.0 46.5 60.0 48.1 63.1
elasticsearch 485915b REST Search Engine 27.8 39.5 20.3 29.0 30.8 45.0 31.7 47.2
gradle 8263603 Build System 30.7 45.4 23.1 37.0 35.3 52.5 36.3 54.0
hadoop-common 42a61a4 Map-Reduce Framework 34.7 48.4 27.0 45.7 38.0 54.0 38.4 55.8
hibernate-orm e65a883 Object/Relational Mapping 53.9 63.6 49.3 55.8 57.5 67.3 58.7 69.3
intellij-community d36c0c1 IDE 28.5 42.1 23.8 41.1 33.1 49.6 33.8 51.5
liferay-portal 39037ca Portal Framework 59.6 70.8 55.4 70.6 63.4 75.5 65.9 78.0
presto 4311896 Distributed SQL query engine 41.8 53.2 33.4 41.4 46.3 59.0 46.7 60.2
spring-framework 826a00a Application Framework 35.7 47.6 29.7 41.3 35.9 49.7 36.8 51.9
wildfly c324eaa Application Server 45.2 57.7 32.6 44.4 45.5 61.0 44.7 61.7

Table 1. Open source Java projects used and F1 scores achieved. Standard attention refers to the model of Bahdanau et al. (2015).

F1 (%) Exact Match (%) Precision (%) Recall (%)
Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

tf-idf 40.0 52.1 24.3 29.3 41.6 55.2 41.8 51.9
Standard Attention 33.6 45.2 17.4 24.9 35.2 47.1 35.1 42.1
conv_attention 43.6 57.7 20.6 29.8 57.4 73.7 39.4 51.9
copy_attention 44.7 59.6 23.5 33.7 58.9 74.9 40.1 54.2

Table 2. Evaluation metrics averaged across projects. Standard Attention refers to the work of Bahdanau et al. (2015).

cal features all models should reduce to achieving perfor-

mance similar to tf-idf. Indeed, copy_attention now has

an F1 at rank 1 that is +1% compared to tf-idf (presumably

thanks to the language model-like structure of the output),

while the standard attention model worsens its performance

getting an F1 score (rank 1) of 26.2%, compared to the orig-

inal 41.8%. This suggests that the biRNN fails to capture

long-range topical attention features.

A simpler ht−1. Since the target summaries are quite

short, we tested a simpler alternative to the GRU, assigning

ht−1 = W × [Gmt−1
, Gmt−2

], where G ∈ R
D×|V | is a

new embedding matrix (different from the embeddings in

E) and W is a k2×D×2 tensor. This model is simpler and

slightly faster to train and achieves similar performance to

copy_attention, reducing F1 by less than 1%.

3.2. Qualitative Evaluation

Figure 2 shows a visualization of a small method that il-

lustrates how copy_attention typically works. At the first

step, it focuses its attention at the whole method and de-

cides upon the first subtoken. In a large number of cases

this includes subtokens such as get, set, is, create

etc. In the next steps the meta-attention mechanism is

highly confident about the copying mechanism (λ = 0.97
in Figure 2) and sequentially copies the correct subtokens

from the code snippet into the name. We note that across

many examples the copying mechanism tends to have a sig-

nificantly more focused attention vector κ, compared to the

attention vectorα. Presumably, this happens because of the

different training signals of the attention mechanisms.

A second example of copy_attention is seen in Figure 3.

Although due to space limitations this is a relatively short

method, it illustrates how the model has learned both time-

invariant features and topical features. It correctly detects

the == operator and predicts that the method has a high

probability of starting with is. Furthermore, in the next

step (prediction of the m2 bullets subtoken) it success-

fully learns to ignore the e prefix (prepended on all enu-

meration variables in that project) and the flag subtoken

that does not provide useful information for the summary.

Table 3 presents a set of hand-picked examples from

libgdx that show interesting challenges of the domain

and how our copy_attention handles them. Understand-

ably, the model does not distinguish between should and

is — both implying a boolean return value — and in-

stead of shouldRender, isRender is suggested. The

getAspectRatio, surfaceArea and minRunLength

examples show the challenges of describing a previ-

ously unseen abstraction. Interestingly, the model cor-

rectly recognizes that a novel (UNK) token should be pre-

dicted after get in getAspectRatio. Most surprisingly,

reverseRange is predicted correctly, because of the struc-

ture of the code, even though no code tokens contain the

summary subtokens.

4. Related Work

Convolutional neural networks have been used for image

classification with great success (Krizhevsky et al., 2012;

Szegedy et al., 2015; LeCun et al., 1990; 1998). More

related to this work is the use of convolutional neural
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boolean shouldRender() void reverseRange(Object[] a, int lo, int hi)

try {
return renderRequested||isContinuous;

} finally {
renderRequested = false;

}

hi--;
while (lo < hi) {
Object t = a[lo];
a[lo++] = a[hi];
a[hi--] = t;

}

Suggestions: ◮is,render (27.3%)

◮is,continuous (10.6%) ◮is,requested (8.2%)

◮render,continuous (6.9%) ◮get,render (5.7%)

Suggestions: ◮reverse,range (22.2%) ◮reverse (13.0%)

◮reverse,lo (4.1%) ◮reverse,hi (3.2%)

◮merge,range (2.0%)

int createProgram() VerticalGroup right()

GL20 gl = Gdx.gl20;
int program = gl.glCreateProgram();
return program != 0 ? program : -1;

align |= Align.right;
align &= ~Align.left;
return this;

Suggestions: ◮create (18.36%) ◮init (7.9%)

◮render (5.0%) ◮initiate (5.0%) ◮load (3.4%)

Suggestions: ◮left (21.8%) ◮top (21.1%) ◮right (19.5%)

◮bottom (18.5%) ◮align (3.7%)

boolean isBullet() float getAspectRatio()

return (m_flags & e_bulletFlag)
== e_bulletFlag;

return (height == 0) ?
Float.NaN : width / height;

Suggestions: ◮is (13.5%) ◮is,bullet (5.5%)

◮is,enable (5.1%) ◮enable (2.8%) ◮mouse (2.7%)

Suggestions: ◮get,UNK (9.0%) ◮get,height (8.7%)

◮get,width (6.5%) ◮get (5.7%) ◮get,size (4.2%)

int minRunLength(int n) JsonWriter pop()

if (DEBUG) assert n >= 0;
int r = 0;
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;

}
return n + r;

if (named) throw
new IllegalStateException(UNKSTRING);

stack.pop().close();
current = stack.size == 0 ?

null : stack.peek();
return this;

Suggestions: ◮min (43.7%) ◮merge (13.0%)

◮pref (1.9%) ◮space (1.0%) ◮min,all (0.8%)

Suggestions: ◮close (21.4%) ◮pop (10.2%) ◮first (6.5%)

◮state (3.8%) ◮remove (2.2%)

Rectangle setPosition(float x, float y) float surfaceArea()

this.x = x;
this.y = y;
return this;

return 4 * MathUtils.PI *
this.radius * this.radius;

Suggestions: ◮set (54.0%) ◮set,y (12.8%)

◮set,x (9.0%) ◮set,position (8.6%)

◮set,bounds (1.68%)

Suggestions: ◮dot,radius (26.5%) ◮dot (13.1%)

◮crs,radius (9.0%) ◮dot,circle (6.5%) ◮crs (4.1%)

Table 3. A sample of handpicked snippets (the sample is necessarily limited to short methods because of space limitations) and the

respective suggestions that illustrate some interesting challenges of the domain and how the copy_attention model handles them or

fails. Note that the algorithms do not have access to the signature of the method but only to the body. Examples taken from the libgdx

Android/Java graphics library test set.
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Target Attention Vectors λ

m1 set
α = <s> { this . use Browser Cache = use Browser Cache ; } </s>

0.012
κ = <s> { this . use Browser Cache = use Browser Cache ; } </s>

m2 use
α = <s> { this . use Browser Cache = use Browser Cache ; } </s>

0.974
κ = <s> { this . use Browser Cache = use Browser Cache ; } </s>

m3 browser
α = <s> { this . use Browser Cache = use Browser Cache ; } </s>

0.969
κ = <s> { this . use Browser Cache = use Browser Cache ; } </s>

m4 cache
α = <s> { this . use Browser Cache = use Browser Cache ; } </s>

0.583
κ = <s> { this . use Browser Cache = use Browser Cache ; } </s>

m5 END
α = <s> { this . use Browser Cache = use Browser Cache ; } </s>

0.066
κ = <s> { this . use Browser Cache = use Browser Cache ; } </s>

Figure 2. Visualization of copy_attention used to compute P (mt|m0 . . .mt−1, c) for setUseBrowserCache in libgdx. The darker the

color of a subtoken, they higher its attention weight. This relationship is linear. Yellow indicates the convolutional attention weight of the

conv_attention component, while purple the attention of the copy mechanism. Since the values of α are usually spread across the tokens

the colors show a normalized α, i.e. α/ ‖α‖
∞

. In contrast, the copy attention weights κ are usually very peaky and we plot them as-is.

Underlined subtokens are out-of-vocabulary. λ shows the meta-attention probability of using the copy attention κ vs. the convolutional

attention α. More visualizations of libgdx methods can be found at http://groups.inf.ed.ac.uk/cup/codeattention/.

Target Attention Vectors λ

m1 is
α = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

0.012
κ = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

m2 bullet
α = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

0.436
κ = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

m3 END
α = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

0.174
κ = <s> { return ( m Flags & e Bullet Flag ) == e Bullet Flag ; } </s>

Figure 3. Visualization of copy_attention modeling P (mt|m0 . . .mt−1, c) for isBullet in libgdx. The copy_attention captures

location-invariant features and the topicality of the input code sequence. For information about the visualization see Figure 2.

networks for text classification (Blunsom et al., 2014).

Closely related is the work of Denil et al. (2014) that

learns representations of documents using convolution but

uses the network activations to summarize a document

rather than an attentional model. Rush et al. (2015) use

an attention-based encoder to summarize sentences, but

do not use convolution for their attention mechanism.

Our work is also related to other work in attention

mechanisms for text (Hermann et al., 2015) and images

(Xu et al., 2015; Mnih et al., 2014) that does not use

convolution to provide the attention values. Pointer

networks (Vinyals et al., 2015) are similar to our copy

mechanism but use an RNN for providing attention.

Finally, distantly related to this work is research on neural

architectures that learn code-like behaviors (Graves et al.,

2014; Zaremba & Sutskever, 2014; Joulin & Mikolov,

2015; Grefenstette et al., 2015; Dyer et al., 2015;

Reed & de Freitas, 2015; Neelakantan et al., 2015).

In recent years, thanks to the insight of Hindle et al. (2012)

the use of probabilistic models for software engineer-

ing applications has grown. Research has mostly fo-

cused on token-level (Nguyen et al., 2013; Tu et al., 2014)

and syntax-level (Maddison & Tarlow, 2014) language

models of code and translation between programming

languages (Karaivanov et al., 2014; Nguyen et al., 2014).

Movshovitz-Attias et al. (2013) learns to predict code com-

ments using a source code topic model. Allamanis et al.

(2015b) create a generative model of source code given a

natural language query and Oda et al. (2015) use machine

translation to convert source code into pseudocode. Closer

to our work, Raychev et al. (2015) aim to predict names

and types of variables, whereas Allamanis et al. (2014) and

Allamanis et al. (2015a) suggest names for variables, meth-

ods and classes. Similar to Allamanis et al. (2015a), we

predict method names but using only the tokens within

a method and no other features (e.g. method signature).

Mou et al. (2016) use syntax-level convolutional neural net-

works to learn vector representations for code and classify

http://groups.inf.ed.ac.uk/cup/codeattention/
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student submissions into tasks without considering nam-

ing. Piech et al. (2015) also learn program embeddings

from student submissions using the program state, to assist

MOOC students debug their submissions but do not con-

sider naming. Additionally, compared to Piech et al. (2015)

and Mou et al. (2016) our work looks into highly diverse,

non-student submission code that performs a wide range of

real-world tasks.

5. Discussion & Conclusions

Modeling and understanding source code artifacts through

machine learning can have a direct impact in software engi-

neering research. The problem of extreme code summariza-

tion is a first step towards the more general goal of devel-

oping machine learning representations of source code that

will allow machine learning methods to reason probabilis-

tically about code resulting in useful software engineering

tools that will help code construction and maintenance.

Additionally, source code — and its derivative artifacts —

represent a new modality for machine learning with very

different characteristics compared to images and natural

language. Therefore, models of source code necessitate re-

search into new methods that could have interesting par-

allels to images and natural language. This work is a

step towards this direction: our neural convolutional atten-

tional model attempts to “understand” the highly-structured

source code text by learning both long-range features and

localized patterns, achieving the best performance among

other competing methods on real-world source code.
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