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Abstract

In real-world face detection, large visual variations,

such as those due to pose, expression, and lighting, de-

mand an advanced discriminative model to accurately dif-

ferentiate faces from the backgrounds. Consequently, ef-

fective models for the problem tend to be computationally

prohibitive. To address these two conflicting challenges,

we propose a cascade architecture built on convolutional

neural networks (CNNs) with very powerful discrimina-

tive capability, while maintaining high performance. The

proposed CNN cascade operates at multiple resolutions,

quickly rejects the background regions in the fast low res-

olution stages, and carefully evaluates a small number of

challenging candidates in the last high resolution stage. To

improve localization effectiveness, and reduce the number

of candidates at later stages, we introduce a CNN-based

calibration stage after each of the detection stages in the

cascade. The output of each calibration stage is used to

adjust the detection window position for input to the sub-

sequent stage. The proposed method runs at 14 FPS on a

single CPU core for VGA-resolution images and 100 FPS

using a GPU, and achieves state-of-the-art detection per-

formance on two public face detection benchmarks.

1. Introduction

Face detection is a well studied problem in computer vi-

sion. Modern face detectors can easily detect near frontal

faces. Recent research in this area focuses more on the

uncontrolled face detection problem, where a number of

factors such as pose changes, exaggerated expressions and

extreme illuminations can lead to large visual variations in

face appearance, and can severely degrade the robustness of

the face detector.

The difficulties in face detection mainly come from two

aspects: 1) the large visual variations of human faces in the

cluttered backgrounds; 2) the large search space of possi-

ble face positions and face sizes. The former one requires

the face detector to accurately address a binary classifica-

tion problem while the latter one further imposes a time ef-

ficiency requirement.

Ever since the seminal work of Viola et al. [27], the

boosted cascade with simple features becomes the most

popular and effective design for practical face detection.

The simple nature of the features enable fast evaluation and

quick early rejection of false positive detections. Mean-

while, the boosted cascade constructs an ensemble of the

simple features to achieve accurate face vs. non-face clas-

sification. The original Viola-Jones face detector uses the

Haar feature which is fast to evaluate yet discriminative

enough for frontal faces. However, due to the simple nature

of the Haar feature, it is relatively weak in the uncontrolled

environment where faces are in varied poses, expressions

under unexpected lighting.

A number of improvements to the Viola-Jones face de-

tector have been proposed in the past decade [30]. Most

of them follow the boosted cascade framework with more

advanced features. The advanced feature helps construct a

more accurate binary classifier at the expense of extra com-

putation. However, the number of cascade stages required

to achieve the similar detection accuracy can be reduced.

Hence the overall computation may remain the same or even

reduced because of fewer cascade stages.

This observation suggests that it is possible to apply

more advanced features in a practical face detection solu-

tion as long as the false positive detections can be rejected

quickly in the early stages. In this work, we propose to ap-

ply the Convolutional Neural Network (CNN) [13] to face

detection. Compared with the previous hand-crafted fea-

tures, CNN can automatically learn features to capture com-

plex visual variations by leveraging a large amount of train-

ing data and its testing phase can be easily parallelized on

GPU cores for acceleration.

Considering the relatively high computational expense

of the CNNs, exhaustively scanning the full image in mul-

tiple scales with a deep CNN is not a practical solution.

To achieve fast face detection, we present a CNN cascade,
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which rejects false detections quickly in the early, low-

resolution stages and carefully verify the detections in the

later, high-resolution stages. We show that this intuitive so-

lution can outperform the state-of-the-art methods in face

detection. For typical VGA size images, our detector runs

in 14 FPS on single CPU core and 100 FPS on a GPU card 1.

In this work, our contributions are four-fold:

• we propose a CNN cascade for fast face detection;

• we introduce a CNN-based face bounding box calibra-

tion step in the cascade to help accelerate the CNN cas-

cade and obtain high quality localization;

• we present a multi-resolution CNN architecture that

can be more discriminative than the single resolution

CNN with only a fractional overhead;

• we further improve the state-of-the-art performance on

the Face Detection Data Set and Benchmark (FDDB)

[7].

2. Related Work

2.1. Neural network based face detection

Early in 1994 Vaillant et al. [26] applied neural networks

for face detection. In their work, they proposed to train a

convolutional neural network to detect the presence or ab-

sence of a face in an image window and scan the whole

image with the network at all possible locations. In 1996,

Rowley et al. [22] presented a retinally connected neural

network for upright frontal face detection. The method

was extended for rotation invariant face detection later in

1998 [23] with a “router” network to estimate the orienta-

tion and apply the proper detector network.

In 2002 Garcia et al. [5] developed a neural network to

detect semi-frontal human faces in complex images; in 2005

Osadchy et al. [20] trained a convolutional network for si-

multaneous face detection and pose estimation.

It is unknown how these detectors perform in today’s

benchmarks with faces in uncontrolled environments. Nev-

ertheless, given recent break-through results of CNNs [13]

for image classification [24] and object detection [3], it is

worth to revisit the neural network based face detection.

One of the recent CNN based detection method is the

R-CNN by Girshick et al. [6] which has achieved the state-

of-the-art result on VOC 2012. R-CNN follows the “recog-

nition using regions” paradigm. It generates category-

independent region proposals and extracts CNN features

from the regions. Then it applies class-specific classifiers

to recognize the object category of the proposals.

Compared with the general object detection task, un-

controlled face detection presents different challenges that

make it impractical to directly apply the R-CNN method to

face detection. For example, the general object proposal

1Intel Xeon E5-2620 2.00GHz CPU and GeForce GTX TITAN

BLACK GPU with Caffe [9].

methods may not be effective for faces due to small-sized

faces and complex appearance variations.

2.2. Face detection in uncontrolled environments

Previous uncontrolled face detection systems are mostly

based on hand-crafted features. Since the seminal Viola-

Jones face detector [27], a number of variants are proposed

for real-time face detection [10, 17, 29, 30].

Recently within the boosted cascade with simple fea-

tures framework, Chen et al. [2] propose to use the shape

indexed features to jointly conduct face detection and face

alignment. Similar to this idea, we have alternative stages

of calibration and detection in our framework. Considering

the success of CNNs in a number of visual tasks including

the face alignment [31], our framework is more general in

that we can adopt a CNN-based face alignment method to

achieve joint face alignment and detection, and we use CNN

to learn more robust features for faces.

Zhang et al. [32] and Park et al. [21] adopt the multi-

resolution idea in general object detection. While sharing

the similar technique, our method utilizes CNNs as the clas-

sifiers and combines the multi-resolution and calibration

ideas for face detection.

Additionally, the part-based model has motivated a num-

ber of face detection methods. Zhu et al. [33] propose the

tree structured model for face detection which can simul-

taneously achieve the pose estimation and facial landmarks

localization. Yan et al. [28] present a structural model for

face detection. Mathias et al. [19] show that a carefully

trained deformable part-based model [4] achieves state-of-

the-art detection accuracy.

Different from these model-based methods, Shen et

al. [25] propose to detect faces by image retrieval. Li et

al. [15] further improve it to a boosted exemplar-based face

detector with state-of-the-art performance.

Compared with these face detection systems, our work

learns the classifier directly from the image instead of re-

lying on hand-crafted features. Hence we benefit from the

powerful features learned by the CNN to better differenti-

ate faces from highly cluttered backgrounds. Meanwhile,

our detector is many times faster than the model-based

and exemplar-based detection systems and has a frame rate

comparable to the classical boosted cascade with simple

features. Sharing the advantages of the CNN, our detector

is easy to be parallelized on GPU for much faster detection.

3. Convolutional Neural Network Cascade

We present a specific design of our detector here for

a clear explanation of the proposed method. In practice,

the CNN cascade can have varied settings for accuracy-

computation trade off.
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Figure 1: Test pipeline of our detector: from left to right, we show how the detection windows (green squares) are reduced

and calibrated from stage to stage in our detector. The detector runs on a single scale for better viewing.

3.1. Overall framework

The overall test pipeline of our face detector is shown in

Figure 1. We briefly explain the work-flow and will intro-

duce all the CNNs in detail later.

Given a test image, the 12-net scans the whole image

densely across different scales to quickly reject more than

90% of the detection windows. The remaining detection

windows are processed by the 12-calibration-net one by one

as 12×12 images to adjust its size and location to approach

a potential face nearby.

Non-maximum suppression (NMS) is applied to elimi-

nate highly overlapped detection windows. The remaining

detection windows are cropped out and resized into 24×24
as input images for the 24-net to further reject nearly 90%
of the remaining detection windows. Similar to the previ-

ous process, the remaining detection windows are adjusted

by the 24-calibration-net and we apply NMS to further re-

duce the number of detection windows.

The last 48-net accepts the passed detection windows

as 48 × 48 images to evaluate the detection windows.

NMS eliminates overlapped detection windows with an

Intersection-Over-Union (IoU) ratio exceeding a pre-set

threshold. The 48-calibration-net is then applied to cali-

brate the residual detection bounding boxes as the outputs.

3.2. CNN structure

There are 6 CNNs in the cascade including 3 CNNs

for face vs. non-face binary classification and 3 CNNs for

bounding box calibration, which is formulated as multi-

class classification of discretized displacement pattern.

In these CNNs, without specific explanation we follow

AlexNet [12] to apply ReLU nonlinearity function after the

pooling layer and fully-connected layer.

3.2.1 12-net

12-net refers to the first CNN in the test pipeline. The struc-

ture of this CNN is shown in Figure 2. 12-net is a very

shallow binary classification CNN to quickly scan the test-

ing image. Densely scanning an image of size W ×H with

4-pixel spacing for 12 × 12 detection windows is equiv-

alent to apply the 12-net to the whole image to obtain a

(⌊(W − 12)/4⌋+ 1)× (⌊(H − 12)/4⌋+ 1) map of confi-

dence scores. Each point on the confidence map refers to a

12× 12 detection window on the testing image.

In practice, if the acceptable minimum face size is F , the

test image is first built into image pyramid to cover faces

at different scales and each level in the image pyramid is

resized by 12

F
as the input image for the 12-net. On a single

CPU core, it takes 12-net less than 36 ms to densely scan

an image of size 800 × 600 for 40 × 40 faces with 4-pixel

spacing, which generates 2, 494 detection windows. The

time reduces to 10 ms on a GPU card, most of which is

overhead in data preparation.

3.2.2 12-calibration-net

12-calibration-net refers to the CNN after 12-net for bound-

ing box calibration. The structure is shown in Figure 4. 12-

calibration-net is a shallow CNN. N calibration patterns are

pre-defined as a set of 3-dimensional scale changes and off-

set vectors {[sn, xn, yn]}
N
n=1

. Given a detection window

(x, y, w, h) with top-left corner at (x, y) of size (w, h), the

calibration pattern adjusts the window to be

(x−
xnw

sn
, y −

ynh

sn
,
w

sn
,
h

sn
). (1)

In this work, we have N = 45 patterns, formed by all com-

binations of

sn ∈ {0.83, 0.91, 1.0, 1.10, 1.21}

xn ∈ {−0.17, 0, 0.17}

yn ∈ {−0.17, 0, 0.17}.

Given a detection window, the region is cropped out and

resized to 12×12 as the input image for the 12-calibration-

net. The calibration net outputs a vector of confidence

scores [c1, c2, · · · , cN ]. Since the calibration patterns are

not orthogonal to each other, we take the average results

of the patterns of high confidence score as the adjustment
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Figure 2: CNN structures of the 12-net, 24-net and 48-net.

[s, x, y], i.e.,

[s, x, y] =
1

Z

N
∑

n=1

[sn, xn, yn]I(cn > t), (2)

Z =
N
∑

n=1

I(cn > t), (3)

I(cn > t) =

{

1, if cn > t
0, otherwise.

(4)

Here t is a threshold to filter out low confident patterns.

In our experiment, we observe that the 12-net and 12-

calibration-net reject 92.7% detection windows while keep-

ing 94.8% recall on FDDB (see Table 1).

3.2.3 24-net

24-net is an intermediate binary classification CNN to fur-

ther reduce the number of detection windows. Remaining

detection windows from the 12-calibration-net are cropped

out and resized into 24 × 24 images and evaluated by the

24-net. The CNN structure is shown in Figure 2.

A similar shallow structure is chosen for time efficiency.

Besides, we adopt a multi-resolution structure in the 24-

net. In additional to the 24 × 24 input, we also feed the

input in 12 × 12 resolution to a sub-structure same as the

12-net in 24-net. The fully-connected layer from the 12-

net sub-structure is concatenated to the 128-output fully-

connected layer for classification as shown in Figure 2.

With this multi-resolution structure, the 24-net is supple-

mented by the information at 12×12 resolution which helps

detect the small faces. The overall CNN becomes more dis-

criminative and the overhead from the 12-net sub-structure

is only a fraction of the overall computation.

In Figure 3, we compare the detection performance with

and without the multi-resolution design in the 24-net. We
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Figure 3: On the Annotated Faces in the Wild dataset, the

detection performance of 24-net with and without the multi-

resolution structure.

observe that at the same recall rate, the one with the multi-

resolution structure can achieve the same recall level with

less false detection windows. The gap is more obvious at

the high recall level.

3.2.4 24-calibration-net

Similar to the 12-calibration-net, 24-calibration-net is an-

other calibration net with N calibration patterns. The struc-

ture is shown in Figure 4. Except for the input size to the

24-calibration-net is 24 × 24, the pre-defined patterns and

the calibration process is same as in the 12-calibration-net.

In our experiment, we observe that the 24-net and 24-

calibration-net can further reject 86.2% detection windows

retained after 24-calibration-net while keeping 89.0% re-

call on FDDB (see Table 1).

3.2.5 48-net

48-net is the last binary classification CNN. At this stage

of the cascade, it is feasible to apply a more powerful but
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Figure 4: CNN structures of the 12-calibration-net, 24-calibration-net and 48-calibration-net.

Figure 5: Calibrated bounding boxes are better aligned to

the faces: the blue rectangles are the most confident detec-

tion bounding boxes of 12-net; the red rectangles are the

adjusted bounding boxes with the 12-calibration-net.

slower CNN. As shown in Figure 2, the 48-net is rela-

tively more complicated. Similar to the 24-net, we adopt

the multi-resolution design in 48-net with additional input

copy in 24× 24 and a sub-structure the same as the 24-net.

3.2.6 48-calibration-net

48-calibration-net is the last stage in the cascade. The CNN

structure is shown in Figure 4. The same N = 45 calibra-

tion patterns are pre-defined for the 48-calibration-net as in

Section 3.2.2. We use only one pooling layer in this CNN

to have more accurate calibration.

3.2.7 Non-maximum suppression (NMS)

We adopt an efficient implementation of the NMS in this

work. We iteratively select the detection window with the

highest confidence score and eliminate the detection win-

dows with an IoU ratio higher than a pre-set threshold to

the selected detection window.

In the 12-net and 24-net, the shallow CNNs may not

be discriminative enough to address challenging false pos-

itives. After the 12-calibration-net and 24-calibration-net,

challenging false positives may have a higher confidence

score compared with the true positives. Hence after 12-

calibration-net and 24-calibration-net, we conservatively

apply NMS separately for the detection windows at the

same scale (of the same size) to avoid degrading the recall

rate. NMS After 48-net is applied globally to all detection

windows at different scales to make most accurate detection

window at the correct scale stand out and avoid redundant

evaluation in the 48-calibration-net.

3.3. CNN for calibration

We explain how the calibration nets help in the cascade

for face detection. The motivation of applying the calibra-

tion is shown in Figure 5. The most confident detection

window may not be well aligned to the face. As a result,

without the calibration step, the next CNN in the cascade

will have to evaluate more regions to maintain a good re-

call. The overall detection runtime increases significantly.

This problem generally exists in object detection. We

explicitly address this problem with CNNs in this work. In-

stead of training a CNN for bounding boxes regression as

in R-CNN, we train a multi-class classification CNN for

calibration. We observe that a multi-class calibration CNN

can be easily trained from limited amount of training data

while a regression CNN for calibration requires more train-

ing data. We believe that the discretization decreases the

difficulty of the calibration problem so that we can achieve

good calibration accuracy with simpler CNN structures. As

shown in Figure 5, after calibration the detection bounding

box is better aligned to the real face center. As a result,

the calibration nets enable more accurate face localization

using coarser scanning windows across less scales.

3.4. Training process

In training the CNNs in the cascade, we collect 5, 800
background images to obtain negative training samples and
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Figure 6: Mismatched face annotations in AFLW and AFW.

use the faces in the Annotated Facial Landmarks in the Wild

(AFLW) [11] dataset as positive training samples.

For both the binary and multi-class classification CNNs

in the cascade, we use the multinomial logistic regression

objective function for optimization in training 2.

3.4.1 Calibration nets

In collecting training data for the calibration nets, we per-

turb the face annotations with the N = 45 calibration pat-

terns in Section 3.2.2. Specifically, for the n-th pattern

[sn, xn, yn], we apply [1/sn,−xn,−yn] (following Equa-

tion 1) to adjust the face annotation bounding box, crop and

resize into proper input sizes (12×12, 24×24 and 48×48).

3.4.2 Detection nets

The detection nets 12-net, 24-net and 48-net are trained

following the cascade structure. We resize all training

faces into 12× 12 and randomly sample 200, 000 non-face

patches from the background images to train the 12-net. We

then apply a 2-stage cascade consists of the 12-net and 12-

calibration-net on a subset of the AFLW images to choose

a threshold T1 at 99% recall rate.

Then we densely scan all background images with the 2-

stage cascade. All detection windows with confidence score

larger than T1 become the negative training samples for the

24-net. 24-net is trained with the mined negative training

samples and all training faces in 24 × 24. After that, we

follow the same process for the 4-stage cascade consists of

the 12-net, 12-calibration-net, 24-net and 24-calibration-

net. We set the threshold T2 to keep 97% recall rate.

Following the same procedure, we mine negative train-

ing samples for the 48-net with the 4-stage cascade on all

the background images. The 48-net is trained with positive

and negative training samples in 48× 48.

At each stage in the cascade, the CNN is trained to ad-

dress a sub-problem which is easier than addressing the face

vs. non-face classification globally. Compared with the de-

sign to have one single CNN to scan the full image for faces,

the cascade makes it possible to have simpler CNNs achieve

the same or even better accuracy.

2We use the cuda-convnet2 [1] CNN implementation.
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Figure 7: On the AFW dataset we compare our performance

with the state-of-the-art methods including TSM [33],

Shen et al. [25], Structured Models [28], HeadHunter [19],

DPM [4, 19], Face.com, Face++ and Picasa.

4. Experiments

We verify the proposed detector on two public face de-

tection benchmarks. On the Annotated Faces in the Wild

(AFW) [33] test set, our detector is comparable to the state-

of-the-art. This small scale test set is almost saturated and

we observe that the evaluation is biased due to the mis-

matched face annotations. On the challenging Face De-

tection Data Set and Benchmark (FDDB) dataset [7], our

detector outperforms the state-of-the-art methods in the dis-

continuous score evaluation. Meanwhile, we show that our

detector can be easily tuned to be a faster version with mi-

nor performance decrease.

4.1. Annotated Faces in the Wild

Annotated Faces in the Wild (AFW) is a 205 images

dataset created by Zhu et al. [33]. We evaluate our detector

on AFW and the precision-recall curves are shown in Fig-

ure 7. Our performance is comparable to the state-the-arts

on this dataset.

As pointed out by Mathias et al. [19], one important

problem in the evaluation of face detection methods is the

mismatch of the face annotations in the training and testing

stages. In our training stage, we generate square annota-

tions to approach the ellipse face annotations on AFLW in

preparing the positive training samples. As shown in Fig-

ure 6, the annotations in AFLW and AFW are mismatched.

In the evaluation on AFW, we follow the remedial

method proposed by Mathias et al. to search for a global

rigid transformation of the detection outputs to maximize

the overlapping ratio with the ground-truth annotations with

the shared evaluation tool [19]. However our annotations

cannot be simply linearly mapped to AFW annotations, af-

ter the global transformation step the mismatches still ex-

ist. Therefore we manually evaluate the output detections

and get better results. All the curated detections are shown



Figure 8: Manually curated detection bounding boxes on AFW: blue boxes are faces mis-evaluated to be false alarms; green

boxes are unannotated faces. These are all detections our approach generated but miss-classified by the evaluation. However,

with our annotation standards, these detections are examined to be true detections.

Table 1: Performance statistics of the cascade on FDDB: we

show the average number of detection windows per image

after each stage and the overall recall rate.

Stage # windows Recall

sliding window 5341.8 95.9%

12-net 426.9 93.9%

12-calibration-net 388.7 94.8%

24-net 60.5 88.8%

24-calibration-net 53.6 89.0%

48-net 33.3 85.8%

global NMS 3.6 82.1%

48-calibration-net 3.6 85.1%

in Figure 8 including unannotated faces and mis-evaluated

faces.

4.2. Face Detection Data Set and Benchmark

The Face Detection Data Set and Benchmark (FDDB)

dataset [7] contains 5, 171 annotated faces in 2, 845 images.

This is a large-scale face detection benchmark with stan-

dardized evaluation process. We follow the required eval-

uation procedure to report our detection performance with

the toolbox provided by the authors.

FDDB uses ellipse face annotations and defines two

types of evaluations: the discontinuous score and contin-

uous score. In the discontinuous score evaluation, it counts

the number of detected faces versus the number of false

alarms. The detection bounding boxes (or ellipses) are re-

garded as true positive only if it has an Intersection-over-

Union (IoU) ratio above 0.5 to a ground-truth face. In the

continuous score evaluation, it evaluates how well the faces

are located by considering the IoU ratio as the matching

metric of the detection bounding box.

We uniformly extend our square detection bounding

boxes vertically by 20% to be upright rectangles on FDDB

to better approach their ellipse annotation. As show in Fig-

ure 9, our detector outperforms the best performance in the

discontinuous score evaluation.

Our detector outputs rectangle outputs while the Head-

Hunter [19] and JointCascade [2] generate ellipse outputs.

For a more fair comparison under the continuous score eval-

uation, we uniformly fit upright ellipses for our rectangle

bounding boxes. For a rectangle in size (w, h), we fit an

upright ellipse at the same center with axis sizes 1.18h
and 1.13w, which most overlapped with the rectangle. As

shown in Figure 9, with the naively fitted ellipses our detec-

tor outperforms the HeadHunter and approaches the Joint-

Cascade under the continuous score evaluation. The perfor-

mance drops a little in the discontinuous score evaluation

due to the inaccurate simple fitting strategy.

The performance of the cascade from stage to stage is

shown Table 1. We observe the number of detection win-

dows decreases quickly and the calibration nets help further

reduce the detection windows and improve the recall.

4.3. Runtime efficiency

One of the important advantages of this work is its run-

time efficiency. In this work, the CNN cascade can achieve

very fast face detection. Furthermore, by simply varying

the thresholds T1,2, one can find a task specific accuracy-

computation trade off. In Figure 11, we show that the per-

formance of a faster version of our detector is comparable

to Picasa on AFW.

In the faster version, we set the thresholds to be aggres-

sively high to reject a large portion of the detection windows

in the early stages. The calibration nets help more in the

faster version by adjusting the bounding boxes back to the

face center to improve recall in the later stage. On average,

only 2.36% detection windows passed the 12-net and 12-

calibration-net; 14.3% of the retained detection windows

passed 24-net and 24-calibration-net to feed into the most

computationally expensive 48-net.

With the same thresholds, we evaluate our detector in a

typical surveillance scenario to detect faces from 640× 480
VGA images. We only scan for 80 × 80 faces in the 12-

net stage but with the calibration nets we can detect faces

smaller or larger than 80 × 80 within the calibration range.

In this scenario, our detector processes one image in 71 ms

on average on a 2.0 GHz CPU core 3. Under the same set-

ting, it takes 770 ms to scan the whole image with the 48-

3 Over an image pyramid with scaling factor 1.414, the average detec-

tion time is 110 ms.
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Figure 9: On the FDDB dataset we compare our performance with the state-of-the-art methods including: ACF-

multiscale [29], PEP-Adapt [14], Boosted Exemplar [15], HeadHunter [19], Jain et al. [8], SURF-multiview [16], Pico [18],

and Joint Cascade [2].

Figure 10: Qualitative results of our detector on FDDB.

net for detection, which demonstrates the time efficiency of

our cascade design. On the GPU card the detection time

of cascade is further reduced to 10 ms per image without

code optimization. This detection speed is very competitive

compared with other state-of-the-art methods.

Among the top performers on the FDDB and AFW that

reported their detection speed, the runtime for the ACF-

multiscale [29] is 20 FPS for full yaw pose face detection

and 34 FPS for frontal faces on a single thread of Intel Core

i7-3770 CPU in VGA image; for the Boosted Exemplar [15]

it is 900 ms for a 1480×986 pixels image; for the Joint Cas-

cade [2] it is 28.6 ms for VGA images on a 2.93 GHz CPU;

SURF-multiview [16] runs in real-time for VGA video on

a personal workstation with 3.2 GHz Core-i7 CPU (4 cores

8 threads); TSM et al. [33] processes a VGA image in 33.8
seconds [2]; Shen et al. [25] processes a 1280-pixel dimen-

sion image in less than 10 seconds.

5. Conclusion

In this work, we present a CNN cascade for fast face

detection. Our detector evaluates the input image at low

resolution to quickly reject non-face regions and carefully

process the challenging regions at higher resolution for ac-

Figure 11: Precision-recall curve of the faster version of

our detector the AFW dataset. All three false alarms are

mis-evaluated or unannotated faces as shown on the right.

curate detection. Calibration nets are introduced in the

cascade to accelerate detection and improve bounding box

quality. Sharing the advantages of CNN, the proposed face

detector is robust to large visual variations. On the pub-

lic face detection benchmark FDDB, the proposed detector

outperforms the state-of-the-art methods. The proposed de-

tector is very fast, achieving 14 FPS for typical VGA images

on CPU and can be accelerated to 100 FPS on GPU.
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