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Abstract: In this study, we automate tree species classification and mapping using field-based training
data, high spatial resolution airborne hyperspectral imagery, and a convolutional neural network
classifier (CNN). We tested our methods by identifying seven dominant trees species as well as dead
standing trees in a mixed-conifer forest in the Southern Sierra Nevada Mountains, CA (USA) using
training, validation, and testing datasets composed of spatially-explicit transects and plots sampled
across a single strip of imaging spectroscopy. We also used a three-band ‘Red-Green-Blue’ pseudo
true-color subset of the hyperspectral imagery strip to test the classification accuracy of a CNN model
without the additional non-visible spectral data provided in the hyperspectral imagery. Our classifier
is pixel-based rather than object based, although we use three-dimensional structural information
from airborne Light Detection and Ranging (LiDAR) to identify trees (points > 5 m above the ground)
and the classifier was applied to image pixels that were thus identified as tree crowns. By training a
CNN classifier using field data and hyperspectral imagery, we were able to accurately identify tree
species and predict their distribution, as well as the distribution of tree mortality, across the landscape.
Using a window size of 15 pixels and eight hidden convolutional layers, a CNN model classified the
correct species of 713 individual trees from hyperspectral imagery with an average F-score of 0.87 and
F-scores ranging from 0.67–0.95 depending on species. The CNN classification model performance
increased from a combined F-score of 0.64 for the Red-Green-Blue model to a combined F-score of
0.87 for the hyperspectral model. The hyperspectral CNN model captures the species composition
changes across ~700 meters (1935 to 2630 m) of elevation from a lower-elevation mixed oak conifer
forest to a higher-elevation fir-dominated coniferous forest. High resolution tree species maps can
support forest ecosystem monitoring and management, and identifying dead trees aids landscape
assessment of forest mortality resulting from drought, insects and pathogens. We publicly provide
our code to apply deep learning classifiers to tree species identification from geospatial imagery and
field training data.

Keywords: deep learning; species distribution modeling; convolutional neural networks;
hyperspectral imagery
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1. Introduction

1.1. Background and Problem

Automated species mapping of forest trees using remote sensing data has long been a goal of remote
sensing and forest ecologists [1–11]. Conducting remote inventories of forest species composition using
an imaging platform instead of field surveys would save time, money, and support analysis of species
composition over vast spatial extents [12–15]. Accurate assessments of tree species composition in
forest environments would be an asset for forest ecologists, land managers, and commercial harvesters
and could be used to study biodiversity patterns, estimate timber stocks, or improve estimates of
forest fire risk. Operational remote sensing and field sensors are improving, but new classification
tools are necessary to bridge the gap between data-rich remote sensing imagery and the need for
high-resolution information about forests. Our work sought to improve current automated tree species
mapping techniques.

Tree species mapping from remote sensing imagery has proven a difficult challenge in the past [11],
owing to the lack of (1) widely-available high resolution spatial and spectral imagery; (2) machine
learning classifiers sophisticated enough to account for the lighting, shape, size, and pattern of trees
as well as the spectral mixing in the canopies themselves; and (3) spatially precise ground data for
training the classifiers. Efforts to overcome these challenges have taken different approaches with
regard to remote sensing data sources and classification techniques. High-resolution multispectral
satellite remote sensing [16], hyperspectral airborne imagery [2,17], and even airborne Light Detection
and Ranging (LiDAR, see Table A1) without spectral imagery [18] have been used to discriminate tree
species. Many methods take a data fusion approach, combining LiDAR with multispectral [19,20] or
hyperspectral imagery [21–23] to classify tree species. To discriminate individual tree crowns at both
high spatial and spectral resolution, airborne imagery is required. Hyperion Imaging Spectrometer
was the first and only imaging spectrometer to collect science-grade data from space [24] and it has
been used to map minerals [25], coral reefs [26], and invasive plant distributions from orbit [27].
The 30 m spatial resolution and low signal to noise ratio make it an unsuitable instrument for mapping
individual trees; however, spaceborne hyperspectral sensors have demonstrated viability to map
areas inaccessible to airborne platforms such as the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) [28].

The use of airborne hyperspectral imagers in forested environments was advanced by the Carnegie
Airborne Observatory (CAO) used for large swaths of carbon rich forests in the Airborne Spectronomics
Project, mapping canopy chemistry, functional plant traits, and individual tree species in diverse
tropical forests [29–32]. The CAO uses hyperspectral imagery combined with LiDAR allowing for a
three-dimensional, chemical characterization of the landscape based on spectral absorption features
and is informative about the composition of plants communities. This sensor combination was
adopted by the National Ecological Observation Network (NEON) Airborne Observation Platform
(AOP), providing openly available data at 81 monitoring sites in 20 eco-climatic domains across
the conterminous USA, Alaska, Hawaii, and Puerto Rico [33]. AOP imaging instruments include a
small-footprint waveform LiDAR to measure three-dimensional (3D) canopy structure, a high-resolution
hyperspectral imaging spectrometer, and a broadband visible/shortwave infrared imaging spectrometer.
Data are collected at a spatial resolution (sub-meter to meter) sufficient to study individual organisms
and observe stands of trees. In addition to manned aerial flights, unmanned aerial vehicles have
recently been used to identify tree species using hyperspectral imagery and point cloud data [34–36].

Over the past decade, there have been significant advances in the application of a variety of
machine learning classifiers to hyperspectral imagery for tree species classification. Classifiers have
included Random Forest, a decision tree method, Support Vector Machines, and artificial neural
networks, and have been applied to (sub)tropical wet and dry forests [4,37], temperate and boreal
forests [8,9,38], plantations and agroforestry [10,39,40], and urban forests [41–43]. These machine
learning classifiers achieved accuracies (averaged across species) ranging from 63%–98% when applied
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to 4–40 tree species using tens to occasionally hundreds of trees per species for training. Classification
accuracies typically varied more widely among species in these studies (e.g., per-species accuracies
from 44%–100%) than among machine learning and other classifiers when they were compared.

Convolutional Neural Networks (CNNs) are machine learning supervised classifiers that,
in addition to characterizing spectral signatures, analyze the spatial context of the pixel. To our
knowledge, CNNs have not been applied to tree species classification from airborne hyperspectral
imagery. CNNs can perform concurrent analysis of spectra and shape using multiple deep layers
of pattern abstraction which are learned through numerical optimization over training data. In this
study, we parameterized and tested a CNN classifier applied to high-resolution airborne hyperspectral
imagery of a forested area for tree species identification with sparsely distributed training labels.

1.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) give high performance on a variety of image classification
and computer vision problems. CNNs use computational models that are composed of multiple
convolved layers to learn representation of data with multiple levels of abstraction [44,45]. These
algorithms have dramatically improved the state of the art in image recognition, visual object recognition,
and semantic segmentation by discovering intricate structure in large data sets. CNNs consist of
many sets of convolution and pooling layers separated by non-linear activation functions (such as the
rectified linear unit [ReLU]). These “deep learning” models are trained using the backpropagation
algorithm, and variants of stochastic gradient descent [45]. CNNs have been used for over two decades
in applications that include handwritten character classification [46], document recognition [47],
traffic sign recognition [48], sentence classification [49] and facial recognition [50]. Biological imaging
applications of CNNs include identifying plant species based on photographs of leaves [51], interpreting
wildlife camera trap imagery [52], and new crowdsourced applications such as the iNaturalist mobile
application, which uses user photographs, geographic locations and CNNs to identify species of plants
and animals [53].

Application of CNN methods has been limited by computational resources, and the need to
program the code to apply the neural network and backpropagation algorithms to a classification
problem from scratch [54]. Over the past decade, graphical processor units (GPUs) that support
massive parallelization of matrix computations, GPU-based matrix algebra libraries, and high-level
neural network libraries with automatic differentiation have made training and application of neural
networks accessible outside of research labs in industry settings.

CNNs are conceptually well-suited to spatial prediction problems. Geospatial images contain
spatially structured information. In the case of trees, the spatial structure of canopies is related to tree
size relative to pixel size; in high resolution imagery if a pixel falls in a tree canopy its neighbors are also
likely to be in the same canopy and have similar information [55]. Information in neighboring pixels is
related to information in a focal pixel and these relationships decay with distance. CNN classifiers
operate on this same principle to find patterns in groups of nearby pixels and relate them to ‘background’
information. For automated species mapping, individual trees are represented as clusters of similar
pixels at fine spatial resolution and, at a coarser spatial scale, stands of trees are clusters of individuals,
both of which might be informative in determining the species of each tree.

CNNs have been applied to moderate spatial and/or spectral resolution imagery to classify
land use [56] and reconstruct missing data in Moderate Resolution Imaging Spectrometer (MODIS)
and Landsat Enhanced Thematic Mapper remotely sensed imagery [57]. Deep Recurrent Neural
Networks have also been used to classify hyperspectral imagery with sequential data, such as spectral
bands [58]. CNNs have been used to classify high spatial resolution imagery into land use and land
cover categories [59–63], but not tree species.
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1.3. Research Objectives

Our work seeks to evaluate the use of CNNs for automated tree species mapping from airborne
hyperspectral data. We implemented and evaluated a Deep CNN supervised classifier applied to
airborne hyperspectral high-resolution imagery to discriminate seven tree species, as well as dead trees,
in temperate mixed-conifer forest in western North America. Imagery was acquired by the NEON
AOP in a region of the Southern Sierra Nevada, California, USA, at 1-m spatial resolution. Field data
collected for this study were used to train the classifier, while independently collected data were used
for testing. We had the following objectives:

1. Evaluate the application of CNNs to identify tree species in hyperspectral imagery compared to a
Red-Green-Blue (RGB) subset of the hyperspectral imagery. We expected improved ability to
accurately classify trees species using hyperspectral versus RGB imagery.

2. Assess the accuracy of the tree species classification using a test dataset which is distinct from the
training and validation data.

3. Demonstrate potential uses of high-resolution tree species maps, i.e., analyze the distribution of
trees across an elevation gradient.

4. Provide tools so that other geospatial scientists can apply such techniques more broadly and
evaluate the computational challenges to upscaling to larger areas.

2. Materials and Methods

2.1. Study Site and Airborne Imaging Data

AOP data were collected in July 2017 across NEON’s D17 Pacific Southwest study region.
The airborne remote sensing LiDAR and hyperspectral imagery data were collected from June 28th to
July 6th in 2017 by the NEON AOP onboard a DeHavilland DHC-6 Twin Otter aircraft. The hyperspectral
data is collected using a pushbroom collection instrument (AVIRIS next-gen) that was designed and
built by the National Aeronautics and Space Administration’s Jet Propulsion Laboratory. It measures
reflected light energy in 426 spectral bands extending from 280 to 2510 nm with a spectral sampling
interval of five nm. Data were collected at approximately 1000 m above ground level, with a cross-track
Field of View of 34 degrees and an instantaneous field of view of 1.0 milliradian, resulting in a ground
resolution of approximately 1 m [33,64]. NEON performed the atmospheric correction of the NEON
Imaging Spectrometer using ATCOR4r and then orthorectified and output the imagery onto a fixed,
uniform spatial grid using nearest neighbor resampling.

For this study, we used a south-to-north oriented strip of hyperspectral imagery data approximately
16 km long by 1 km wide covering a portion of the Teakettle Experimental Forest (TEF) and extending
up slope towards the alpine zone (Figure 1). The TEF is in the Southern Sierra Nevada Mountains
(36◦58′00”, 119◦01′00”), approximately 80 km east of Fresno, CA. Owing to differences in solar
illumination across imagery strips collected at different times and dates by the AOP, we chose to focus
only on a single strip of imagery to test the CNN classifier. The imagery strip was selected because it
includes forest plots established by North et al. [65] in the TEF as part of a long-term ecological field
experiment, allowing us to use self-collected, detailed, georeferenced data on tree species identity,
combined with tree inventory data from the TEF long-term experiment, to test the CNN classifier
(Figure 1).

TEF supports four main forest types. Mixed conifer comprises about 65% of the forested area,
predominantly between 1900 and 2300 m elevation. Jeffrey pine (Pinus jeffreyi) (5.5%) is prevalent
on shallow soil conditions within the mixed-conifer type. Red fir (Abies magnifica) (28%) dominates
elevations > 2300 m except for very moist locations where lodgepole pine (Pinus contorta) (0.5%)
occurs in almost pure stands. Within the mixed-conifer forest, we found a fine-scale mosaic of four
patch types: closed forest canopy, shrub patches dominated by mountain whitethorn (Ceanothus

cordulatus), open gaps, and areas of rock and extremely shallow soils. In contrast, red fir forests are
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more homogenous with greater, more continuous canopy cover and higher tree basal area and density
than mixed conifer [65]. The imagery strip or transect covers an elevation gradient spanning 1935 m to
2630 m, encompassing a transition in forest composition zone. At lower elevations, some broadleaf
oak trees with dense shrub understory are found, and pine and cedar conifer species are abundant.
In the middle elevations, ~2200 m, there are large stands of lodgepole pine that surround flat wetlands
and seasonal drainages. At the higher elevations (>2500 m), red and white fir (Abies concolor) (conifers)
dominate, with fewer pine and cedars and no oak trees. At the highest elevations, there are several
large rock outcrops and steep terrain, with no road access, so there were no field data collected in the
upper ~20% of the imagery strip (Figure 1).

 

 

Code Scientific Name (Common Name) Abbreviation Number 
0  (White fir) abco 119 
1  (Red fir) abma 47 
2  (Incense cedar) cade 66 
3  (Jeffrey pine) pije 164 
4  (Sugar pine) pila 68 
5  (Black oak) quke 18 

Figure 1. National Ecological Observation Network (NEON) Airborne Observation Platform
Red-Green-Blue hyperspectral subset orthophoto imagery showing the location of the strip of
hyperspectral imagery used in analysis (left) intersecting the Teakettle Experimental Forest (TEF)
Watershed north-east of Fresno, CA (upper left inset). Zoomed view at the southern end of the flight
transect (area in red square) and an example of individual tree points collected in the field using high
precision Global Positioning System (GPS), colored based on the species (seven species) or mortality
status (lower right). Field GPS Point training data collected by the authors and by University of New
Mexico field teams in the TEF permanent plots are shown as yellow and are located within transects
crossing the flightline (left).

2.2. Field Data and Study Species

In September 2017, two months after image acquisition, we collected field-based observations
of individual tree crowns along eight transects oriented roughly east-west across the imagery strip
at different elevations to train, test, and validate the CNN model (Figure 1). Systematic sampling
throughout the imaged area allowed us to collect a large sample of tree crown locations for all common
tree species in this mixed-conifer forest. The seven species of trees and one class of dead trees (any
species) used in our study are shown in Table 1 with the number trees from each class. Hereafter,
we refer to the species by their common names in text and use the four-letter abbreviation in figures.
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Table 1. The scientific name, common name, four-letter abbreviated species code, and the number of
trees per species used in our study.

Code Scientific Name (Common Name) Abbreviation Number

0 Abies concolor (White fir) abco 119
1 Abies magnifica (Red fir) abma 47
2 Calocedrus decurrens (Incense cedar) cade 66
3 Pinus jeffreyi (Jeffrey pine) pije 164
4 Pinus lambertiana (Sugar pine) pila 68
5 Quercus kelloggii (Black oak) quke 18
6 Pinus contorta (Lodgepole pine) pico 62
7 Dead (any species) dead 169

We used high-precision Global Positioning System (GPS) to measure the locations of trees across
the eight transects and recorded species, stem diameter at breast height (1.4 m) (“DBH”), and mortality
status (dead or alive). These transects were oriented along both sides of unpaved logging and access
roads to maintain relatively easy walking across the swath of the flight-line. We selected isolated,
large-diameter “overstory” trees with large canopies, as well as smaller trees with canopies that were
isolated from surrounding canopies, so that these trees could be identified in the LiDAR derived
Canopy Height Model (CHM) and differentiated from the surrounding trees. Our objective was to
associate the field measured species identity with the associated pixels in the hyperspectral imagery
(to minimize misidentification owing to lack of perfect registration between GPS and imagery) and
minimize mixing of species (resulting from overlapping crowns) in the training data. Our sampling
prioritized coverage of the elevation gradient and imagery extent. We aimed to sample about 100
trees of each species and a range of tree sizes (>5 m tall). We also sampled standing dead trees of
all species but ultimately grouped them in the same prediction class (dead tree), because often the
tree species cannot be positively identified a few years after it dies. We aimed to sample each tree
species in all locations throughout the image strip, but some species like black oak were very rare as
isolated overstory individuals except at lower elevations, while at the highest elevation red and white
fir dominate.

To record the tree locations, we used the mobile ESRI Collector Application on Android and
IOS devices and two EOS Arrow Gold Differential GPS receivers/antennas (Terrebonne, Quebec,
Canada) with SBAS real-time satellite correction to achieve sub-meter spatial GPS precision. Points
that exceeded 1 m in horizontal precision were not used. We recorded GPS locations on the southern
side of each tree and from a location about two thirds of the distance from the stem to the edge of the
crown whenever possible, for consistency and better satellite visibility, but there were instances where
local conditions required us to take a GPS measurement on a different side of the stem. A total of 920
tree crown canopies were originally recorded in the field, but 619 were eventually used in our final
analysis because of a selective filtering process. The filter process removed trees with unacceptable
horizontal GPS accuracy (>1 m), canopies that were too close to each other and could not be reliably
discriminated from neighboring canopies, and trees with incomplete canopy coverage on the margins
of the imagery strip.

The problem of accurate field positioning and identifying large individual trees in the field that
can be referenced to remote sensing imagery has proved challenging. Global Positioning System (GPS)
signal is broadcast in the microwave L-bands which are well known to scatter amongst tall, dense
tree canopies making them particularly good for estimating forest biomass [66,67] and particularly
bad for GPS signal acquisition [68]. An accurate correspondence needs to be established between
field and remote sensing measured individual trees, and difficulties arise when individual trees are
mapped on the ground related to GPS uncertainties in closed canopy conditions [69]. In this study we
attempt to reduce these uncertainties by using an additional L5 band (in addition to L1 and L2 GPS
bands), and by only focusing on isolated trees reducing ambiguity between field GPS measurements
and LiDAR tree locations.
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In addition to our field transects which spanned the flight line strip at different elevations,
we augmented our data with other tree map data that were not part of the same field sampling
effort [70,71]. We utilized existing detailed stem maps for 9 of 18 4-ha permanent plots collected by
University of New Mexico field teams over the summer of 2017 in the TEF as part of an experimental
study of fire and thinning effects on forest structure and dynamics [65,72]. The plots were established
in 1998. Data collected for each tree (>5 cm DBH) in a plot include location in geographic space
and plot coordinate space, species, DBH, and condition. Experimental treatments include burning,
overstory thinning, understory thinning, and control plots with three replicates of each combination.
The most recent (2017) Teakettle re-survey censused the burned tree plots, improved spatial accuracy
of tree locations relative to earlier GPS surveys (which were therefore not used), and was conducted
concurrently with NEON AOP imagery collection. We combined the 2017 Teakettle tree census,
conducted for the nine burned plots intersecting the flight line, with the transect data, to train, test and
validate the CNN classifiers. Our dataset comprised 713 trees (Table 1), including 94 from Teakettle
plots and 619 from transects.

2.3. Label Data Preparation for CNN Classification

To prepare the imagery labels for CNN classification, we used the LiDAR derived canopy height
model (CHM) to manually digitize individual tree canopies from the TEF experimental plots and the
transect data so that pixels within those canopies could receive species labels (Figure 2). GPS points
were aligned with the 1-meter spatial resolution LiDAR CHM and ‘pseudo true-color’ (Red-Green-Blue;
RGB) subset of the hyperspectral imagery. We used a subset of the bands which were closest to the
band centers for red (band 55, 0.64–0.67 microns), green (band 37, 0.53–0.59 microns), and blue (band
20, 0.45–0.51 microns). In some cases, small displacements (1–3 m) between the LiDAR CHM and
imagery were detected, and in these cases, care was taken to label the canopy area in the imagery and
not the canopy crown in the CHM.

 

 

Figure 2. High precision GPS points, colored by species on the Light Detection and Ranging (LiDAR)
derived Canopy Height Model (top), the high resolution ortho photos with points labeled using the
field measured diameter at breast height (DBH) in centimeters (bottom). Digitized canopy label outlines
are shown as yellow circles. The GPS antenna taking a static position next to an Incense cedar (cade)
tree in the field (center inset).
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We created circle polygons centered on the center of each tree of mapped stems in high resolution
aerial imagery. We labeled the polygons with the class of the species and rasterized these polygons.
Each circle was digitized to include ‘pure pixels’ of only canopy and avoid background, soil, or other
canopies and as a result the circles vary in size and orientation relative to the original high-precision
GPS point. These tree polygons were considered individual units of the analysis and the pixels within
each polygon were treated as the same class, so that individual pixels in the same polygon are not
considered independent by the model. The rasters were of the same spatial resolution and same
coordinate reference system (CRS) as the hyperspectral imagery, i.e., there was a 1:1 mapping of pixels
in the label raster and pixels in the hyperspectral image. The label raster includes a no-data value for
each pixel where there was no tree polygon and an integer encoding of the class where there was a
polygon. Labeled pixels were extracted from the hyperspectral data and used when training the CNN
(Figure 2).

To rigorously evaluate our method, we prepared a k-fold cross validation experiment. We divided
the tree polygons into 10 folds and trained the model 10 times, each time holding out one of the folds
as testing data and using the remaining folds for model training. To ensure that each fold had similar
spatial coverage, we first applied k-means clustering to the polygon centroids with k = 10 to group
the trees into 10 clusters corresponding roughly to the field transects. We then split each cluster into
10 folds, so that the i-th fold for the entire dataset consists of the i-th fold from each cluster.

2.4. CNN Model Architecture

We evaluated a fully convolutional neural network architecture [73]. We trained the model on
L × L × D patches from the training data, where D was a constant value of 32 for the hyperspectral
image (after applying dimensionality reduction by principal components analysis (PCA)) or three for
the RGB image and L, the patch size was a hyperparameter. The network architecture consisted of
a cascade of 3 × 3 convolutional layers followed by a final 1 × 1 convolutional layer for the output.
The number of output channels at each layer starts at C for the first layer and doubles at each subsequent
layer up to a maximum number of channels C’, where C and C’ are hyperparameters. The final
layer has eight output channels corresponding to the eight classes in our dataset. We applied L2
regularization with a strength of α, where α is a hyperparameter. We did not use zero padding,
and the number of convolutional layers was chosen as (L-1)/2, so that the CNN would output a single
prediction for the center pixel in the window under consideration. The patch size affects how much
of the image the network can see when making a prediction. The number of filter kernels affects the
discriminative power of the network, more filter kernels means a more powerful network but might
lead to overfitting to the training data. The regularization strength affects how strongly the network
weights are dampened, dampening the weights helps combat overfitting. All layers except the final
layer used Rectified Linear Units (ReLU) activations as their non-linear activation function. The final
activation layer was a softmax function that outputs the probability of each class. We then applied an
argmax function to obtain the class label for the class with the highest probability. We implemented
the models in Keras using the TensorFlow backend (Appendix B).

At test time, the model is run in a fully convolutional manner to produce a prediction at each
output pixel in parallel. We did not use max pooling layers so that the output size of the network
would be the same as the input except for a (L − 1)/2 border of missing predictions at the edges of the
input. At test time we divide the raster into overlapping tiles and run the network on each tile in order
to fit the computation into memory; the overlap between tiles accounts for the missing predictions at
the borders of the tiles. A schematic of the model architecture and data processing workflow can be
found in Figure 3 below.
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Figure 3. Schematic of the data processing flow and architecture. Datasets (left), Field data (green),
convolutional neural network (CNN) model (light blue), CNN Predictions (yellow) Accuracy Reports
(violet).

2.5. Optimization/Hyperparameter Tuning/Prediction/Assessment

To assemble the training data we extract an L × L × D patch from the input raster centered at each
labeled pixel inside tree polygons from the training set. During training we randomly withhold 10%
of the patches as validation data which is used to monitor for overfitting and aid in hyperparameter
selection. The data splits were the same for the hyperspectral and RGB data models. In each experiment,
the tree polygons in the training set are distinct from those in the test set, so that no pixels from tree
polygons in the test set are present in the training set. The training subset is used for optimization of
model parameters relative to a loss function. The validation subset is used for selecting a single model
from the set of models with different hyperparameters. The validation set is necessary because the
hyperparameters are not learned by the optimization process. We calculate and report the precision,
recall and F-scores for each species and for all species combined for each split for both sets of imagery.

We manually searched for the best hyperparameter settings by training multiple models on the
training dataset and comparing resulting accuracy on the validation dataset. We applied stochastic
gradient descent with momentum to optimize each model, with a learning rate of 0.0001, and momentum
of 0.9. We used categorical cross-entropy as a loss function. A batch size of 32 was used for each
training iteration. For data augmentation we rotated the patches in 90-degree increments and also
flipped the original and rotated patches horizontally and vertically. We trained each model over
20 epochs, or 40 epochs for the RGB model, retaining the model with the best validation accuracy
during the training process. After choosing a single model from the collection of trained models based
on maximum validation set accuracy, we evaluated the accuracy of this model on the test set. Raster
labels used for training, testing and validation were derived from both the field data from our field
transects and plot data from the TEF permanent plots. The accuracy is measured based on the majority
of predicted pixels in each polygon, each of which is assigned to one species.

In order to address objectives 1 and 2, prediction accuracy is reported using Precision, Recall,
and the F-Score. Precision is the proportion of the image correctly classified when compared to test
data, describes the ability of a classification model to return only relevant instances, and is often called
“user’s accuracy,” and recall is the proportion of the true observations correctly classified, describes
the ability of a classification model to identify all relevant instances, and is also called “producer’s
accuracy” in the remotely sensed literature [74]. The F-measure is the harmonic mean of precision and
recall. The classified image was used to calculate the relative proportion of each class in elevation belts
as a demonstration of an ecological application of the classifier (objective 3). Relative proportion was
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used to normalize for total tree cover variation in the image and emphasize the relative abundance of
species, a commonly-used measure in forest ecology [75].

3. Results

3.1. CNN Classification and Parameter Settings

The best hyperparameter settings were a patch size of L = 15, regularization strength of α = 0.001,
and C = 32 filter kernels in the first convolutional layer up to a maximum of C’ = 128 kernels. We also
found it beneficial to use a balanced loss function because the proportion of examples of each class in
the dataset is imbalanced. We weighted the categorical cross entropy loss function with class weights
that were inversely proportional to the number of examples of each class in the training set.

Using Tensorflow and Keras, we applied our final CNN classifiers to all tree crown pixels in both
the RGB true-color and hyperspectral imagery strip by excluding pixels where the CHM height was
below a threshold of 5 m. Each tree polygon was assigned a classification based on the species (or
mortality) prediction of the majority of pixels in each polygon, which was compared to the species
recorded in the field. The CNN classifier using the hyperspectral imagery outperforms the RGB subset
image whether measured by precision, recall or F-Score, and across all species/mortality status. In the
hyperspectral and RGB CNN models the precision, recall and F-score were 0.87 and 0.64, respectively.
The combined F-Scores for the hyperspectral CNN model were 0.87 for the five cross-validated testing
subsets (Table 2). Confusion matrices for all classes based on the hyperspectral CNN and RGB models
are reported in Tables 3 and 4 respectively and predictions for the hyperspectral imagery are shown in
Figure 4.

For the hyperspectral model (Table 2), at the genus level, pines (Pinus) had higher precision, recall,
and F-scores than firs (Abies), while incense cedar (Calocedrus) had intermediate recall, precision and
F-score, and oaks (Quercus), with a relatively small sample size, had low recall (0.61) and precision
(0.73). At the species level, the F-scores from high to low were Jeffrey pine (0.95), sugar pine/lodgepole
pine (0.93), incense cedar (0.88), white fir (0.78), red fir (0.74), and black oak (0.67). Dead trees slightly
outperformed the average F-score (0.88).

The RGB model performed poorly compared to the hyperspectral model at the class level across
all metrics (precision, recall, F-Score; Table 2). The relative discrimination of genus level differences
was qualitatively similar to the hyperspectral results. Pines (Pinus) generally outperformed firs (Abies).
Oaks (Quercus) performed only slightly worse in the RGB model compared with the hyperspectral
model (F-scores of 0.65 and 0.67 respectively) and cedars (Calocedrus) performed poorly overall (0.47
F-score). At the species level, the F-scores from high to low were Jeffrey pine (0.69), sugar pine (0.67),
black oak (0.65), lodgepole pine (0.50), white fir (0.49), incense cedar (0.47), and red fir (0.35). Dead
trees far outperformed the average F-score (0.87) (Table 2).

Table 2. Summary results table reporting the precision, recall and F-Score for the average of 10 folds of
the k-fold cross validation for both the Red-Green-Blue subset and hyperspectral imagery.

Species Species
Code

Hyperspectral RGB

Precision Recall F-score Precision Recall F-Score

White fir 0 0.76 0.81 0.78 0.46 0.53 0.49
Red fir 1 0.76 0.72 0.74 0.41 0.30 0.35

Incense cedar 2 0.90 0.85 0.88 0.50 0.44 0.47
Jeffrey pine 3 0.93 0.96 0.95 0.65 0.73 0.69
Sugar pine 4 0.90 0.96 0.93 0.67 0.68 0.67
Black oak 5 0.73 0.61 0.67 0.69 0.61 0.65
Lodgepole

pine 6 0.84 0.87 0.86 0.54 0.47 0.50

Dead 7 0.90 0.85 0.88 0.88 0.86 0.87
Ave/Total 0.87 0.87 0.87 0.64 0.64 0.64
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The greatest per-species misclassification rate based on the hyperspectral classification was for
black oak, where six of the 17 trees in the sample were classified as a lodgepole pine and one as dead
(Table 3). Red and white firs were often confused with each other and rarely other species. There were
11/47 red fir classified as white fir, 7/119 white fir classified as red fir and nine white fir incorrectly
classified as dead. Jeffrey pine and sugar pine had the highest F-scores and misclassifications were
evenly distributed across the other species classes. Incense cedar was most often misclassified as white
fir and Jeffrey pine (three occurrences each) or dead (four occurrences). Dead trees were most often
misclassified as white fir (14 occurrences), red fir (four occurrences), Jeffrey pine (three occurrences),
and lodgepole and sugar pine (two occurrences each) (Table 3).

For the RGB model, the greatest per-species misclassification rate was for red fir (0.35 F-score),
where 16/47 of the trees in the sample were classified as a white fir, while only 14 trees were classified
correctly (Table 4). Red and white firs were often confused with each other and often with Jeffrey pine,
incense cedar, and dead trees. Jeffrey pine and sugar pine had the highest F-scores and misclassifications
were mostly between the two pine species, although 16 Jeffrey pine trees were misclassified as white fir.
Incense cedar most often misclassified as white fir (15 occurrences) and Jeffrey pine (nine occurrences)
or lodgepole pine (six occurrences). Dead trees were most often misclassified as white fir (nine
occurrences), Jeffrey pine (six occurrences), and incense cedar (four occurrences each), although the
RGB classification had the most success correctly classifying dead trees (Table 4). Mapped predictions
for the RGB model are not shown because they are less accurate compared to the hyperspectral model
and of low enough accuracy to not be of practical use because the proportion of samples is imbalanced.

Table 3. The hyperspectral classification confusion matrix for tree species identified using high-precision
field GPS (rows) compared to the CNN model species prediction (columns; numbered labels refer to
species numbers shown in row labels).

Species Abbrev Spp Code 0 1 2 3 4 5 6 7 Recall F-Score

0. White fir abma 0 96 7 2 2 2 0 1 9 0.81 0.78
1. Red fir abco 1 11 34 1 0 0 0 0 1 0.72 0.74

2. Incense Cedar cade 2 3 0 56 3 0 0 0 4 0.85 0.88
3. Jeffrey pine pije 3 1 0 2 158 1 0 1 1 0.96 0.95
4. Sugar pine pila 4 1 0 1 1 65 0 0 0 0.96 0.93
5. Black oak quke 5 0 0 0 0 0 11 6 1 0.61 0.67

6. Lodgepole pine pico 6 0 0 0 2 2 4 54 0 0.87 0.86
7. Dead dead 7 14 4 0 3 2 0 2 144 0.85 0.88

Precision 0.76 0.76 0.90 0.93 0.90 0.73 0.84 0.90

Table 4. The Red-Green-Blue classification confusion matrix for tree species identified using
high-precision field GPS (rows) compared to the CNN model species prediction (columns; numbered
labels refer to species numbers shown in row labels). Polygon (per-tree) from five combined k-folds
cross validation test datasets.

Species Abbrev
Spp

Code
0 1 2 3 4 5 6 7 Recall

0. White fir abma 0 63 11 9 17 3 0 5 11 0.53
1. Red fir abco 1 16 14 3 9 1 0 2 2 0.30

2. Incense Cedar cade 2 15 2 29 9 3 1 6 1 0.44
3. Jeffrey pine pije 3 16 3 5 119 12 1 5 3 0.73
4. Sugar pine pila 4 3 1 4 12 46 0 2 0 0.68
5. Black oak quke 5 0 0 0 1 1 11 4 1 0.61

6. Lodgepole pine pico 6 14 1 4 9 2 2 29 1 0.47
7. Dead dead 7 9 2 4 6 1 1 1 145 0.86

Precision 0.46 0.41 0.50 0.65 0.67 0.69 0.54 0.88
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Figure 4. Full flight line strip showing hyperspectral CNN predicted species as colors on a hill shade
digital elevation model (left), Field GPS points are represented as points (left) and circular polygons
(right) and CNN model prediction results are represented as the colorized raster image for three sections
at high, mid, and lower elevation sites.

3.2. Application of High-Resolution Tree Species Mapping

The high-resolution tree species map produced by the CNN (Figure 4) captured species composition
transitions on the elevation transect traversed in the image strip, from a mixed-species composition
with oak, cedar, and pine at lower elevation, to fir-dominated forests at higher elevation (Figure 5).
We determined the relative proportion of each species based on the number of pixels for each species
relative to the total number of pixels at each elevation band. Black oak and incense cedar were primarily
found at lower elevations while Jeffrey and sugar pine occur throughout the gradient in varying
abundances, with a distinct band of lodgepole pine occurring around 2100 m in flat terrain near a
variety of lake and wetland systems in the middle of the imagery strip (Figure 4). Both fir species had
the greatest relative abundance at mid- to high elevation, and Jeffrey pine showed the greatest relative
abundance at high elevation. However, dead trees were relatively abundant in the highest elevation
zone as well, and many of these were probably red and white fir (personal observation). Almost a
quarter of the trees identified in the image strip were dead, but the greatest relative abundance of dead
trees was at high elevation (2620–2800 m). The general distribution of tree species on an elevation
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gradient in Sierran mixed conifer forest has been described [76,77], but this can vary at fine scales
locally with variations in local environmental conditions and forest history. Accurate, high-resolution
mapping such as has been demonstrated in this study provides spatially-explicit information on these
distributions locally and at fine scales.

 

Figure 5. The proportion of pixels classified as each species within elevation bands along the elevation
gradient for the seven mapped species and dead canopies.

4. Discussion

4.1. CNN Performance Using Hyperspectral Versus RGB Data

The hyperspectral CNN model outperformed the RGB CNN model by 23% on average, across all
metrics and species. These results indicate that the additional spectral information available in the
hyperspectral imagery is informative to the classification models and increases model performance.
The advantages of spectrally ‘deep’ hyperspectral imagery over broadband RGB pseudo true color
imagery has been demonstrated using discriminant analysis in controlled laboratory settings to monitor
the evolution of apples in storage with high (95.83%) accuracy [78]. Similarly, hyperspectral imagery
provided more spectral information which aided in the classification of crop plants and weeds in an
agricultural setting using statistical discriminant analysis and selected wavelet coefficients to classify
five species and weeds at an acceptable (75%–80%) success rate [79]. Hyperspectral imaging proved
effective in isolating spectral band combinations to detect Fusarium fungal infections in wheat plants
in a laboratory setting. These spectral band combinations were not available in broadband RGB
imagery [80].

Our method uses additional spectral data from hyperspectral imagery, informing the CNNs models
in ways that are unavailable in broadband spectral imagery and at a spatial scale that is appropriate
for identifying individual trees to species. CNN models show potential for automatic parameter
tuning with a Multi-Layer Perceptron to conduct classification using additional hyperspectral band
data which provides valuable information towards material and object recognition which encode
pixels spectral and spatial information [81]. To deal with the high dimensionality of the hyperspectral
data, we applied a PCA dimensionality reduction, as is standard practice. We also found that L2
regularization helped cope with the relatively small amount of training data available to the model.
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We did not include pooling layers in our network architecture to avoid sub-sampling of the
input. However, with higher spatial resolution input, we might need pooling in order to avoid
having an excessively deep network. To process higher spatial resolution input, we could adopt the
standard U-Net approach [82], which combines pooling layers with up-sampling layers, although this
would necessitate training on tiles rather than individual patches. Alternatively, we could use dilated
convolutions so that our patch-based training procedure is unchanged [83].

4.2. CNNs Versus Other Machine Learning Methods for Tree Species Identification

We achieved per-species tree identification with F-scores ranging from 0.67–0.95 using
hyperspectral data and relatively simple CNN models and minimal parameter tuning in a mixed-conifer
forest (Objective 2). Accurate, automatic species identification of individual trees over large areas give
promise that ecological information derived from these maps (e.g., Figure 5) can be used confidently
by forest ecologists and resource managers (Objective 3). Our results were achieved under ideal
circumstances, contained in a single strip of imagery with a uniform solar illumination angle, using
isolated, tall canopies in a temperate forest ecosystem with seven species. Atmospheric correction
radiative transfer models can be applied to help mitigate issues caused by multi-date imagery collection
for the purpose of species identification [7]. Other efforts to classify individual tree species from
hyperspectral imagery using machine learning have yielded accuracies that vary widely depending on
the forest type, the remote sensing platform, and the classification methods used. A study also in the
Sierra Nevada Mountains used an artificial neural network classifier to identify six conifers species
(based on 398 trees) resulting in classification accuracies ranging from 52% for spectral band subsets
to 91% accuracy for only ‘well lit’ canopies [84]. Our study improves on these accuracies by adding
nearly double the training samples, using a more flexible neural network architecture, and working in
a variety of illumination conditions.

Leveraging co-registered LiDAR and Hyperspectral Imaging and several machine learning
classifications approaches including Random Forest, other neural networks, CN2 rules, and Support
Vector Machines, previous studies have also addressed tree species identification in a range of forest
types (including agroforestry, plantations, and urban forests) worldwide. For example, in natural
forests (not plantations) per-species accuracies ranged from 59%–67% in North American deciduous
forest [23], but were much higher in a study that classified 14 temperate forest species in Austria with
79%–100% per-species accuracy (average 92%) [8], and for seven species (95%) in mixed evergreen
forest in coastal California [9]. Studies in tropical natural forests achieved 85% average accuracy for
eight species in dry forest [4], 86% for five species in subtropical forest [37], and 73% for 17 species in
wet forest [5]. Higher classification accuracies have been reported for studies in industrial forestry
(plantation) settings in Europe, for example, 95% for four species [10,34], and 90% for three species [19].
Our results were comparable with these other machine learning based classification studies in natural
forests, but CNN may be more appropriate to the use case because tree species identification is highly
contextual in terms of both space and spectra and warrants further testing.

4.3. The Potential Uses of High-Resolution Tree Species Maps

Accurate, high-resolution tree species maps are useful in a variety of contexts including estimating
drought stress, canopy water content [85], forest inventory, selective logging [86], fire disturbance,
succession modeling [87], and estimating biological diversity [88]. In our study, we did not include
a large enough geographic area to make large-scale ecological or management inferences from our
results, but emergent patterns are apparent. Our study flightline intersects a complex of small lakes
and wetlands, surrounded by dense stands of lodgepole pines, a species that is much sparser or
absent in the rest of the elevation gradient. These stands of lodgepole pines are well mapped by the
hyperspectral CNN model (Figures 4 and 5). In general, forest composition is dominated by firs,
particularly at high elevation, but large stands of Jeffrey pine are visible, particularly at mid elevation
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(Figure 4). Red and white firs were sometimes confused with each other, which corresponds with
anecdotal accounts from field teams, who occasionally confuse the two species on the ground.

Large numbers of standing dead trees are present across the elevation gradient and constitute
a larger proportion of total trees at high elevation. Future field collections should include flexible
input categories, when species identification might not be 100% certain or when field biologists can
identify a dead and decaying tree to a genus level. Such field classifications could help build genus
level mortality estimation maps which would be valuable to forest managers. As forest mortality
increases in California and elsewhere in part as a result of climate-change-driven “hot drought” [89],
maps of tree mortality [83] are critical for forest management and restoration.

4.4. Challenges in Computation and Upscaling to Broader Geographic Areas

We have demonstrated that a CNN classifier can be applied to a single flight line of high spatial
resolution hyperspectral airborne imagery to identify tree species with high accuracy based on the
reflectance spectra of pixels making up tree crowns. This proof-of-concept was carried out for a site in
the NEON network located in temperate mixed-conifer forest in western North America, although the
methods are applicable in other forest types. Further comparisons are needed to test our methods
in more diverse and dense forest ecosystems and under a wider range of illumination conditions.
Early steps towards rigorous in-flight fusion of passive hyperspectral imagery with airborne LiDAR
have reduced optical geometric distortions and effects of cast and cloud shadowing effects which will be
particularly useful in forested environments [90]. If our methods can be scaled up and applied to larger
geographic extents, they can address calls to directly monitor biodiversity and species distributions
using remote sensing in an era of global change [91], as well as other forest and ecosystem management
applications such as forest mortality monitoring [85,92], especially under climate change [89,93].

Additionally, to cover large areas, multiple flight lines are necessary which are subject to variation
in collection times, sun angles, weather conditions and potentially different phenological states of
the plants which all increase the complexity of using a hyperspectral imager to map broad spatial
areas [94]. One of the greatest challenges to this and any method using airborne imagery collected
on different dates and under different illumination conditions is that the spectral conditions change
from strip to strip or image or image; thus, models trained in one image may not apply across all
imagery, limiting the ability to scale across larger datasets [95]. If training data are available for all
flightlines/images these challenges can be overcome using separate classifications. For future efforts
where CNN species classifications are attempted, ground training data will be necessary across all
flight lines, or more realistically, predictions in overlap regions between flight lines will need to
be used to train, test, and validate pixels in adjacent flight lines where no training data is present.
Performing this classification of adjacent flight lines where no training data exists is the logical next
step for this research. Detecting species across dates using hyperspectral imagery can be improved
when a radiative transfer model based on atmospheric compensation is applied, but accounting for
atmospheric corrections remains a challenge for species classification across dates and conditions,
and having spatially extensive training data is important in such cases [7].

There are other operational challenges to extending our approach beyond a single flight line
and to a broader geographic range. Hyperspectral data cubes are voluminous and can be noisy.
Solutions include dimensionality reduction [96] and ‘denoising’ using principal component analysis
and wavelet shrinkage [97]. Our model is a pixel-based model and aside from the manual canopy
delineation process, three-dimensional forest structure was not used for our analysis. Numerous
canopy segmentation methods have been developed [98–100] and they could be applied to further
the goal of identifying individual trees in a forest, but our method focuses on the imagery as the sole
source to inform the classification.

The relatively high CNN model accuracy underscores the importance of the field dataset in
training, testing and validation of the prediction model. If a species is included or excluded from the
initial training set or if the range of geographic conditions in the image are not sampled, they cannot be
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reasonably expected to be included in the predictions. For this reason, a priori knowledge of the forest
species composition should be used to guide how many of each target species needs to be sampled as
the percentage of input samples should approximate the composition of the forest [101]. Inadequately
sampling enough individuals of a certain species will result in under-classification (omission errors) by
the CNN. Using CNNs for species classification is a promising approach because of the contextual
information used to classify each tree species and often not utilized using other machine learning
methods. As computational costs reduce over time, the use of CNNs for this application may become
more attractive compared to other machine learning classifiers.

5. Conclusions

Our study evaluates Deep Learning CNN models applied to high-resolution hyperspectral and
RGB imagery labeled using high precision field training data to predict individual tree species at a pixel
level in a natural forest along an elevational and species composition gradient. We present a framework
for applying the methods to tree canopies in different ecosystems with similar remote sensing and
field datasets. Average classification F-scores for all species was 0.87 for the hyperspectral CNN
model and 0.64 for the RGB model. Accuracy results compare quite favorably with previous efforts
applying deep learning to image classification and tree species identification, and as we expected, the
availability of high resolution hyperspectral image data improved classification accuracy in comparison
to broad-band RGB imagery. Our study shows the CNN classifier to be a robust approach to species
level classification in Sierran mixed-conifer forest, and points to specific limitations which impact
results, such as inaccuracies in canopy segmentation, crown overlap, and similar spectral characteristics
of species in the same genus. The methodological framework and CNN code resources are made
available for other researchers and forest ecologists to test, repeat, and improve our methods in different
forest ecosystems and with different data inputs. We also encourage the development of the code to
apply to different image classification problems outside the tree species identification problem, using
different training and geospatial imagery sources.
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Appendix A

Table A1. List of Abbreviations used in this manuscript.

Abbreviation Name Description

AOP NEON’s Airborne
Observation Platform

A remote sensing system composed of an orthophoto
camera, LiDAR sensor, and hyperspectral imager.

CHM Canopy Height Model The canopy height model was used to determine
individual tree canopies

CNN Convolutional Neural
Network

The classification technique used to predict tree species
from remote sensing imagery. This is also called ‘deep

learning’ in the text.

DEM Digital Elevation Model Last return LiDAR derived surface representing the
ground surface in our analysis

DSM Digital Surface Model The First-return LiDAR derived surface representing the
tree canopy surface in our analysis

LiDAR Light Detection and
Ranging

The three-dimensional (3D) ranging technology used to
measure the CHM, DSM, and DEM.

NEON National Ecological
Observatory Network

NEON was responsible for collecting the airborne
remote sensing data in 2013.

SMA Spectral Mixing Analysis
Classification method used to discriminate from multiple
different spectra in pixels, often used with high spectral

resolution imagery

Appendix B. Instructions on How to Use the ‘Tree-Classification’ Toolkit

All data used to run the experiment are multiple gigabytes and are hosted online. All NEON
data are available and free for use, contact the National Ecological Observatory Network (NEON) to
download the imagery data files for site D17 used in this study: https://data.neonscience.org/home.
The HDF 5 files can be converted to a geotiff using R code found here:
http://neonscience.github.io/neon-data-institute-2016//R/open-NEON-hdf5-functions/

Automatic tree species classification from remote sensing data

All code used to run the analysis is located in the online repository here:
https://github.com/jonathanventura/canopy

Files needed:

• Hyperspectral Imagery: data/NEON_D17_TEAK_DP1_20170627_181333_reflectance.tif
• Red-Green-Blue Imagery: data/NEON_D17_TEAK_DP1_20170627_181333_RGB_reflectance.tifCanopy

height model: data/D17_CHM_all.tif
• Labels shapefile: data/Labels_Trimmed_Selective.shp

All data to replicate our experiment can be found here:
https://zenodo.org/record/3470250#.XZVW7kZKhPY
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