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ABSTRACT Gender recognition has been among the most investigated problems in the last years; although

several contributions have been proposed, gender recognition in unconstrained environments is still a

challenging problem and a definitive solution has not been found yet. Furthermore, Deep Convolutional

Neural Networks (DCNNs) achieve very interesting performance, but they typically require a huge amount

of computational resources (CPU, GPU, RAM, storage), that are not always available in real systems,

due to their cost or to specific application constraints (when the application needs to be installed directly

on board of low-power smart cameras, e.g. for digital signage). In the latest years the Machine Learning

community developed an interest towards optimizing the efficiency of Deep Learning solutions, in order to

make them portable and widespread. In this work we propose a compact DCNN architecture for Gender

Recognition from face images that achieves approximately state of the art accuracy at a highly reduced

computational cost (almost five times). We also perform a sensitivity analysis in order to show how some

changes in the architecture of the network can influence the tradeoff between accuracy and speed. In addition,

we compare our optimized architecture with popular efficient CNNs on various common benchmark dataset,

widely adopted in the scientific community, namely LFW, MIVIA-Gender, IMDB-WIKI and Adience,

demonstrating the effectiveness of the proposed solution.

INDEX TERMS Convolutional neural network, deep learning, face analysis, gender recognition, efficiency,

accuracy-speed tradeoff.

I. INTRODUCTION

Gender recognition from faces is one of the basic capabilities

of the human beings. Extending this capability to machines

is of great interest in many application areas. One example

is the intelligent social robotics, where the perception of soft

biometric traits is used to personalize the conversation and

increase the feel of intelligence perceived by the human inter-

locutor. Digital signage is another application where gender

recognition can be profitably used, since it allows to boost the

effectiveness of the advertisement campaigns; indeed, in this

scenario it is possible to replace the static contents shown on

the monitor with some dynamic advertisements, customized

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Zhang.

depending on the gender of the person looking at the monitor

itself.

In both the examples provided above, the systems need to

be capable to reliably work even ‘‘in the wild’’, where there

are challenging conditions of illumination, uncontrolled pose

variations, random occlusions, and even more variability of

age, ethnicity, expression. Furthermore, the algorithm must

be executed in real time, and often it is not possible to exploit

cloud services, due to latency or the absence of a reliable

connection to the internet, and a powerful server is rarely

available due to its cost. Therefore, the gender recognition

algorithm must run in real time on the processing units

embedded in the robot, in the surveillance camera or in the

digital billboard. However, the most accurate methods may

need gigabytes of RAM and storage, and billions of floating

point operations for a single prediction, while the available
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processing units, even being quite powerful, with 32 bit paral-

lelism, vector co-processors and capabilities of floating point

computation, are typically equipped with ARM processors

and only low resources in terms of memory and storage.

This is particularly true in applications like digital signage,

in which a small smart camera, with around 512 MB of RAM

and 16 MB for storing the whole application, including the

model of the network, needs to perform the classification of

several faces in real-time to quickly customize the promo-

tional content.

From these considerations, it emerges a clear need for a

gender recognition method which is both accurate in the wild

and able to run in real time on embedded devices. If those two

constraints are met, such a method would be applicable in the

most common real-world applications.

Within this context, we explicitly address both the above

mentioned issues.We propose an optimal DCNN architecture

specifically tuned for gender recognition. Similar challenges

are nowadays faced in akin interactive, human-centered

fields, such as autonomous driving [1], that require careful

design of a real-time capable network architecture [2], [3].

In this work, we first select a known architecture that

leverages the latest devices from the state of the art of

deep learning; we then show different variants of the chosen

architecture to study the effect of the variation on both

classification accuracy and prediction latency. To this aim,

we choose MobileNets v2 as reference architecture, since it

demonstrated remarkable accuracy in image classification,

of which gender recognition is clearly a subdomain. The

specific application to gender classification, though, gives us

the possibility to explicitly rearrange the building blocks in

a way that yields the best tradeoff for the problem at hand.

In particular, starting from the consideration that the extrac-

tion of soft biometrics from faces does not rely on image

resolution like the general problem of image classification

does, we hypothesize that a reduction of the input size of the

network does not significantly affect the accuracy. In addi-

tion, since the classification is limited to a single domain,

namely the faces, we can reduce the number of feature maps

and the number of layers to realize networks that are not so

deep, but still achieving excellent performance, comparable

to the state of the art, and a better tradeoff with respect to

the naive application of the original versions of MobileNets.

We find that, as opposed to the general trend in deep learning,

a smaller network is able to achieve a notable gender recog-

nition performance without loosing in terms of accuracy.

In addition, since we want to build a neural network that

is robust in real world conditions, we train it on a very

large dataset that presents significant face variability and we

measure our performance on well known standard bench-

marks for gender recognition; in order to evaluate the perfor-

mance in real environments, we chose some of them acquired

‘‘in the wild’’. We compare our network with other methods

in the state of the art, to show that the proposed system has

comparable or better accuracy but much lower computational

demand. Moreover, we perform a comparison with existing

optimized architectures, namely Xception [4], Squeezenet [5]

and Shufflenet [6], and we measure their prediction latency

on a hardware architecture that is nowadays very common

for middle or high-end embedded system; the experimental

evaluation demonstrates the superiority of our solution, which

is able to run in real time and to achieve high accuracy in real

conditions, with a better trade-off with respect to all the other

architectures.

To summarize, the main contributions of this paper are the

following: 1) we demonstrate with a comprehensive exper-

imental analysis that it is possible to preserve the gender

recognition accuracy by carefully modifying the architecture

of a CNN; 2) we propose a network architecture specifically

devised for gender recognition, optimized by reducing the

input size, the number of feature maps and the number of

layers of an existing network architecture, achieving a per-

formance comparable with state of the art but can be suitably

applied in embedded applications with real-time constraints.

II. RELATED WORK

The typical pipeline for a gender recognition system is

shown in Figure 1 and consists of the following main steps:

(1) face detection; (2) face normalization/alignment; (3) fea-

ture extraction and classification. In the first step, the posi-

tion of the face in the image is identified with model based

approaches, such as [7], [8] and [9]. The face detection

is typically the processing step which requires more time.

In [10] the authors propose an architecture for reducing the

space of the image where looking for faces. They compute

the time for detection by using the well-known Viola Jones

algorithm, with an average time of 428 ms on the target

embedded device. Anyway, for face classification, the time

required for classifying a single face by using deep learning

based approaches may vary from 40 up to 2000 ms for most

accurate methods available in the literature. It is also impor-

tant to specify that the processing time scales linearly with

the number of people, and this factor represents a challenge

for gender recognition in crowded scenarios. It implies that

the classification time needs to be considered as well, since it

may become a very critical part of the face analysis process.

FIGURE 1. Functional processing pipeline of a typical gender recognition
system. Note that some functions may be also absent or aggregated.

In the second step, the facial landmarks are found inside

the face region. The facial landmarks are known points in the

face that are easy to identify for a human: typically the tip of
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the nose and the centers of the eyes are used. Once the facial

landmarks are identified, the image is scaled and rotated to

put the eyes and the nose in fixed locations; the procedure

may vary and more sophisticated methods may exploit more

landmarks to perform different transformations, such as a full

frontalization [11] that tries to compensate for pose varia-

tions. However, suchmethods have significant drawbacks and

are not as popular as plain affine transformation, since they

are extremely slow and introduce a consistent deformation of

the face. Other normalization steps may be also applied, such

as contrast stretching and histogram equalization.

In the third step, the actual classification takes place; the

features are extracted from a pre-processed face image and

a binary decision (male/female) is the output. Three main

strategies have been adopted for classification: (1) hand-

crafted features, (2) trainable features or (3) a combination

of them.

Handcrafted features are carefully designed by humans

explicitly for the problem at hand, while trainable features

are general purpose meta-descriptors that can be learned from

examples. The handcrafted features can take advantage of the

domain-specific knowledge to bemore accurate and efficient.

For gender recognition, it has been shown that color [12],

shape [13], texture [14] and local features [15] are typically

discriminant. It has also been shown that a combination

of those features would lead to significant improvements

in recognition accuracy [16]. SVMs is often used [17] as

classification step. Using a variant of SVM on multiscale

LBP texture features, the authors of [18] achieve 96.6%

performance on the well known LFW benchmark. While

handcrafted-feature based systems often leverage the full

pipeline, sometimes in practical application face alignment

is just skipped. Indeed, the improvement in the accuracy is

paid in a more significant improvement in terms of the com-

putational burden required [19]. Furthermore, any failures

of the alignment algorithm may affect the overall system

performance.

Trainable features, on the contrary, do not leverage

domain-specific information when they are chosen and

designed, but they can themselves learn particular patterns

that are not immediately evident to human designers. The

approach based on trainable features includes all the tech-

niques related to deep convolutional neural networks that

learn the filters directly from the data. These techniques were

proved in recent years to be very effective on all the computer

vision tasks, and in particular on those related to face analysis,

such as face recognition and re-identification [20], soft bio-

metrics such as gender [21], age [22], and so on. It is worth

noting that this approach was not born with deep learning, but

it has been already applied to gender recognition from still

images in different forms. In [23], for example, the authors

use a weighted combination of shifted Gabor filters, inspired

by the structure of the visual cortex: the parameters of those

filters are chosen with an automatic pseudo-random training

procedure in which the images from the application domain

are fed into the filters.

Among the trainable-feature based methods, the authors

of [24] propose an ensemble of CNN models: with reference

to the VGG architectural principles, they specifically address

the problem of reducing the computational load; they find

an optimal architecture in terms of depth, number of feature

maps and input size, then they train the best architecture three

times and combine them in an ensamble to reach 97.31%

performance on the LFW dataset. VGG architecture has been

also used in [25], where the authors compare MobileNet and

VGG in the field of social robotic. In a successive work [26]

they train the very deep an powerful ResNet-50 CNN and

obtain the state of art accuracy of 99.3% on the LFW bench-

mark; the network is pretrained on the problem of face recog-

nition and then it is fine tuned on the IMDB-WIKI-cleaned

dataset.

Some recent methods even perform all the three steps

together (detection, aligment and classification): for instance,

in [27] the authors achieve 94% accuracy on the LFWdataset,

training a CNN jointly for face landmarks, pose estimation

and gender recognition.

III. PROPOSED METHOD

Our method is based on a multi-purpose neural network

architecture named MobileNets [28], [29]. The main reason

behind this choice is that the architecture is very suited for

applications which require a trade off between accuracy and

processing speed on mobile or embedded platforms. Indeed,

the authors discovered that a convolutional layer can be split

in a ‘‘depthwise’’ operation followed by a ‘‘pointwise’’ oper-

ation while still retaining much of the representative power of

the network. This trick allows 3 × 3 convolutions to require

8 to 9 times less operations, with a consequent reduction in the

number of parameters [28]. In [29], the linear bottleneck lay-

ers are built out of the separable ones: when such layers are

stacked, a separable convolution is forerun by an additional

pointwise layer with linear activation, to form a ‘‘bottleneck’’,

where the number of feature maps is increased (expansion)

and then decreased (projection): the data are scattered in

a higher-dimensional space so that the non-linear power of

ReLU activation can be exploited without information loss.

In addition, the residual connection from [30] are added to

ease backpropagation, but they are also useful to improve

the automatic optimization of the computation graph when

executed: the presence of skip connections forces a particular

order of execution where the memory requirement is dom-

inated by the size of the input and of the output tensors of

each residual block (much smaller than the expanded tensors

that are treated between the bottlenecks).

According to [31] the biggest variant of MobileNets

achieves a high accuracy on the problem of object recogni-

tion while keeping a low latency. The architecture has been

tested in different variants to trade latency for accuracy. This

network was experimented to be quantized to obtain further

improvement in time andmemory consumption on low power

devices with negligible performance loss [32].
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FIGURE 2. The original MobileNets v2 architecture (width multiplier = 0.5, input size = 128).

A. MINIMIZATION

We will experiment different variants of that architecture to

find out how the performance is affected. The variants that we

will consider, as reported in Table 1, are the input resolution,

the width multiplier, namely the ratio of the number of feature

maps will be in each convolutional layer with respect to the

original network, and the number of layers that compose the

architecture.

TABLE 1. Different changes of the architecture experimented in this work.

Starting from the assumption that the gender recognition

from faces does not require a huge resolution in most of

the cases, the first variant we consider is the input size.

Since smaller tensors will save preciousmemory and improve

caching, also requiring less computation, we reduce the input

size until we find that further reduction harms the recogni-

tion accuracy. We will test various input resolutions (from

224 × 224 to 32 × 32) for each width multiplier to find

the optimal pair of values. The authors of MobileNet do not

use sizes smaller than 96 × 96 since a smaller size is less

convenient when the application concerns object recogni-

tion or detection, because the recognition becomes difficult

even for human eyes. Since our architecture is tailored on

gender recognition, this limit does not apply for us: we can

empirically evaluate that 32 × 32 pixels are enough for a

human to distinguish males from females. We show in our

experiments that this statement is more or less valid also for

neural networks; indeed, a good performance is also achieved

with faces of 64 × 64 pixels.

As for the width multiplier, we will experiment the same

values as the original authors of MobileNets, namely 1.0,

0.75, 0.5 and 0.35. Reducing the number of feature maps will

strongly reduce the computational load, since the aggregation

of the different channels is the most costly operation in an

architecture based on separable convolutions [28]. Further-

more, the reduction of the number of feature maps will sig-

nificantly reduce the memory footprint of the network and the

number of parameters.

As a third way to optimize the network we will exploit

that, for gender recognition, it has been shown that a very

deep network may be overkill; the authors in [24] used a

VGG-inspired architecture and showed that very few layers

could achieve a very good result. As shown in that work,

the gender recognition CNNs do not take advantage using a

very deep hierarchy of features, maybe due to the simplicity

of the problem with respect to tasks such as face recognition,

age estimation, object detection, where deeper networks gen-

erally achieve better performance [22]. Following this intu-

ition, we will experiment how the reduction of the number of

layers affects the performance. The rationale is that, starting

with a network with minimal input size, width multiplier and

number of layers, we will obtain an optimized architecture

removing groups of adjacent layers that all have the same

number of feature maps (same number of output channels).

In Section IV-D we will remove one, two or three groups of

layers, showing that the impact on the performance is limited.

The resulting architectures are described in Table 2.

B. TRAINING

All the network architectures are trained from scratch. We

decided to adopt the most widely used parameters initial-

ization technique, namely the Xavier Uniform method [33],

which allows the neural networks to achieve quick conver-

gence and high accuracy in several computer vision tasks; we

did not use different initialization methods, since the aim of

this experimental analysis is to compare the performance of

different gender recognition methods trained with the same
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TABLE 2. Reduction of the depth in successive steps. The leftmost
column shows the number of feature maps (‘‘width’’) for each residual
block in the original network; m represents the width multiplier.
Successive reductions collapse adjacent blocks with the same ‘‘width’’,
starting from 17 of the original neural network architecture.

protocol. We set the batch size to 64 and perform 100 epochs

of 400,000 samples each.

We use data augmentation to improve the training effec-

tiveness: when loading an image, it is randomly modified in

one or more of the following ways:

1) Random crop, to model the effects of imprecise

unaligned face detection

2) Horizontal flip

3) Image resampling, to simulate low resolution

4) Brightness change

5) Addition of gaussian noise, to simulate noisy images

The learning rate is initially set to 0.005 and it is halved

every 20 epochs.We use the Adam optimizer with parameters

b1=0.9, b2=0.999, decay=5e-5. Also, in order to reduce the

overfitting we use a dropout rate; we experimented 9 values

between 0.1 and 0.9 with step 0.1 and noticed that setting it to

0.2 allows tomaximize the accuracy on the validation set. The

dropout is inserted between the last convolutional layer and

the last fully connected layer, as typically done in literature.

C. PREPROCESSING

In this work our focus is on the classification step; anyway,

it is still important for the sake of completeness to describe

the preprocessing steps, both in terms of face detection and

normalization/alignment, that affect the type of images fed

into our classifier and the latency of the overall system.

As for the detection step, we adopt the well-known Viola

Jones face detector [7], which is quite reliable when applied to

frontal faces but it is still very fast when compared to modern

alternatives. We do not use any face alignment: indeed, even

if it can converge faster in the training phase, the performance

improvement is limited since it can only fix in-plane rotation.

Since the common alignment algorithms have a significant

effect on latency, we choose to completely drop the alignment

and to only rely on the discriminant power of the neural

network to deal with all the variations

The detected face is cropped and then resampled with

bilinear interpolation to match the input size of the network.

Nearest-Neighbour resampling would produce significant

artifacts on the imageswith lower resolution, sowe decided to

avoid it. Bicubic resampling would produce visually similar

results in the spatial and frequency domain, so we decided to

go with bilinear, that is simpler.

IV. EXPERIMENTS

We perform a comprehensive experimental analysis on

several public datasets; we describe them in Section IV-A,

while in Section IV-B we give details about our experimen-

tal procedure, to make it reproducible. Then we report the

results of all our experiments in the following Subsections.

In Subsection IV-C we describe, at various input resolutions,

the effect of decreasing the number of feature maps; in

Subsection IV-D we evaluate how the reduction of the num-

ber of layers affects the performance and we show how the

accuracy is traded with speed in the proposed variants of

the basic architecture. In Subsection IV-E we compare our

proposed solution with other architectures on the considered

datasets. Finally, in Subsection IV-F we analyze the results

in real environments and show how our approach is able to

succeed in the target applications while different solutions

fail.

A. DATASETS

In this section we are going to introduce the datasets used in

our experiments.

1) VGGFACE

The VGGFace dataset [20] was built to train Deep Neural

Networks on the problem of face recognition, where no

existing public dataset were large enough to effectively train

DNNs. The dataset is gathered in an inexpensive way, using

services such as Google Search to obtain a huge quantity of

weakly annotated images. Such images were then filtered and

the annotations fixed and verified manually through a fast

inexact process to achieve a certain dataset purity, less than

100% but vastly sufficient to be used for training purposes.

The second version of the VGGFace [34], namely

VGGFace2, was gathered in a similar way but contains a

larger quantity of subjects (9,131), images (3.31millions) and

variations in pose, age, illumination, ethnicity and context.

This dataset was originally gathered for face recognition, but

it is also annotated with gender, so it is suitable for our aim.

The dataset is already partitioned in training and test set.

From the training set we extracted 2 millions of images for

training and we kept 200.000more images for validation. The

partition was performed on a subject-independent basis, i.e.

no subject identities in the training set are in the validation set.

The validation set is perfectly balanced (100.000 males and

100.000 females) while the training set is slightly unbalanced
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(57% males, 43% females). The test set was used as it is for

testing purposes.

2) LFW DATASET

The LFW dataset [35] is the most popular benchmark for

gender recognition, even though it was originally created for

unconstrained face recognition. It contains 13,233 images

of 5749 unique subjects, with a significant imbalance

between males (77%) and females (23%). Since LFW is a

standard for gender recognition, we have used it as reference

for our experimental analysis; for a fair performance compar-

ison, we used the same test set proposed in [18], [24] and [26].

3) MIVIA-GENDER DATASET

The MIVIA-Gender dataset [10] has been acquired in real

scenarios and it is particularly suited for evaluating the perfor-

mance in unconstrained environments. In fact, it contains face

images captured in extreme lighting conditions, with motion

blur, different poses and expressions, low resolution and low

quality. The dataset is composed by almost 6,000 face images

and it is partitioned in three subsets, namely UNISA-1, that

is acquired in more controlled situations, UNISA-2 and SM,

that are very challenging and have been acquired in different

scenarios. We used this dataset for testing the capabilities of

the CNNs to generalize in real environments.

4) IMDB-WIKI DATASET

The IMDB-WIKI dataset [36] consists of images of celebri-

ties collected from the famous IMDB website and from

Wikipedia. The total number of images of the two partitions,

namely IMDB andWIKI, is 523, 051. The faces are automat-

ically annotated with gender and age labels, but the authors

themselves declare that they can not vouch for the accuracy

of the annotations. In fact, they assume that all the images

with a single face belong to the celebrity and automatically

annotate them with the gender declared in the profile; this

assumption results in several errors in the IMDB partition.

Consequently, it is recommended to use the WIKI partition,

that is more accurate, for testing purposes; in spite of this,

we used both the partitions for our experimental analysis,

in order to increase the size of the test set.

5) ADIENCE DATASET

The Adience dataset [19] consists of 26,580 images

of 2,284 different subjects. It is commonly used for gender

recognition and age group classification. It has an extreme

variety in terms of age, including a large quantity of children

and includes a lot of images with very low quality and res-

olution. Therefore, it is a good dataset for testing the gender

recognition capabilities in very challenging conditions.

B. EXPERIMENTAL PROTOCOL

All the architectures were trained with Tensorflow and Keras

on a Titan Xp GPU. The latency is measured on a CPU-only

setup, without any GPU acceleration and on batches of

size 1. The reported latency is computed as an average

of 100 executions, where the neural network is loaded once

and 100 different batches of 1 image each are fed into it

consecutively. The measured time does not include the time

for loading/acquiring the image nor the time for finding the

face into the image (i.e. detection).

Specifically, we used an embedded platform for testing,

namely an ARM Cortex A53 (ARMv8) clocked at 1.2GHz,

on board of a Raspberry Pi 3 Model B, with 1GB ram. The

setup is meant to simulate real use conditions in absence

of dedicated hardware, that is still a common case nowa-

days. Many mid-high end embedded devices such as smart

cameras use ARMv7 or ARMv8 chips, where Cortex-A7

and Cortex-A53 are common choices and achieve similar

performance.

In the first evaluation on the LFW dataset we include two

comparable results from the state of the art: the first (here-

inafter SoA Fast) is the network ensemble presented in [24],

specifically designed to be lightweight and fast; the second is

at the best of our knowledge the most accurate architecture

on the target dataset available in the literature [26] (here-

inafter SoA Best). The experiments in these two papers are

performed on the same set of data, the LFW test set, with the

same experimental protocol: all the evaluation is performed

in a cross-dataset fashion, without fine tuning on the target

dataset. Such experimental protocol allows to obtain a more

reliable, pessimistic, estimate of the network generalization

capabilities when the system is deployed in real scenarios,

that is one of our purposes. Furthermore, we also consid-

ered for comparison purposes other networks widely used

in other image classification tasks: Xception, Shufflenet and

Squeezenet.

According to the same rationale, we perform a more exten-

sive evaluation on all the considered datasets by using the

same cross-dataset evaluation on all the considered datasets,

namely the VGGFace2 test set, LFW, MIVIA-Gender,

IMDB-WIKI and Adience.

C. INPUT SIZE AND NUMBER OF FEATURE MAPS

In the first experiment we evaluate the performance of the

proposed method on the LFW dataset by varying both the

input size and the width multiplier, namely the fraction of

the original feature maps. The results are shown in Figure 3.

For this evaluation, we will adopt the notation x_y, where x

is the input size and y is the width multiplier. The original

MobileNet v2 network architecture is marked with the label

224_1.0; this is the largest, most complex model that we

experiment and compare with the optimized versions. The

most noteworthy consideration is the fact that the original

version does not obtain the best performance. Indeed, the best

accuracy of 98.73% is achieved with the network 160_0.75.

This difference may be interpreted as an effect of overfitting

or by considering that the average size of the face images

available in the VGGFace2 is significantly smaller than

224 × 224. In any case, the performance is quite stable with

respect to the input size and a bit more sensitive according

to the width multiplier, with a reduction of the performance
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FIGURE 3. Classification accuracy vs.input size (224, 160, . . . ) and width
multiplier (1.0, 0.75, . . . ) on the LFW dataset. According to the notation we
used in the paper, the first bar (starting from the left) corresponds to
224_1.0, the second one to 224_0.75 etc. On the chart we also display
two main results of the state of the art for comparison, namely SoA
Fast [24] and SoA Best [26]. More details are reported in Section IV-C.

when this parameter is set to 32. However, even in this case

the performance are never before 96.5%, while being more

stable in the other cases in the range 97.7% − 98.6%.

We also notice that somehow a larger input size can com-

pensate for a lower width multiplier and viceversa: the archi-

tectures 128_1.0, 160_0.75 and 224_0.5 achieve almost the

same accuracy. It means that the variability of the results

among different versions is mainly due to the quantity of

parameters and so to the general representative power of

the network rather than to one specific variation of the

architecture.

The performance is significantly reduced when the input

size drops below 64 × 64. This may be due to the fact that,

even if 32×32 is typically enough for a human to distinguish

gender, the proposed network architecture applies a double

strided convolution in the first hidden layers, and much infor-

mation are discarded from the 32 × 32 image starting from

the second layer.

D. NETWORK DEPTH

In this second experiment we verify how and whether the

reduction of the number of layers affects the performance.

We choose two configurations for the input size and the width

multiplier and use those parameter to train optimized archi-

tectures. We use 96_0.75 and 64_0.5 that are two mid-low

sized configurations that still yield a good accuracy, and

160_0.75 that is a bigger configuration that achieves our best

result on this dataset, as shown in the previous Subsection.

In Figure 4 we compare the full-size network (17 residual

blocks) with some reduced versions (8, 6 and 4 blocks).

Many aspects emerge from these results. We can see that even

if the depth of the network is severely reduced along with

the latency, the classification accuracy is pretty consistent.

In particular, we clearly see that it is much more convenient

to reduce the depth of 96_0.75 to 8 or even to 6 instead

of moving to the 64_0.5 configuration. With respect to the

160_0.75 architecture, it is clear that a great performance

FIGURE 4. Scatter plot of latency versus accuracy on the LFW dataset. For
our proposed architectures (circles), each line represents a different
combination between input size and width multiplier and every point
indicates a different number of blocks. The other points (crosses)
represent variants of different architectures we compare with.

drop occurs reducing the depth. A cause is probably the

overfitting: too many parameters have to be learned, but

the structure of the network is too shallow to construct an

adequate feature hierarchy, so the performance is notice-

ably affected with respect to equivalent architectures with

less parameters (i.e. 96_0.75 and 64_0.5). The adoption of

dropout, as described in Section III-B, is not sufficient to

avoid that. Another cause may be the fact that, having a

larger input resolution, the last convolutional layer produces

larger feature maps, that are less suited for gender classifica-

tion with respect to the smaller ones, where the information

is condensed. Finally, we observe that difference between

shallow and deep network is less pronouced with smaller

resolutions (i.e. 64_0.5).With such a small resolution, the full

size network would have very small feature maps as output of

the last convolutional layer (up to 1×1 if the input is 32×32),

while shallower networks alleviate this problem, providing

the fully connected layer with enough spatial granularity.

E. COMPARISON WITH OTHER ARCHITECTURES

In this section we compare our proposed solutions with

other architectures on all the considered datasets. Hereinafter,

we will use the notation x_y_z, where x and y are still the

input size and the width multiplier, while z is the number of

blocks.

In addition to SoA Fast [24] and SoA Best [26], whose

results are available only for the LFW dataset, we include

three more architectures that have been proven effective and

efficient for the generic task of object recognition training

them for gender recognition. In particular we experiment

the architecture named Xception [4] that improves over the

popular Inception architecture using depthwise convolution,

like in our proposed architecture. Then, we experiment the

Squeezenet architecture [5], that is thought for embedded sys-

tems, even though it does not directly optimize the processing

speed with respect to the classification accuracy. Finally we
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TABLE 3. Evaluation of different architectures on different datasets. The table reports the processing time on the target embedded platform as well as
the accuracy on each dataset.

experiment ShufflenetV2 [6], that is a very efficient archi-

tecture optimized with special reference to the hardware that

we target to obtain the best results with the minimum pos-

sible processing time. For each of the considered networks

we considered different input sizes that make sense to the

specific architecture and are comparable to our proposed

network. Since Shufflenet comes in two different versions,

with full featuremaps (ShufflenetV2-1) and half featuremaps

(ShufflenetV2-.5), we experiment both the variants.

Looking at Figure 4 we can note that the accuracy achieved

by the smallest proposed network, namely 64_0.5_4, is still

higher than the one reached by SoA Fast (97.69% vs 97.31%),

even achieving lower latency (38 ms vs 122 ms). Compared

to SoA Best [26], the proposed architecture yields an arguably

similar accuracy (only 0.57% lower) but it is significantly

faster, since all our proposed architectures require between

40 ms and 340 ms while SoA Best is more than 6 times

slower). It is also worth pointing out the differences in the

training procedure with respect to the one applied in SoA

Best [26], in order to explain the performance gap on the

LFW dataset. In our case no pretraining is performed, while

the authors of [26] prove that a face recognition pretrain-

ing significantly improves classification of accuracy of the

final model. Then, we use VGGFace2 as training dataset,

while [26] used the IMDB-WIKI cleaned. Our training

dataset is bigger (2 million images versus 250.000) and and

this is an advantage, but the IMDB-Wiki dataset contains 50%

of the identities contained in the LFW test set. Finally, we use

a different type of data augmentation and a different optimisa-

tion algorithm, that we think is more suitable for our architec-

ture as explained in Section III-B. The difference is confirmed

by the fact that when we train the architectures from [26]

on the VGGFace2 dataset, we obtain 98.75% performance,

even with face recognition pretraining, that is lower than the

one that the original authors obtain (99.30%). We think that

the 0.5% difference is due to the identity overlap: in the

hardest cases, for people whose face does not express their

gender in a clear way, estimating gender is easier when the

classifier has already seen samples for the same person.

As for the other architectures, from the results reported

in Table 3, we can note that Xception obtains the best

performance, but it is significantly slower than the others;

it requires too much processing time (1363 ms), so it is

not suited for our purposes. The second best is Shufflenet,

but the accuracy significantly decreases when we reduce its

input size. With the same input size, our proposed version

64_0.5_8, for example, is 50% faster with comparable or

better accuracy (between 0.05% and 1.50% of improvement

on the considered datasets). Larger versions of the architec-

ture take much more time to process with respect to our

proposed equivalent. The performance of Squeezenet is lower

than the other networks when the full input size is used, but

reducing this parameter the architecture retains most of its

accuracy greatly improving the processing speed. However,

fixed the processing time, our network achieves a compa-

rable (64_0.5_4 vs squeezenet-64) or higher (64_0.5_6 or

64_0.5_8 vs squeezenet-112) accuracy than Squeezenet.

The experimental results demonstrate that crafting a spe-

cially tailored network is worthwhile to obtain the best effi-

ciency in a specific problem such as gender recognition.

In fact, our proposed architecture was explicitly tailored for

gender recognition in terms of input size, number of feature

maps and number of layers, while the other architectures are

designed with reference to object classification. Such task

based optimization allows to find the best trade-off between

accuracy and processing time and to achieve our goals.
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Another trend that we can note analyzing the results

reported in Table 3, is that the relative accuracy is consistent

among different datasets, i.e. the architectures that perform

better on the reference LFW benchmark, still perform bet-

ter than others on all the considered datasets. As expected,

we can observe a fluctuation of the performance on the

different datasets, according to their intrinsic challenges:

the results on LFW, VGG-Face DS 2 and WIKI are typ-

ically higher, while UNISA-2+SM is lower and Adience

is the lowest together with IMDB. In fact, UNISA-2 and

SM are very challenging partitions of the MIVIA-Gender

dataset, acquired from surveillance cameras with extreme

lighting conditions, face poses and low quality and resolution.

Adience ismainly used for age estimation and contains a huge

number of newborns, infants and toddler, where even human

performance is near-random trying to guess gender from the

face. IMDB dataset notoriously includes very noisy annota-

tion of identity, due to the presence of images with multiple

people in them, so it is not commonly used as a benchmark

for evaluation, but more often for training. In all the cases,

our proposed architecture is always able to achieve very high

accuracy, even requiring significantly less processing time.

F. PRACTICAL CONSIDERATIONS

To confirm that our proposed models can be effectively used

in real environments we can do some additional measures to

estimate the time constraints more precisely. Cascade detec-

tion algorithms such as the one from Viola and Jones that we

adopt, have different running times depending on how much

face-like configurations are seen in the frame. We measure

that on the target platform, the detection algorithm will take

less than 100ms to run in typical worst case conditions (where

many faces are present). We consider a reasonable worst

case of 3 faces per frame, and we consider acceptable the

whole system to run at 3 fps. This processing speed is to

be considered perfectly acceptable for applications such as

digital signage, automatized social interaction and statistics.

With those constraints a time of 70ms or lower is accept-

able. We can use our optimized models for the target appli-

cation, for example 64_0.5_8, since an accuracy of about

98% can be considered enough in the wild for the target

applications. The accuracy can also be slightly improved

through ensembling classification on successive frames.

Squeezenet also makes a suitable architecture for such an

application, but only if we use a reduced input size. SoA

Best would not be able to run in real time on the considered

platform, having a time of 2 seconds per face that would

be unacceptable for those applications requiring a strict real

time; the same considerations can be done for Xception and

Shufflenet. Furthermore SoA Best and Xception, which use

ResNet-50, have to rely on 1GB additional swap space on

flash memory, since they do not fit in the available RAM.

To finally assess that the 98% accuracy is reasonable for

our model, in Figure 5 we show some of the samples for

which our system gets an error. They are mainly due to

non-evident gender features on the face, or to the variability

FIGURE 5. Samples of misclassifications on the LFW test set. Aside of
faces with poor gender features, most of the few errors concern children,
elders and Asians. Faces in the first row were miclassified as males, while
the ones in the second row were mistaken for females.

in gender and ethnicity: since the training dataset is not bal-

anced with respect to them, we expect that the accuracy drop

classifying children, elders and Asians, since most people in

the training set are caucasian adults. This shows that the net-

work, even in its simplified more efficient form, successfully

learned how to classify gender from faces.

V. CONCLUSION

Even if in the future we expect the presence on the market of

high end embedded platforms equipped with neural network

accelerator chips, in the current market most of the devices,

such as smart cameras or commercial robotic platforms for

social and smart applications, only rely on low power general

purpose CPUs. In this work we have shown how a very

accurate gender recognition system (up to 98.73% in thewild)

can run in real time on an embedded device, without the use

of dedicated hardware such as a GPU or other type of parallel

computation accelerators. We leveraged many features of the

modern deep learning state of the art that include separable

convolution and residual blocks to train a convolutional deep

neural network that would reliably recognize gender from

images. We started from the MobileNet architecture that

is already known and designed to be a fast and efficient

CNN model and we experimented different changes of the

architecture to find a trade off between processing time and

recognition accuracy. The changes regarded the input size,

the number of feature maps and the number of layers. The

rationale behind this choice is that very low resolution images

are still typically sufficient for a human to determine gender.

We found out that even with few feature maps and a reduced

layer hierarchy, there is no significant performance drop (up

to 97.70%).

Future work will include specifically addressing the

problem of accuracy drop when classifying faces of elders,

children and Asians. Furthermore we plan to consider prob-

lems generated by detection errors: these mistakes are just

mentioned in this work, butmay represent a significant source

of error in a real system. We also plan to extend our analysis

to other soft biometrics, such as age, expression, emotion,

ethnicity or facial attributes [37]. Finally, we will investigate

other techniques to further reduce the processing time, such as

pruning, weight quantization and single stage face detection

and gender recognition.
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