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ABSTRACT

Conventional surface crack segmentation requires images

manually labelled by a trained expert. It is a challenging

task as cracks can vary in orientation and size, with some

parts of cracks only being one pixel wide. Further, available

training data for crack segmentation is sparse. In this work

we propose to automate this annotation task, by introducing

a fully convolutional U-Net based architecture for semantic

segmentation of surface cracks which allows for the use of

small datasets through a patch based training process. Our

proposed configuration makes use of residual connections

inside the convolutional blocks as well as including an at-

tention based gating mechanism between the encoder and

decoder section of this architecture, which only propagates

relevant activations further. Using our proposed architec-

ture we achieve new state of the art results in two different

crack datasets, outperforming the previous best results in two

metrics each.

Index Terms— Semantic Segmentation, Attention, Resid-

ual Connections, U-Net, Surface Cracks

1. INTRODUCTION

Cracks are a common defect which can appear on horizontal

and vertical surfaces, such as roads and walls. They develop

through consistent use of the surface or with age and can im-

pact the structural integrity. Therefore, surface monitoring is

an important aspect in maintaining such structures. In recent

years, many different tasks were able to be automated through

the use of deep learning algorithms. Semantic segmentation is

the task of assigning a class label onto each pixel of an image.

Conducting this crack segmentation task manually, to analyse

images at a later stage, is time and resource intensive as some

cracks may only one pixel wide.

Several state of the art results in semantic segmentation

are achieved using fully convolutional neural networks [1,

2, 3], with a popular area of research being segmentation of

medical images [3, 4, 5]. Medical imaging shows many sim-

ilarities to crack segmentation as various sized objects, of-

ten containing important small sized details, are being seg-

mented. Therefore many of these architectures can be used

for automatic crack segmentation, which will improve time

and cost efficiency as well as improving the safety of the in-

spector conducting carrying out the manual visual inspection.

The shape of structural cracks varies as they can be in-

terconnected as well as expand into multiple directions [6].

Initial attempts for automated crack detection were based on

traditional methods such as morphology [7] or edge detection

algorithms [8] whereas further research used machine learn-

ing methods such as random structured forests [9] or support

vector machines [10]. However, images containing cracks can

differ in quality and include artefacts such as shadows, spills

or objects such as leafs and cracks may not be of a homoge-

neous consistency. Due to this, conventional algorithms tend

not to perform well. These deep learning based methods are

better at adapting to these anomalies, as they do not require

handcrafted features which these previous methods rely on

[11]. It is shown that crack detection methods using deep

learning generally outperform other non deep learning based

methods [12, 13, 14]. Whilst much research has been con-

ducted into the field of crack detection, the number of avail-

able datasets is still limited and no general consensus on a

specific dataset for benchmarking exists.

A popular deep learning based architecture for semantic

segmentation is U-Net [3]. This architecture features an en-

coder as well as a decoder section who are connected through

shortcut connections. It has successfully been applied for

semantic segmentation on medical images [3, 4] as well as

crack segmentation [15]. To improve performance of the base

U-Net architecture several new components have been intro-

duced, such as residual connections between convolutions

[16, 4] as well as making use of attention to gate the shortcut

connections [5].

In this work we propose an encoder-decoder U-Net based

architecture for semantic segmentation of cracks. This ar-

chitecture utilises attention gating for propagation of only

relevant features between the encoder and decoding section.

Further, we also employ residual connections, inside each

encoder and decoder block, for improved performance. To

our best knowledge this is the first application which utilises
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Fig. 1. The proposed U-Net architecture. l denotes the layer, e and d denote encoder and decoder blocks respectively.

both of these components in an U-Net based architecture for

semantics segmentation. Through use of this architecture

and a patch based training process we achieve new state of

the art results in two surface crack datasets: CFD [9] and

AigleRN, [17] outperforming the previous in two metrics in

each dataset.

2. APPROACH

2.1. Network Architecture

The network architecture used in this work is based on U-

Net [3]. The original U-Net architecture was designed for

segmentation of microscopic cells with limited data available.

This correlates highly with the task of crack segmentation due

to limited training data and segmentation of small thin shaped

objects. Therefore this architecture poses to be ideally suited

for this work.

U-Net based architectures can vary in depth, however this

work makes use of a four level architecture. At each level l of

this architecture we employ encoding convolutional blocks el.

They are connected through pooling operations, each down-

sampling the spatial dimensions of the feature map by a fac-

tor of two. Each level is further associated with a number of

filters for the convolutional operations in the encoder and de-

coder blocks. Our architecture uses the following number of

filters for each level l: [16l=1, 32l=2, 64l=3, 128l=4]. Further,

opposite to the encoder blocks at level 1-3 there are decoder

blocks dl. The input to these decoder blocks consists of a

concatenation of the activations along the channel dimension

of the attention gated opposing encoder block, x̂l, as well as

the upscaled activations of the previous convolutional block

ul. The upsampling operation in this architecture is a trans-

posed convolution using a filter size of 2×2 and a stride of 2,

therefore upscaling by a factor two. The input to this upsam-

pling operation is either the last encoder block if l = 4 or the

previous decoder block.

Deep supervision [18] allows filters to learn robust fea-

tures at different scales of the network. We employ this by

passing the output of each decoder block through a 1×1 linear

transformation followed by bilinear upsampling to the spatial

size of the input. These feature maps extracted from differ-

ent scales are then concatenated along the channel dimension

on which another 1 × 1 linear transformation followed by a

ReLU activation is applied. The Softmax activation function

is then used to create the final segmentation output. Figure 1

shows our proposed architecture.

2.2. Residual Blocks

The convolutional building blocks in this architecture are

based on residual connections [16]. These residual connec-

tions help combating the vanishing gradient problem as well

providing an identity mapping. We model our convolutional

blocks following the architecture proposed in RU-Net in [4].

A 1 × 1 linear transformation with the number of filters for

the specific level l is performed onto the input of each block

∈ {el, dl}. This is followed by consecutively applying 4

blocks of 3 × 3 convolutions and ReLU activations. At the

end of each residual block, the residual connection is created

by adding the output of the 1× 1 linear transformation to the

activations of the convolutional operations as shown in Figure

2.

2.3. Attention Gates

The attention gating mechanism for a U-Net based model was

first introduced by [5]. The aim of this attention mechanism is

to only retain spatially relevant features of the feature map in

the shortcut connection, before propagating it to the decoder

stage. Let xl
i be the features x at pixel i from the shortcut con-

nection at level l of the U-Net architecture, who were created

by the encoder block el. The attention mechanism creates a

scale coefficient ali ∈ [0, 1] by making use of the activations
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of the previous upsampling operation ul
i as well as xl

i to create

the scaled output x̂l
i with ⊙ denoting the elementwise prod-

uct: x̂l
i = ali ⊙ xl

i. Generating the attention coefficient uses

1 × 1 linear transformations defined by Wx, Wu , Wv and

biases bu, bv , as well as the ReLU σ1(x) = max(0, x) and

Sigmoid σ2(x) =
1

1+exp−x
activation functions:

qlatt(x
l
i, u

l
i) = Wv(σ1(Wxx

l
i +Wuu

l
i + bu) + bv (1)

ali = σ2(q
l
att(x

l
i, u

l
i)) (2)

Training this attention mechanism through backpropagation

allows parameters in previous encoder layers to primarily fo-

cus on semantically relevant features as the gradients of non

relevant regions are being suppressed. Further, the use of

denser features upsampled from the previous convolutional

block in the gating operation decreases the propagation of

noisy or irrelevant activations passing through the shortcut

connection to the decoder blocks [5].

In contrast to the implementation in [5], where xl
i is down-

sampled to match the spatial dimensions of the output of the

previous block followed by later upsampling al, we use al-

ready upsampled features ul which match the spatial dimen-

sions of xl.

3. EXPERIMENTS

3.1. Datasets and Metrics

The Crackforest dataset (CFD) consists of 117 images of size

480 × 320 pixels which contain road surface cracks and their

corresponding ground truth segmentation mask. This dataset

also features anomalies such as shadows and stains. We also

make use of the AigleRN dataset [17]. It features 38 images,

half of them being of size 311 × 462 pixels and the other half

991 × 462 pixels. Cracks only occupy a fraction of the total

image with the ratios of crack to non crack pixels being 61:1

for the CFD and 139:1 for AigleRN.

To allow a fair evaluation we make use of the commonly

used metrics: F1-Score F1, Precision Pr and Recall Re.

These metrics are calculated using True Positive, False Posi-

tive and False Negative predictions. As the annotated ground

truth segmentation mask may not be accurate on a per pixel

level, a threshold is commonly used to count True Positive

pixels [9, 15, 19]. Following the metrics used in [19] we clas-

sify a crack as correctly labelled if it lies within a threshold of

two pixels to a ground truth crack pixel.

3.2. Training Configuration

The model architecture is trained using a image patch based

training approach. Following [19] we split CFD into 711

training, 46 testing and AigleRN into 24 training and 14 test-

ing images. This patch based approach extracts a ratio of

48 × 48 pixel patches containing cracks (at minimum one

crack pixel) to patches where no crack is present. For both

datasets a ratio of 60% crack to non crack patches is used. In

the training process for CFD 2000 patches are extracted per

image, totalling to 142000 training patches. As AigleRN con-

tains a higher class imbalance as well as varying image sizes

the number of patches to extract from each image is set to be

dynamic:

NPimage =
cpximage

cpxtrain

∗NPtrain (3)

with NP being the number of patches to extract, cpx be-

ing the number of pixels containing cracks and image as

well as train representing each individual image or the whole

training dataset respectively. NPtrain in AigleRN was set to

84,000.

The Loss function used to train this architecture is the sum

of the cross entropy loss function LCE and the dice loss func-

tion LD [20] with yi denoting the ground truth and ŷi denot-

ing the prediction at pixel i ∈ [0, 1] out of all pixels N :

Loss = LCE + LD (4)

LCE = −
∑N

i yi log ŷi − (1− yi) log(1− ŷi) (5)

1One image from the training split in CFD was excluded as the authors

included an incorrect ground truth segmentation map
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Fig. 4. Sample of segmentation results on (1) CFD and (2) AigleRN

LD =
2
∑N

i yiŷi + 1
∑N

i yi +
∑N

i ŷi + 1
(6)

The architecture is trained on each dataset separately, us-

ing 30 epoch on the CFD and 25 epoch on AigleRN. Stochas-

tic Gradient Descent with a momentum of 0.9, a learning rate

of 0.001 and weight decay of 1e−6 are used for optimisation

during training. The batch size is set to 32.

4. RESULTS

Prediction results are generated by extracting patches through

a sliding window with a stride of 1 in both the height and

width dimension from each image of the testing datasets. The

predictions for each pixel of an output segmentation map are

then averaged based on all patches containing this pixel. A

confidence threshold of 20% is used to generate the segmen-

tation map results. Table 1 shows the results of our proposed

architecture on CFD, whereas Table 2 contains the results for

AigleRN. It should be noted that in the results on CFD, the

Crackforest [9] as well as the U-Net [15] methods use a True

Positive pixel threshold of 5 pixels. As it can be seen, our

method outperforms the previous state of the art results by

2.5% in F1 on CFD and by 0.32% in AigleRN. On CFD this

architecture improves PR by 5.18% however it only achieves

the second best results in RE. On AigleRN the proposed ar-

chitecture improves on RE, however it therefore lacks in PR.

A sample segmentation map of each dataset is shown in 4.

Table 1. Crack segmentation results on CFD

Method F1 RE PR

Crackforest (KNN) [9] 79.44% 78.15% 80.77%

Crackforest (SVM) [9] 85.71% 89.44% 82.28%

U-Net [15] 87.38% 82.82% 92.64%

CNN[19] 92.44% 95.14% 91.19%

Proposed Architecture 94.94% 93.55% 96.37%

Table 2. Crack segmentation results on AigleRN

Method F1 RE PR

CNN[19] 89.54% 88.12% 91.78%

Proposed Architecture 89.86% 93.04% 86.90%

5. CONCLUSION

This paper describes a U-Net based architecture utilising an

attention mechanism as well as residual convolutional blocks

to achieve semantic segmentation of surface cracks. Due

to making use of these components, as well as deep super-

vision and a patch based training and testing approach we

achieve new state of the art results on two crack segmentation

datasets: Crackforest and AigleRN. This also shows that our

proposed architecture is robust and can be utilised on various

crack segmentation datasets.

In the future we are interested in applying this architec-

ture to further crack segmentation datasets as well as study if

these results carry over to similar fields such as medical image

segmentation.
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