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ABSTRACT We investigate the spatial contrast-sensitivity of modern convolutional neural networks
(CNNs) and a linear support vector machine (SVM). To measure performance, we compare the CNN
contrast sensitivity across a range of patterns with the contrast sensitivity of a Bayesian ideal observer (IO)
with the signal-known-exactly and noise-known-statistically. A ResNet-18 reaches optimal performance for
harmonic patterns, as well as several classes of real world signals including faces. For these stimuli the CNN
substantially outperforms the SVM. We further analyze the case in which the signal might appear in one
of multiple locations and found that CNN spatial sensitivity continues to match the IO. However, the CNN
sensitivity is far below optimal at detecting certain complex texture patterns. These measurements show that
CNNs spatial contrast-sensitivity differs markedly between spatial patterns. The variation in spatial contrast-
sensitivity may be a significant factor, influencing the performance level of an imaging system designed to
detect low contrast spatial patterns.

INDEX TERMS convolutional neural networks, deep learning, ideal observer, image systems, ResNet,
signal detection, support vector machines

I. INTRODUCTION

D
EEP convolutional neural networks (CNNs) - compris-
ing a stack of convolutional layers connected by non-

linearities and skip connections - have become an important
computational tool. A network instance is defined by a large
number of parameters that define the connection and compu-
tations. These parameters can be set by training, typically us-
ing back propagation, on a large number of examples. Much
of the excitement about CNNs arises because a network
trained on semantic categories, such as the texture of leather
or a human face, generalizes well to new example images.
The generalization accuracy far exceeds prior art and matches
human accuracy on noise-free, undistorted images [1,2]. Fur-
thermore, region proposal networks can locate the position
of objects within these semantic categories anywhere in an
image [3–5].

In addition to semantic classification, convolutional and
related networks are being applied to image systems tasks
including denoising, image reconstruction, super-resolution,
pattern detection, part inspection and camera co-design
[6–12]. When using a tool such as a CNN to analyze or design

an imaging system, it is important to understand the limita-
tions of the tool itself. An important limitation of an imag-
ing system is its spatial contrast-sensitivity. Assessments
of spatial sensitivity are a critical part of evaluating image
systems performance. There are well-established methods for
defining the spatial sensitivity of many critical components
of imaging systems, such as lenses, pixel geometry, photon
noise and electrical noise [13].

This paper introduces a metric to assess the spatial
contrast-sensitivity limits of the CNN component of an
imaging system: we compare the CNN performance to the
performance of an ideal observer (equivalently, the Likeli-
hood Ratio test described by the Neyman-Pearson Lemma).
The ideal observer (IO) has a rigorous formal definition for
the signal-known-exactly and noise-known-statistically case.
We evaluate system spatial contrast-sensitivity by creating
stimuli with known signals and statistically-known noise, and
we compare the CNN performance on these stimuli with
the IO performance. We also compare the performance of
another important but simpler machine learning algorithm,
the support vector machine (SVM).
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Each CNN we evaluated has higher sensitivity to certain
types of spatial patterns than others. The CNNs reach ideal
sensitivity for some patterns, but in some cases the sensitivity
is up to 5x lower than IO and sometimes even lower than
SVM sensitivity. The approach we introduce and the exper-
iments we describe should be helpful in assessing the CNN
component of an imaging system for detection applications
in vision science, astronomy, and medical imaging [14–16].

II. BACKGROUND

Convolutional neural networks have been particularly useful
in fields where images are of central importance. Biomedical
imaging has been a particularly active area - CNNs can be
trained to identify low contrast targets that are revealed by a
wide array of imaging modalities for diagnosis and monitor-
ing [17,18]. CNN technology is also becoming important in
Ophthalmology [19] and Vision Science [20,21].

There are many different uses for the CNNs. The best
known application is semantic classification, in which images
are classified based on their content. In a second appli-
cation, direct comparisons are made between responses of
trained networks and responses of neurons [21,22]. In a
third application, investigators compare network and human
perceptual performance, particularly with respect to stimulus
generalization [20,23]. In a fourth application, most closely
related to this paper, CNNs are used to detect spatial patterns
in images. In this case, the CNN performance has been
compared with the Hotelling observer [16,24].

Comparing system performance with respect to the abso-
lute limits as determined by the physics of light and image
formation is an important vision science approach. For ex-
ample, in a classic study of the absolute sensitivity of vision,
investigators found that the rod photodetectors are capable of
responding to individual photons - performing at the absolute
limits of light sensitivity [25,26]. As vision science evolved
to measuring image contrast, rather than absolute light levels,
investigators compared contrast sensitivity with ideal ob-
servers that were limited by photon noise and physiological
optics [27–29].

Detecting a contrast pattern in noise has applications in
many fields. The pattern of interest may vary considerably
across applications, from tumors to textures to faces. To
detect a pattern, a CNN learns internal representations of a
particular class of spatial patterns. The CNN architecture may
be closer to ideal observer performance for some patterns
than others. Exploring performance over a range of spatial
patterns can identify the strengths and limits of a particular
CNN architecture.

Comparisons with ideal observer performance are useful
for assessing and understanding CNN performance and guid-
ing the direction of future investigations. For example, sup-
pose a CNN performs at the theoretical limit when detecting
certain types of patterns. In that case future research focus
should not aim to improve CNN sensitivity but rather might
aim to simplify computation and power consumption. Or one

might aim to reach ideal performance using fewer training
samples.

III. CONTRIBUTIONS

• We show that a modern CNN (ResNet) can be trained to
detect certain spatial stimuli in the presence of Poisson
noise (harmonics, faces, others) at an accuracy level that
matches the sensitivity of an ideal observer.

• For other stimuli (certain textures) the asymptotic
ResNet performance remains substantially lower than
the ideal observer or even SVM performance; perfor-
mance is best for stimuli with high spatial correlation.

• We show that the detection performance differs between
CNN architectures, and the spatial sensitivity of a CNN
can meaningfully impact the performance of an imaging
system.

IV. METHODS

A. IMAGE SIMULATION

Test and training images were created using a simulation of
a simple camera with diffraction-limited optics and a sensor
with Poisson noise. The sensor images were calculated using
the open-source and freely available software, ISETCam1

[30–32]. Unless stated otherwise, the stimuli were simulated
as being presented on a uniform background with a mean
level of about 300 photons per pixel per capture. This level is
typical of many imaging applications.

CNN sensitivity was analyzed using an input-referred
measurement: We calculated stimulus detection accuracy
for a range of logarithmically spaced performance levels,
sweeping out a performance versus contrast curve. We then
estimate the contrast level needed to obtain 75% correct de-
tection in an present-absent discrimination. For most spatial
patterns contrast was defined as the peak stimulus intensity
minus minimum intensity divided by twice the mean inten-
sity. In some cases, the contrast was defined by the standard
deviation of the spatial pattern. The source code for creating
the stimuli and for training and evaluating the networks can
be downloaded from GitHub2 .

1) Harmonics and Textures

The inputs to the CNN were simulated image sensor data.
The simulations calculated a camera’s sensor response from
a planar scene defined by its spatial-spectral radiance (e.g.,
a harmonic pattern at some contrast, frequency, phase and
orientation). The scene has a horizontal field of view of 10
deg, sampled at 512 rows and columns, and 31 wavelengths
(400-700 nm with 10 nm spacing). We modeled the imaging
lens as diffraction limited (f/# = 4) with a focal distance of 3.9
mm. The monochrome sensor was ideal (no electronic noise)
with a pixel size of 2.8 microns, approximately equal to the
full-width half maximum of the diffraction limited lens (2.4
microns). In this configuration the 10 deg scene spans 238

1https://github.com/iset/isetcam
2https://github.com/FabianRei/optimal_networks
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x 238 sensor pixels and the Nyquist sampling frequency for
the sensor is approximately 119 cycles/image. We changed
the sensor to 256x256 pixels for cellular automata in order
to match the distinct 256x256 pixel values of the cellular
automaton itself. The sensor image data include only Poisson
noise, which is the classic description of photon absorptions
in an electronic device [33].

2) Face Stimuli

Face images were taken from the MIT-CBCL database3 [34].
We converted these images to a contrast image (mean of
zero) and added each to a uniform gray background. The
face contrast was measured by its standard deviation, and set
to 0.7071, which matches the mean and standard deviation
of a harmonic pattern with a contrast of one. We simulated
presenting this monochrome image on a display monitor in
which each pixel emits an equal photon spectral radiance.
The scene radiance was adjusted so that the mean number
of photons captured by each pixel was close to 300.

3) Cellular Automaton Textures

We generated complex textures using a cellular automaton
method [35]. We scale the scene resolution to 256 x 256, the
resolution of the automaton we create, and slightly increase
the lens field of view. This way, each pixel within the scene
reaches exactly one pixel of the simulated sensor. For the
textures the mean and standard deviation of the images were
adjusted as we did for the face stimuli (scene radiance stan-
dard deviation of 0.7071; mean scene radiance set to create
an average of 300 photons per pixel).

B. IDEAL OBSERVER

The neural network was compared to an ideal observer with
signal-known-exactly and background-known-statistically.
The number of electrons at each position is given by a
Poisson distribution [36], whose rate parameter λ is equal to
the intensity of the signal at each position in the image:

P (N) =
exp(−λ)λN

N !
(1)

The ideal observer chooses the more likely signal based on
a maximum likelihood calculation. For a candidate signal in
noise, θ, measured independently at each pixel, the likelihood
is the product of the Poisson density scaled by the a priori
likelihood of the signal:

L(θ) = P (θ)

p∏

i=1

(P (Ni|θ) (2)

For computational simplicity it is usual to calculate the log
likelihood:

LL(θ) = log(P (θ)) +

p∑

i=1

log(P (Ni|θ)) (3)

3http://cbcl.mit.edu/software-datasets/heisele/facerecognition-
database.html

FIGURE 1. The ResNet CNN architecture [4]. (A) The input is processed

through 18 stages; many of these stages include connections that transmit the

input to a later stage through a skip connection (dashed implies resizing). The

final stage is a fully connected layer that provides a classification decision –

signal present or absent. The text in each of the stages describes its key

properties: N x N conv is the kernel size; the next integer is the number of

kernels; if present /N describes the spatial sub-sampling (stride). In our

implementation the last fully connected layer only has 2 output classes (signal

vs. noise) though in many applications this layer can be quite large. (B) The

key concept of the network can also be described as comprising 8 modules.

Each module performs a standard set of operations: convolution, batch

normalization, half wave rectification (ReLu), convolution, batch norm, skip

connection sum, and ReLu.

No training is necessary to implement the ideal observer.
When there are N different signals, the system selects the
most likely of these given the data. This algorithm performs
optimally given the available information [28].

C. SUPPORT VECTOR MACHINE

Support vector machines (SVMs) were introduced by [37]
under the slightly different name ‘Support-Vector Networks’.
The widely used linear SVM uses training data to learn a
support vector such that the value of the inner product be-
tween this vector and a data sample decides the classification
(e.g., signal vs. noise). A linear SVM separating two classes
implicitly defines a hyperplane separating the two classes.
To solve nonlinear classification tasks it is possible to use
a nonlinear kernel, which is an extension of the dot product,
as described by [38].

We use the linear support vector classifier implementation
by the Python library Scikit-learn [39], based on the libsvm
implementation [40]. The SVM classifier optimizes for the
hinge loss [41], which finds the maximum margin classifica-
tion. The SVM is optimized via a SMO-type decomposition
method proposed in [42]. We set the maximum iterations per-
formed to 1000, unless the convergence tolerance criterion of
0.001 is reached [40].

D. CONVOLUTIONAL NEURAL NETWORK

We used a ResNet network architecture because of its high
quality [4]. The ResNet comprises multiple modules that
each perform a convolution, batch normalization, and non-
linear operation (rectified linear unit). The network also
includes skip connections.

If not declared differently, the architecture was a ResNet-
18 [4], which has a good trade-off between speed and accu-
racy for our experiments. We use the PyTorch [43] imple-
mentation with a few minor adjustments. We changed the
first convolution layer to account for the fact that the sensor
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data are monochrome. We also replaced the average pooling
layer through the PyTorch implementation of an adaptive
average pooling layer [44] to allow the network to be more
flexible to variations in image size. The network weights
were randomly initialized by the default PyTorch initial-
ization method, a method known as He Initialization [45].
This algorithm specifically addresses rectifier nonlinearities.
The last layer of the ResNet-18, a fully connected layer, is
replaced by a smaller layer to accommodate the very small
output dimension (binary choice).

The data consists of one scene per class that has random
Poisson noise. There is no inherent limit to the epoch size
and this parameter can be set arbitrarily. We used 10,000
samples to define one epoch. The batch size was 32, and we
used Adam [46] as the gradient-based optimization function.

The outputs of the neural network are normalized into
a probability distribution via the softmax function. These
processed outputs are then used to calculate the loss function.
For this, we use cross-entropy loss where yc is the ground
truth and ŷc is the model output for class c.

L(y, ŷ) = −

M∑

c=1

yc log(ŷc) (4)

The initial learning rate is 1e-3 and after 10 epochs, the
learning rate is decreased to 1e-4. After another 10 epochs,
the CNN is trained with a learning rate of 1e-5. The network’s
performance is tested on 5,000 data samples. Seeds are used
to ensure the same random initialization of ResNet-18 on
all experiments. Training data are generated with the same,
specified, seeds to initiate the random number generator.

The ResNet-18 is trained using a parallel algorithm to
permit the server to use all available GPUs. While each
neural network runs on one specific GPU, each GPU runs
multiple training and testing experiments in parallel. On the
server used for training, there are six Nvidia GK210 graphics
processors. On one GPU, training ResNet-18 with 300,000
data samples, generated in real-time, takes 1:18 hours.

E. NETWORK PERFORMANCE

1) Metrics

The detection experiments are two-class classification prob-
lems. We vary the size of the signal contrast, position, or
orientation and measure classification performance by the hit
(true positive) false alarm rates of the IO, ResNet-18, and
SVM. The network training was carried out for each stim-
ulus at each contrast level. We estimate the discriminability
between the two classes using d-prime (d′) [47,48] from these
two rates. Specifically, we calculate the z-scores (inverse of
the standard normal cumulative distribution) for these rates
and subtract the false alarm z-score from hit rate z-score:

d′ = Z(hit rate)− Z(false alarmrate) (5)

We manage extreme hit or false alarm rates (zero errors)
by a small adjustment to the hit and false alarm rates [49]:

hit rate =
0.5 +

∑
hits

1 +
∑

hits+
∑

misses
(6)

false alarmrate =

0.5 +
∑

false alarms

1 +
∑

false alarms+
∑

correct rejections
(7)

Without this modification, a hit rate of 100% would result
in a d′ of infinity, given the false alarm rate is not at 100%
as well. The modified equations for false alarm and hit rates
provides a finite and only slightly biased underestimate of the
true d′ [50].

Given the mean number of signal photons in a detection
task with only Poisson noise, d′ can also be calculated by
a formula that only requires the mean photon absorptions
of both classes. In this formula, the sum of scaled Poisson
random variables is approximated with normal density [51]:

d′ =

∑n
i=1

(βi − αi) ln(βi/ai)

[0.5
∑n

i=1
(αi + βi) ln

2(βi/αi)]1/2
. (8)

Our results show that the IO d′, calculated via hit and false
alarm rate, matches the theoretical d′. We also calculate the
sensitivity of a discriminator.

In most analyses, we calculate how d′ increases as the
stimulus parameters - contrast, position shift, or angle -
change. This produces a curve relating performance (d′) to
the stimulus parameter. In many analyses we summarize
network sensitivity using an input-referred measure. Specif-
ically, we calculate the contrast level, spatial shift or orien-
tation angle needed to achieve d′ = 1.5. The contrast, phase
shift or angle metric is calculated by linearly interpolating the
performance curve.

In certain select cases, we repeated the training experi-
ments five times with different random seeds. This results
in different training and test data, different neural network
random states, as well as varied random states of the SVM. In
these cases, we report the mean and standard deviation of the
sensitivity measure. The size of the main effects we describe
are many multiples of the estimated standard deviations.

2) Size of Training Data

ResNet-18 performance improves as training set size in-
creases (Figure A1). The ResNet-18 reaches asymptote -
in this case the maximum theoretical performance level -
when the training set reaches 100,000 to 300,000 samples.
The SVM performance reaches asymptote at a much smaller
training set size, prior to the initial portion of the graph (about
10,000 training samples).

ResNet-18 performance is significantly better than that of
the SVM after 10,000 training samples, continuing to rise up
to the IO level at approximately 100,000 training samples.
Based on these experiments, we used a training set size
of 10,000 samples for the SVM and 300,000 samples for
ResNet-18.
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FIGURE 2. Comparison of IO, ResNet and SVM detection performance for a

harmonic presented in Poisson noise. (A) Performance (d′) increases as a

function of contrast. The blue and orange points are representative points

along the two detection curves. The IO and ResNet performance are very

similar, so the underlying blue and orange curves overlap. (B)

Contrast-sensitivity functions of the IO, ResNet-18 and SVM for spatial

frequencies up to the sensor Nyquist frequency. Contrast sensitivity is the

inverse of the contrast needed to achieve discrimination performance of d′ =

1.5. Higher contrast sensitivity means performance is reached with lower

contrast.

V. RESULTS

First, we consider the detection of harmonics. We measure
discriminability as a function of spatial frequency, position
(phase shift) and orientation. Second, we measure signal
detection based on signal size (disks of various sizes). Third,
we consider a collection of biological images (faces). Fourth,
we measure texture signals that are not compact in space or
spatial frequency (white noise, cellular automata). Fifth, we
analyze the detection performance for targets in which the
signal may be present in one of multiple positions.

A. HARMONICS

1) Contrast

For all networks detection sensitivity (d′) of a harmonic in
Poisson noise increases with contrast. The ResNet-18 can be
trained to achieve a performance that closely matches the
ideal observer’s performance and the SVM performance is
about half a log (4x) unit less sensitive (Figure 2A).

We repeated these calculations for a range of harmonic
spatial frequencies, extending to the Nyquist limit of the
sensor (Figure 2B). The input-referred contrast sensitivity (1
over the contrast for d′=1.5 ) matched the performance of the
ideal observer closely, being only only slightly lower than the
IO, by an average of 2.86% (0.013 log10 units). The SVM
contrast sensitivity was an average of 63.39% lower (0.44
log10 units) compared to IO.

B. DISKS

Detection sensitivity grows systematically with disk radius,
approximately as the square root of the disk area (Figure 3).
Deviations from this rule are present for small disks which
are blurred by the optics and very large disks that span nearly
the whole sensor. The ResNet-18 again approximates IO
performance for all disk sizes tested, and the SVM is about
half a log unit lower.

C. FACES

Disks and harmonic signals are very simple patterns com-
pared to many natural objects. Hence, we decided to measure

FIGURE 3. Contrast sensitivity to disks for IO, ResNet-18 and SVM. Detection

performance for disks with sizes from radius 1 to radius 100. Disk contrast

sensitivity is shown for a performance level of d′ = 1.5. Other details as in

Figure 2.

FIGURE 4. Contrast sensitivity to faces for IO, ResNet-18, and SVM. The first

five graphs show detection of a single face. The sixth graph shows sensitivity

to a collage comprising nine faces. Contrast sensitivity is shown for a

performance level of d′ = 1.5. Error bars are +/- 1 SD (N=5). Other details as

in Figure 2.

contrast sensitivity for an important and complex object, the
human face (Figure 4).

The ResNet-18 contrast sensitivity is similar but slightly
lower than the IO sensitivity. ResNet-18 contrast sensitivity
is on average 5.87% lower than the IO sensitivity. This
difference is slightly larger than the sensitivity difference
using the harmonics. The SVM performance is about 1/3rd
the sensitivity of the IO and ResNet-18 network.

D. TEXTURES

In addition to test stimuli (harmonics, disks) and natural
objects (faces), there are applications in which the target is
a texture pattern (see Discussion). We used cellular automata
to generate an organized list of texture patterns [35,52]. We
focused on rules which converge to a structured repetitive
pattern (class 2) and rules in which the texture pattern
remains random (class 3). We generated textures using four
different class 2 rules and four different class 3 rules.

1) Class 2 Cellular Automata

Class 2 automata converge to a repetitive texture pattern. We
suspect that CNNs might learn filters to identify repetitive
patterns. To measure detection performance, we used experi-
ments for four class 2 automata (rules 3, 57, 76 and 78). The
contrast sensitivity for these patterns is slightly higher for
the IO than ResNet-18, and substantially higher than SVM

VOLUME 4, 2016 5
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FIGURE 5. Contrast sensitivity for class 2 cellular automata (A). ResNet-18

contrast sensitivity is lower than IO; the sensitivity of SVM is around one third

of IO sensitivity. The highest sensitivity is for rule 76, followed by rule 78.

One-dimensional patterns are easiest to detect. Contrast sensitivity for class 3

cellular automata (B). IO contrast sensitivity is three-fold higher than either

ResNet-18 or SVM. In several cases, SVM contrast sensitivity to these

patterns exceeds that of ResNet-18. Unlike the class 2 cellular automata,

these textures are dense and not space-invariant. The variance of the contrast

sensitivity is smaller than the measured difference in contrast sensitivity. Error

bars are +/- 1 SD (N=5).

(Figure 5A).
Slightly worse performance is achieved for the other

two automata. At rule 3, IO has a contrast sensitivity of
1213.31, while ResNet-18 reaches 861.14 and SVM achieves
438.02. IO contrast sensitivity for the rule 57 automaton is
the lowest. Here, IO reaches 824.34, ResNet-18 achieves
688.76 and SVM reaches 298.32. Compared to IO, ResNet-
18 performance drops by an average of 18.18%, while SVM
performance drops by an average of 63.74%.

2) Class 3 Cellular Automata

Class 3 automata have a complex irregular spatial pattern
(Figure 5B). We examine four class 3 automata (rules 22,
30, 75 and 101). The CNN sensitivity to these patterns is far
from the sensitivity of the IO, dropping to the level of the
SVM performance.

3) Block Randomization

In addition to the cellular automata, we produced texture
patterns by randomizing the pixel positions in an existing
image. We performed a series of experiments by block-wise
scrambling the pixels in a one-cycle per image harmonic
(Figure 6).

The IO performance is indifferent to the scrambling, as
expected from the computational formula (Equation 1). Sim-
ilarly, the SVM adjusts its critical vector and learns to detect
the pattern with reordered pixels. The ResNet-18 sensitivity
is substantially reduced by scrambling. The scrambled tex-

FIGURE 6. Performance for spatial randomization of frequency one harmonic

signal. Panel (a) shows 70% reduction in ResNet-18 contrast sensitivity

(compared to IO) for randomization of all pixel locations of harmonic signal

(1x1 block). The contrast sensitivity is 20% lower than the SVM. The bar

heights represent the mean of five runs with training data, test data and

different random number seeds. Error bars are +/- 1 SD (N=5). Panel (b)

displays contrast sensitivity for various block sizes.

FIGURE 7. Detection performance of frequency one harmonic with Gabor for

one or multiple locations. The signal examples show the signal in all its

potential locations. In the signal case, the signal can be seen in exactly one

location. The bar heights represent the mean of five runs with training data,

test data and different random number seeds. Error bars are +/- 1 SD (N=5).

ture pattern does not repeat regularly across the image, and
like the cellular automata in class 3, the ResNet-18 sensitivity
is below the IO.

E. MULTIPLE TARGET POSITIONS

The ability to detect and localize a signal anywhere in a
scene is one of the most important contributions of CNN
technology [53]. We compare the CNN sensitivity with the
ideal observer sensitivity to a simple stimulus (a Gabor patch)
that might be presented at one of multiple possible locations
(Figure 7). When there are N different locations, the ideal
observer selects the most likely of these locations, or no
signal, given the image data.

Introducing position uncertainty reduces the sensitivity of
the ResNet, SVM and the IO. Although sensitivity declines,
the ResNet-18 continues to match the IO performance. Both
methods are about half as sensitive when the target can
appear in 16 locations rather than one location. The SVM
sensitivity declines by a larger fraction, becoming about
one-fourth as sensitive as the number of possible positions
increases to 16 from one.

F. COMPARISON TO VGG-16 AND ALEXNET

We compared the performance of ResNet-18 to two other
CNNs, VGG-16 [54] and AlexNet [3]. We measured contrast
sensitivity using a harmonic with one cycle per image ( Fig-
ure A2, cf. Figure 2). The VGG-16 and AlexNet sensitivities
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FIGURE 8. Detection sensitivity of IO, ResNet-18, VGG-16, AlexNet and SVM

to six different stimuli that were also used in the main text. See the text for

details.

are close to the IO for higher contrasts. But in both cases
the IO performs above chance (d′ > 0) at contrasts where the
two networks are still at d′ = 0. Even at the higher contrasts
AlexNet sensitivity is slightly lower than IO sensitivity.

Next we explored network sensitivity to variations of the
harmonic signal, the multiple faces signal, and two different
cellular automata (Figure 8). All network hyperparameters
were the same as for ResNet-18 with one exception: for the
network solution to converge it was necessary to decrease
the VGG-16 and AlexNet initial learning rates to 1e-5 rather
than using the ResNet initial learning rate of 1e-3. It might
be possible to find further improvements in VGG-16 and
AlexNet performance by modifying other hyperparameters.

Like the ResNet, randomizing image pixel positions (1x1
blocks) causes VGG-16 and AlexNet sensitivity to drop
significantly. The sensitivity of these two networks is also
substantially lower for detecting multiple faces signal and
the two types of automata signals. In several cases the SVM
outperforms the VGG-16 and AlexNet CNNs.

VI. DISCUSSION

A. CNN SPATIAL SENSITIVITY

For many spatial patterns (harmonics, disks, faces), a
ResNet-18 can be trained to detect a contrast pattern at
the same sensitivity level as an ideal observer. The main
requirement to achieve this optimal performance is a large
number of training samples (more than 1e+5 samples).

The ResNet-18 spatial sensitivity for certain textures (class
3 cellular automata and block-scrambled images) is 2.5x
lower than the ideal observer and comparable to the SVM.
All of the networks have reduced sensitivity to these patterns.
Network sensitivity to the repetitive textures, such as class
2 automata is higher than sensitivity to random class 3
automata textures.

There is also a substantial spatial sensitivity difference for
the two other architectures (VGG-16 and AlexNet). For these
architectures both class 2 and class 3 textures are detected
poorly compared to ideal, and sensitivity to faces is only half
that of the IO (Figure 8). It is worth noting that individual
networks have their distinct spatial sensitivity profiles.

B. UNCERTAIN SIGNAL POSITION

An important value of CNNs is their ability to detect pat-
terns even when the pattern’s position is uncertain. We per-
formed an initial analysis of the ResNet’s ability to detect
signals present at one of multiple positions and found that
the CNN matches IO contrast sensitivity. The experiments
examining the sensitivity when position is uncertain could be
significantly expanded to include variations in the stimulus
pattern, size and a systematic analysis of position bias. The
methods in this paper - input-referred contrast measures and a
comparison with the ideal observer - can provide meaningful
numerical assessments for such evaluations.

C. ARCHITECTURE

We compared ResNet-18 detection sensitivity to other well-
known CNN architectures, VGG-16 and AlexNet. Sensitivity
to harmonics is comparable, but sensitivity to more complex
signals (e.g., faces) is substantially lower for AlexNet and
VGG-16; in several cases these networks are less sensitive
than a linear SVM.

ResNet-18 contrast sensitivity is lower than the IO sen-
sitivity when the stimuli comprise fine textures that do not
repeat regularly across the image. Block randomization and
cellular automata examples fit this pattern. Why limits perfor-
mance on the class 3 cellular automata and block-scrambled
images? The central difference between cellular automata of
class 2 vs. class 3 and block-scrambled images is the image
complexity. The repeating patterns of class 2 automata can be
summarized by a shift-invariant representation compared to
the non-repetitive class 3 and block-scrambled patterns. The
stimulus structure’s complexity matches the architecture of
the CNN, which has a small number of weights compared to
fully connected NNs. The number of weights needed by the
IO to distinguish the signal from noise using is (256 x 256 x
2, row x col x classes). The initial stage of the ResNet-18 uses
only 7x7x64 weights for low-level feature extraction which
is just 2% of the IO weights. The total number of ResNet-18
weights is vastly larger (1.1e+7).

D. APPLICATIONS

There are signal detection applications whose signals resem-
ble class 3 cellular automata (MRI k-space, which is the
Fourier Transform of the image, skin rashes or retinal bleed-
ing). The conventional CNN architectures limit performance
for such signals. The tests in this paper can discriminate
between different CNN architectures to determine which may
be most effective for specific classes of signals. An advantage
of our testing procedure is that it does not require large
amounts of labeled data which is especially helpful for signal
types that are only observed in certain clinical cases.

In addition to the benchmarking of existing CNN archi-
tectures, we hope that our tools will furthermore be helpful
in the design of new, innovative CNNs that allow improved
performance on non-standard signal types.
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E. CONCLUSION

We present a way to assess CNN performance by measuring
performance with respect to a fundamental image science
tool, the ideal observer. This approach quantifies how well
a CNN architecture learns to detect signals of varying shapes
and abstraction. As in other branches of image systems
engineering, we hope that characterizing CNN architectures
will help designers find the right deep learning algorithms for
specific tasks. Just as we characterize the impact on spatial
resolution of the lens, pixel sampling array, and electrical
noise, we can characterize the impact of a CNN detection
network.

ResNet, along with many other CNN architectures, was
designed for semantic categorization and commonly tested
with the categories in ImageNet. Compared to fully con-
nected neural networks and transformer networks, the CNN
architecture processes low-level features via convolutional
filters which reduces the number of weights required. We
evaluated several CNNs for signal detection sensitivity. For
many signals we find that even in the presence of pixel-wise
Poisson noise the ResNet CNN has the same sensitivity as an
ideal observer. We conclude that current CNN architectures
are able to detect signal types, such as the ones found in
ImageNet, at near optimal levels.

Image systems may be designed to detect a wide range
of spatial targets in applications spanning medical imaging
and industrial inspection: from localized tumors and moles
to a widespread rash. Some of these targets are not similar to
the images in ImageNet. We find that ResNet’s sensitivity to
certain types of textures is substantially lower than ideal.

The high sensitivity of a CNN for identifying certain
targets, but not others, should be a part of decision-making in
image system design. The experiments in this paper are a start
towards developing this technology. It would be useful to
develop consensus methods that assess the spatial sensitivity
profile of a CNN with respect to the target objects for each
application.

APPENDIX

ACCURACY BASED ON SIZE OF TRAINING SET

FIGURE A1. Increase in detectability (d′) of a harmonic image in Poisson

noise as a function of the number of training samples (horizontal axis). The

two panels show performance for stimuli at two different contrasts: 3.2e-4 (left)

and 6.3e-4 (right). Irrespective of training set size, ResNet-18 was trained for

9375 iterations with a batch size of 32. The ideal observer requires no training.

The SVM reaches asymptotic performance before 1e+4 training samples. The

ResNet performance increases until approximately 3e+5 training samples. As

in the main text, colored disks are superimposed on the lines at every other

measurement point, which is helpful when the ResNet and IO curves

superimpose.

COMPARISON OF NETWORK CONTRAST-DEPENDENT

ACCURACY

FIGURE A2. Detection performance of VGG-16 (left) and AlexNet (right) for a

harmonic stimulus of frequency one. VGG-16 (A) approximates the IO for

higher contrasts but does not reach IO performance at lower contrasts.

AlexNet (B) is able to discriminate a low contrast signal slightly better than

VGG-16, but never reaches IO performance for high contrast harmonic curves.
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