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Abstract. Fast keypoint recognition is essential to many vision tasks.
In contrast to the classification-based approaches [1, 2], we directly for-
mulate the keypoint recognition as an image patch retrieval problem,
which enjoys the merit of finding the matched keypoint and its pose
simultaneously. A novel convolutional treelets approach is proposed to
effectively extract the binary features from the patches. A correspond-
ing sub-signature-based locality sensitive hashing scheme is employed for
the fast approximate nearest neighbor search in patch retrieval. Exper-
iments on both synthetic data and real-world images have shown that
our method performs better than state-of-the-art descriptor-based and
classification-based approaches.

1 Introduction

Recognizing feature point is essential to many vision tasks including motion
analysis, image-based visual servoing, object tracking and recognition [3]. As the
object changes its appearance with different views and illumination conditions,
it is challenging to achieve effective keypoint recognition performance. Moreover,
there are some large deformations for the nonrigid objects [4–6].

To tackle the above problem, a common approach is to build the affine-
invariant descriptors of local image patches, i.e., SIFT [7] and SURF [8], which
usually incur heavy computational burden limiting their capability in the real-
time applications. Although keypoint matching can be speeded up by compress-
ing the descriptors with the dimensionality reduction techniques [9, 10], such
approaches still depend on the extracted feature descriptors. Recently, directly
extracting the binary string features [11, 12] from small patches surrounding the
keypoints has been introduced to achieve realtime keypoint recognition.

Keypoint recognition can also be treated as a classification task [13], in which
each keypoint to be matched in a model image corresponds to a class label. Re-
altime object detection has been achieved by taking advantage of the efficient
classifiers like randomized trees [1] and ferns [2]. However, the pose information
of each keypoint patch in these methods is lost in the training process. It is
important to several tasks, such as pose estimation [4], nonrigid object detec-
tion [5], robot localization [14] and object recognition [15]. Additionally, these
classification-based approaches are typically quite memory demanding.



2 C. Wu et al.

In this paper, we address the above limitations by formulating the keypoint
recognition as an image patch retrieval problem. Motivated from ferns [2], a large
number of patches for each keypoint in the model image are generated under
multiple views. Instead of resorting to a classifier, we extract features from those
generated patches and record their pose information by homography, and then
build a database of features and pose information. By retrieving the nearest
neighbor in the database, the keypoint label and the pose for a query patch can
be estimated simultaneously.

To reduce the computational cost and memory requirement, we generalize
the treelets [16] with a convolutional architecture [17] to effectively extract the
binary features for realtime application. Furthermore, we employ an efficient Lo-
cality Sensitive Hashing (LSH) [18] based on the sub-signatures of the binary
feature to speed up the retrieval. We have conducted extensive experiments on
both synthetic data and real-world images to compare our proposed Convolu-
tional Treelets Binary Feature Retrieval (CT-BFR) based keypoint recognition
approach against the state-of-the-art techniques, which not only shows leading
recognition performance but also obtains desirable pose information.

In summary, the main contributions of this paper are: (1) a novel binary
feature using the effective treelets transform; (2) a convolutional scheme to re-
duce the computational cost; (3) a fast binary feature retrieval scheme based on
the sub-signature-based LSH to keypoint recognition that matches the keypoints
and estimates their poses simultaneously.

2 Related Work

Keypoint matching has been received intensively attentions in computer vision.
A typical approach to this problem is to build affine-invariant descriptors for
local image patches and compare them across images. SIFT [7] and SURF [8]
are the most popular techniques among them. However, the drawback of high
computational cost limits their applied fields especially for realtime applications.

Recently, many methods have been presented to speed up the feature match-
ing and reduce the memory consumption, which can be roughly divided into
two categories. One kind of approach is to reduce the long descriptors into the
short ones, which can be achieved by employing the dimensionality reduction
techniques, such as PCA [3] and LDA [9]. An even more drastic dimensionality
reduction can be achieved by hash functions that reduce SIFT descriptors to
binary strings [10, 19, 20]. These approaches require to compute the full descrip-
tors beforehand for further processing. Therefore, the efficacy is mainly subject
to their original descriptors. To deal with this problem, CARD[21] extracts de-
scriptors based on lookup tables and employs a learning-based sparse hashing to
convert the extracted descriptors to short binary codes. Moreover, BRIEF[11]
and ORB[12] try to directly extract the binary strings from image patches.

Another group of research is based on the fast classifiers [13, 1, 2]. By syn-
thesizing a large number of small patches around the keypoints, the keypoint
recognition is treated as a classification problem, in which each class contains
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the set of generated patches. These generated patches are used to train a clas-
sifier, such as random trees [1], ferns [2] and generic trees [22]. However, they
usually require large memories and do not provide keypoint pose information.

Our work is also related to patch rectification method [4], which focuses on
perspective rectification after matching the keypoints. Although having achieved
the promising object tracking results, such method is limited to relatively few big
patches for a model image while our approach can obtain hundreds of matched
patches along with their poses in realtime.

3 Keypoint Recognition by Retrieving Binary Features

In this paper, we formulate the keypoint recognition as an image patch retrieval
problem. Given a model image containing the object, a subset of the keypoints
is selected by deforming the images many times, applying the keypoint detector
and keeping track of the number of times the same keypoint is detected. The
keypoints that are found most often are assumed to be the most stable and
retained [2]. Each stable keypoint is assigned a unique class label. Our task is
to correctly map the query patch to its corresponding keypoint in the model
image and estimate its pose, which is represented by homography between the
retrieved patch in the model image and the query patch in the test image.

Fig. 1. Illustration of the proposed BFR-based keypoint recognition. Build the patch
database: 1) detect the most stable keypoints; 2) generate sample images and get the
patches; 3) extract the binary feature for each patch; 4) create hashtables using the sub-
signatures of features. Match a detected keypoint patch: 5) extract the binary feature
for the query patch; 6) hash the extracted feature to the corresponding hashtables using
its sub-signatures; 7) find its nearest neighbor within the collided points to retrieve the
patch label and pose.

Similar to [1, 2], a database χ = {x1, · · · ,xn} of keypoint patches for each
class is built by synthesizing thousands of example images using the homographic
matrices with randomly picked affine deformations by sampling the deformation
parameters from a uniform distribution, adding Gaussian noise to each sample
image, and smoothing with a Gaussian filter of size 7 × 7. Let a 2-tuple (c,H)
denote the class label of a keypoint patch and the homographic matrices to
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generate it. Formally, we aim to retrieve the most similar patch of the query
patch t in the database in order to estimate its class label and pose:

(ĉ, Ĥ)t = (c,H)N(t) (1)

N(t) = argmin
xi

d(t,xi),xi ∈ χ

where N(t) represents t’s nearest neighbor, and d(t,xi) measures the distance
between t and xi in some metric space.

To cover a sufficient number of views, the total number of generated exam-
ple images is typically quite large. Therefore, it is a challenging task to achieve
realtime performance with reasonable memory consumption. To reduce the com-
putational cost and storage requirement, we suggest a scheme to directly extract
the binary features from image patches. Therefore, Hamming distance can be
used to measure the similarity among these binary features, which can be com-
puted extremely fast on modern CPUs that often provide an optimized instruc-
tion set to perform a XOR or bit count operation in parallel. Moreover, we found
that 256-bit binary feature or even less is sufficient to achieve very good results.

Note that the sub-signature of binary features can be used as the hash func-
tion for LSH [18, 12]. The power of such technique lies in its capability of re-
trieving nearest neighbors with a high probability with sufficient number of hash
tables. We store the patches with a common sub-signature of binary features in
the same bucket of a hash table. Several hash tables are built according to the
different sub-signatures. Given a query patch, we first hash it into a very small
subset with the corresponding sub-signatures in common, and then compare it
with these collided patches through brute-force search based on hamming dis-
tances. Taking advantage of the binary feature representation, the whole search
process is essentially fast even the size of the database is remarkably large.

We name the presented method as Binary Feature Retrieval (BFR) based
keypoint recognition. Fig. 1 summarizes the whole procedure of our approach.
In practice, BFR estimates a class label and the pose information to each query
patch. For each class of the detected keypoints in the model image, there should
be a unique matching point for a certain test image or frame. We simply choose
the nearest one among those test patches with the same class label.

4 Convolutional Treelets Binary Feature

The key of our proposed approach is to extract the effective binary features from
each patch. To this end, we introduce treelets transform [16] and a thresholding
scheme to obtain the discriminative binary embeddings. We also propose an
efficient convolutional treelets scheme to reduce the projection time.

4.1 Treelets

Treelets [16] is a multi-resolution analysis tool, which provides an orthogonal
basis to reflect the low intrinsic dimensionality of the noise-free data. In this
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paper, each patch is simply represented by packing the raw intensities into a p
dimensional vector x = [x1, · · · , xp]. The main task of treelets is to provide an
orthogonal basis by constructing a tree using agglomerative clustering on dimen-
sions of the data. To this end, the index of each dimension is recorded in a set
S = 1, 2, · · · , p. At each level of the tree, the two most similar dimensions are
merged together and replaced by two uncorrelated new dimensions calculated
from local Principal Component Analysis (PCA). After this, the dimension with
lower variance is removed from S. Such process is repeated recursively on the
dimensions in S until the root node at level L = p− 1 is reached. Here, the simi-
larity score Mij between dimensions are measured by the correlation coefficient:
Mij = Cij/

√

CiiCjj , where Cij = E[(xi −Exi)(xj −Exj)
⊤] is the covariance of

pixel intensities of the patch. The treelets algorithm is summarized as below:

– At Level L = 0
Set the basis B0 ∈ Rp×p to identity matrix, associate to original coordinates
of the patches, the Dirac basis.
Compute the initial covariance matrix C(0) ∈ Rp×p and M (0) ∈ Rp×p.
Initialize the set S = 1, 2, · · · , p.

– Repeat for L = 1, · · · , p− 1
1. Find the two most similar dimensions (α, β) with respect to M (L−1).
2. Perform a local PCA on the pair (xα, xβ) to find a Jacobi rotation matrix

J that decorrelates xα and xβ , such that C
(L)
αβ = C

(L)
βα = 0 and C

(L)
αα >

C
(L)
ββ , where C(L) = JC(L−1)J⊤.

3. Update the basis BL = JBL−1 and the similarity matrix M (L) accord-
ingly. Actually, x(L) = Jx(L−1);

4. Remove the dimension with lower variance from the set S: S = S\{β}.

In the treelets transform, it can be clearly seen that the covariance structure
of the data is explored by PCA and such analysis is performed locally. Instead of
the global representation, treelets merges the two most similar pixels in each layer
to detect internal highly correlated localized structures in patches. Additionally,
it is able to find the basis of underlying noiseless data while PCA constructs an
optimal linear representation of noisy observations [16].

4.2 Treelets Binary Feature

In practice, one can select the ‘best m-basis’ from the top level basis Bp−1 of the
treelets to project the data to low-dimensional coordinates. In this case, we can
treat the basis Bp−1 as p projection vectors (w1, · · · ,wp). They are then sorted
by the energy (variance) of each projected training patches var(w⊤

i x). The top
m ones with the highest energy are selected.

Typically, we use the following function to obtain the m-bit binary feature

y = sgn(W⊤x− b) (2)

where y is the m-bit binary feature. W ∈ Rp×m is a projection matrix, which
is formed by selecting the ‘best m-basis’ with the highest energy from Bp−1.
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b ∈ Rm×1 is a thresholding vector, which is set to the mean of all the projected
training data W⊤X,X = [x1, · · · ,xn]. Obviously, the computational cost of
projecting a patch is O(pm), where m is the bit length of the binary feature.

Since the analysis is local, the variances of the projections by treelets are
more balanced than those by PCA, which preserves a low quantization error [19].
As the basis are selected in energy descending order, the lower bits have more
variances than the higher ones. It means the quality of the bits is in descending
order because the representation power for each bit decreases along with the
energy. This leads to good performance when the bit length is short. Moreover,
we can choose the sub-signatures in bit energy order as the LSH hash functions
to obtain good results.

4.3 Convolutional Treelets

Although the treelets method captures the underlying geometric structure of
the data, it still requires lots of computational power to project the patch onto
the embedded space. Motivated from convolutional neural networks [17], we pro-
pose an efficient two-layer convolutional scheme to facilitate the realtime key-
point recognition, which employs treelets as the basic element for unsupervised
learning. Similar method has been used to learn a hierarchical representation for
action recognition [23].

Fig. 2. Extract binary feature from each image patch using two-layer convolutional
treelets. The input patches are convolved with the basis learned in first-layer. Then the
combined projections are served as the input for the next layer. The combined outputs
of the two-layer treelets are thresholded to output the final binary code.

The key ideas of this approach are as follows. We first learn the first-layer
treelets on small patches sampled from the sub-regions of collected image patches.
The ‘best ms basis’ W1 with the highest energy are selected as the projection
matrix from the first-layer treelets. We take the learned first-layer and convolve
with the whole region of the image patches. Suppose ns small patches are used
for the first-layer, then m1 = ms × ns combined projections of the convolution
step are then given as input to the next layer which is also implemented by
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another treelets algorithm. The ‘best m2 basis’ W2 with the highest energy of
the second layer treelets are used as the projection matrix for the second-layer.
Finally, the projections of two layers are thresholded by the function in Eqn. 2
and then concatenated as the final binary feature. We illustrate the architecture
of the presented two layer convolutional treelets in Fig. 2.

The presented two-layer convolutional scheme is able to extract the binary
features locally and globally. The first layer treelets aims to acquire the local
information of sub-regions, which is effective for capturing the pose variations.
Moreover, it provides a compact input for the second layer treelets, which is
smoothed by the convolution. The second layer treelets manages to obtain the
binary features for the whole patch, which combines the local information of each
sub-region. Benefit from the convolution, the output of the second layer treelets is
robust to the noise. In our empirical study, the proposed two-layer convolutional
architecture is more effective than the single layer treelets method.

Note that the two-layer convolutional treelets also enjoys the merits as the
single layer treelets that the quality of the bits is in descending order. Impor-
tantly, the two-layer convolutional architecture is more efficient than the single
layer treelets algorithm, as it employs two low dimensional treelets instead of
one high dimensional treelets. The computational time on patch projection is
reduced to O(psm1 + m1m2), which depends on the small patch with size ps
rather than the original large patch size p. m1,m2 are the output bit lengths for
each treelets layer, and m1+m2 = m. Practically, the small patch size ps is much
smaller than the original patch size p, which leads to an efficient implementation
compared with the computational cost of the single treelets layer O(pm).

5 Experiments

5.1 Comparison Schemes and Setup

We employ the first image in ‘wall’ and ‘graffiti’ in Oxford Dataset 1 as the
model image to synthesize the data for our numerical evaluation. We warp the
model images by repeatedly applying random affine deformations and detect
corners in the deformed images. The 400 most stable keypoints are selected by
counting how many times they are detected. The patch database is built by
sampling the randomly deformed model image. The size of each patch is set to
32 × 32 in our experiments. To perform comparisons, we represent the affine
image deformations as 2 × 2 matrices: RθRφdiag(λ1, λ2)Rφ, where diag(λ1, λ2)
is a diagonal 2 × 2 matrix and Rγ represents a rotation of γ. We warped the
original images using such deformations computed by randomly choosing θ and
φ in [0 : 2π] and λ1 and λ2 in [0.5 : 1.5]. Gaussian noise is added to these warped
images to increase the robustness. The testing set is obtained by generating a
separate set in the same affine deformation range.

To facilitate fair comparison, we evaluate four binary features for retrieval
based keypoint recognition on the synthetic data: the proposed convolutional

1 http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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treelets binary feature (CT), single layer treelets binary feature (ST), fast binary
feature BRIEF [11], and spectral hashing (SH) [24]. Note that the rotation or
scale invariant binary features are not considered in our framework since they are
not discriminable of pose information. We also compare the proposed BFR-based
keypoint recognition with these binary features against FERNS [2].

Typically, a set of patches are needed to learn the functions that extract the
binary feature in CT, ST and SH. To this end, we randomly select 50K patches
from the database. For our proposed CT method, 50K small patches with the size
of 12× 12 are randomly sampled from the sub-regions in the original patches to
train the first layer treelets. For m = 256-bit, m1 and m2 are set to 150 and 106,
respectively. Also, we retain the similar ratio of m1 and m2 for other bit-length
of the binary feature.

For BFR, we employ the 16-bit sub-signature of each binary feature as the
hash function for LSH. The patches having a common sub-signature are stored in
the same bucket of a hash table. Several hash tables are built using different sub-
signatures, and a query patch is hashed to the collided points sharing with the
same sub-signatures. We choose the sub-signature in bit order for three binary
features: CT, ST, SH, as the quality of the bits is in descending order. More
specifically, the first 16-bit is used to build the first hashtable, the following 16-
bit to build the second, and so on. For BRIEF, we just select the sub-signature
for hashing randomly since it adopts the uniform distribution and treats each
bit equally. FERNS [2] is trained with the whole database.

In our experiments, the correct recognition rate is employed as the evaluation
metric for keypoint matching, and the accuracy of pose estimation is measured by
the root mean square error (RMSE) between the estimated homography matrix
and ground truth. All of our experiments were carried out on a PC with Intel
2.8GHz CPU and 4GB RAM.

5.2 Evaluation on Synthetic Data

We now study the performance of the proposed approach on synthetic data from
three aspects: binary feature, hashing method and training examples.

Binary feature. To make it clear, we directly perform exhaustive brute-force
search on the whole database. In Fig. 3, we plot the correct recognition rate and
RMSE of homography matrices vary along with the bit length of binary features.
It can be observed that the keypoint recognition and pose estimation accuracies
increase with the bit length, and become saturate at 256-bit. Thus, the bit
length of all binary features is set to 256 in the following. The proposed treelets-
based binary features outperform the BRIEF and spectral hashing, while the
convolutional treelets binary feature performs better than the single layer treelets
method. Furthermore, we find that BRIEF obtains good results with longer bit
while our proposed method performs especially well with fewer bits. This is
mainly because the bits for BRIEF are randomly picked and the discriminative
power are uniformly distributed to each bit.

Hashing. We study the fast nearest neighbor search on the binary code us-
ing LSH. Fig. 4 illustrates the keypoint recognition and pose estimation results
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Fig. 3. Comparison of keypoint recognition and pose estimation performance for the
binary features varied with bit length. (a), (c) Recognition rate for ‘wall’ and ‘graffiti’.
(b), (d) RMSE between estimated homography and ground truth for ‘wall’ and ‘graffiti’.
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Fig. 4. Comparison of various binary features using retrieval-based keypoint recogni-
tion with the different number of collided points. For ‘wall’, 1 to 2 hashtables for SH,
2 to 7 hashtables for BRIEF, 5 to 14 hashtables for ST, 1 to 6 hashtables for CT. For
‘graffiti’, 1 to 2 hashtables for SH, 2 to 5 hashtables for BRIEF, 4 to 11 hashtables for
ST, 1 to 5 hashtables for CT. (a), (c) Recognition rate for ‘wall’ and ‘graffiti’. (b), (d)
RMSE between estimated homography and ground truth for ‘wall’ and ‘graffiti’.

with the different number of collided points that are selected for refining the ap-
proximate search. It can be seen that the more collided points we use, the better
results we can obtain for all methods. As the large number of collided points
leads to heavy computational burden, there is a tradeoff between the efficiency
and keypoint recognition performance. So, we select 250 collided points in our
experiments. In Fig. 4, we can find that our proposed convolutional treelets bi-
nary features outperforms BRIEF and spectral hashing at a large margin, which
indicates that it is very effective for sub-signature-based LSH. Also, single layer
treelets binary feature performs better with fewer collided points. On the other
hand, BRIEF obtains the good results with more collided points. Surprisingly,
spectral hashing method performs quite poor, which is ineffective for the LSH
scheme. In fact, the spectral hashing extracts the binary features from the PCA
projections, which cannot effectively capture the local information.

Training examples. We investigate the keypoint recognition and pose esti-
mation performance on the different number of training examples in the database,
which affect the training time and the allocated memory. To make fair compar-
ison, we tune the number of hashtables for each each feature and set the same
number of collided points for all methods. Fig. 5 shows the correct recognition
rate and homography estimation error varying with the number of training ex-
amples. Obviously, the performance of all the methods are greatly improved with
more training examples. Moreover, the proposed convolutional treelets feature
performs the best. We also compare with the Naive Bayesian classifier-based key-
point recognition method FERNS[2], which actually employs the BRIEF binary
features with 20× 14 = 280 bits. It can be observed that 256-bit BRIEF feature
using BFR outperforms FERNS with 280-bit binary feature. This reveals that
the proposed BFR-based keypoint recognition scheme is more effective than the
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Fig. 5. Comparison of different approaches varied with the number of generated images
in database. (a), (c) Recognition rate for ‘wall’ and ‘graffiti’. (b), (d) RMSE between
estimated homography and ground truth for ‘wall’ and ‘graffiti’.

Table 1. R500-T500 comparisons of the percentage of inlier matches/the number of de-
tected correct matches across real-world images: ‘graffiti’ (viewpoint changing), ‘boat’
(rotation+zooming), ‘wall’ (viewpoint changing), ‘leuven’ (lighting), ‘bikes’ (blur).

SIFT SURF BRIEF ORB FERNS CT-BFR RMSE

graffiti3 0.660/159 0.552/111 0.268/38 0.580/112 0.303/90 0.747/115 0.274

graffiti4 0.359/70 0.366/52 0.003/4 0.245/37 0.141/29 0.546/65 0.376

boat3 0.869/252 0.774/151 0.009/1 0.730/130 0.531/178 0.876/212 0.142

boat4 0.664/146 0.647/101 0.000/0 0.176/28 0.361/115 0.748/178 0.200

wall3 0.822/222 0.797/173 0.920/242 0.639/145 0.619/205 0.953/222 0.265

wall4 0.266/55 0.299/50 0.641/125 0.110/22 0.172/50 0.418/61 0.226

leuven4 0.568/183 0.595/153 0.948/250 0.494/87 0.465/139 0.724/110 0.151

bikes4 0.824/255 0.879/218 0.945/242 0.801/153 0.802/283 0.964/239 0.168

time 1209.4ms 414.3ms 235.4ms 278.3ms 50.9ms 157.7ms

Naive Bayesian classifier approach. More importantly, BFR method is capable of
retrieving pose information of the query patch. As shown in Fig. 5, the promising
homography estimation results with very low RMSE are achieved through our
proposed convolutional treelets feature using BFR.

5.3 Evaluation on Oxford Dataset

We investigate the presented methods on Oxford Dataset, in which five im-
age datasets under different conditions are selected, including ‘graffiti’ (view-
point changing), ‘boat’ (rotation+zooming), ‘wall’ (viewpoint changing), ‘leu-
ven’ (lighting), ‘bikes’ (blur). The first image in each category is treated as
the model image, and the homography matrix is used to compute the ground
truth for both keypoint recognition and pose estimation. The percentage of inlier
matches and the number of correct matches are employed as the performance
metrics. We compare our proposed convolutional treelets binary feature retrieval
(CT-BFR) based method 2 against state-of-the-art approaches, i.e., SIFT [7],
SURF [8], SURF-BRIEF [11], ORB[12], CARD[21] and FERNS [2]. In contrast
to the BRIEF with BFR scheme for the evaluations on synthetic data, we directly
employ its original implementation in the following.

For the fair comparison with different approaches, the number of detected
keypoints for one image is set identically and two cases are compared: reference
image with 500 keypoints—test image with 500 keypoints (R500-T500), reference

2 Our implementation is available at http://www.cse.cuhk.edu.hk/~jkzhu/ctree
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Table 2. R2000-T2000 comparisons of the percentage of inlier matches/the number of
detected correct matches: ‘graffiti’ (viewpoint changing), ‘boat’ (rotation+zooming),
‘wall’ (viewpoint changing), ‘leuven’ (lighting), ‘bikes’ (blur).

SIFT SURF BRIEF CARD FERNS CT-BFR RMSE

graffiti3 0.536/437 0.497/305 0.190/95 0.588/387 0.304/355 0.618/433 0.302

graffiti4 0.268/173 0.342/175 0.133/6 0.195/87 0.112/131 0.508/263 0.376

boat3 0.775/752 0.714/471 0.000/0 0.883/820 0.506/647 0.910/769 0.103

boat4 0.476/340 0.551/271 0.000/0 0.736/531 0.303/362 0.707/541 0.281

wall3 0.816/902 0.771/598 0.901/883 0.730/640 0.623/810 0.929/845 0.282

wall4 0.300/274 0.293/174 0.671/491 0.211/152 0.189/231 0.433/196 0.220

leuven4 0.557/670 0.548/574 0.961/1109 0.650/641 0.452/560 0.606/470 0.173

bikes4 0.791/785 0.819/711 0.936/952 0.898/770 0.793/889 0.945/852 0.202

time 2687.5ms 1376.5ms 958.5ms 724.5ms 512.5ms 610.3ms
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Fig. 6. Inliers percentage vs. Correct matches curves: (a)R500-T500 on ’graf4’.
(b)R2000-T2000 on ’graf4’. (c)R500-T500 on ’boat4’. (d)R2000-T2000 on ’boat4’.

image with 2000 keypoints—test image with 2000 keypoints (R2000-T2000).
Since the ORB program only provides 500 keypoints setting and CARD program
only provides 2000 keypoints setting, we test them in their own provided cases.

We use the original implementations for all compared methods. For binary
feature based methods BRIEF, ORB, CARD and CT-BFR, 256 bit length are
used. For FERNS, 32 ferns of size 8 which amounts to 256 bit binary feature are
used to establish matches. As in [11], SURF detector is used to detect the stable
keypoints for BRIEF. For FERNS and CT-BFR, the keypoint detector that
considers extrema of the Laplacian over 4 octaves is used as described in [2], 5K
images are generated to build the database. We first assign the most confident
label for each detected keypoint in the test image, and then fuse those keypoints
of the same label by selecting the one with the smallest Hamming distance for
CT-BFR or the largest posterior probability for FERNS. To find matched pairs,
no thresholding is used for FERNS as did in [2] and a simple thresholding (no
farther than 50) is used for CT-BFR. For the other descriptor-based methods,
a one-to-one symmetric nearest neighbor matching scheme [25], two keypoints
which are the nearest neighbors to each other are treated as a matched pair, is
used to find matched pairs.

We illustrate the overall evaluation results for two cases in Table 1 and Ta-
ble 2. These results reveals a number of interesting points as follows:

– The proposed CT-BFR achieves the best results in most cases especially on
the challenging image pairs with large rotation, scale changes and addictive
noise. We also report the average time spent on keypoint recognition includ-
ing keypoint detection, feature extraction and matching. It can be seen that
the proposed method is comparable with FERNS and more efficient than
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Fig. 7. Keypoints recognition and pose estimation on the video with severe bending
deformations. The first image is the model image and the rest are example frames.

other methods. The binary code-based methods are more efficient than the
traditional methods SURF and SIFT. Additionally, it is important to note
that our approach requires much less memory than the tree-based method
FERNS. In our experiments, FERNS with 256-bit feature consumes more
than 650MB memory while our 256-bit feature only takes 150MB. We also
show the promising homography estimation results using CT-BFR by RMSE.

– Comparing the results of two tables, the performance of classification-based
methods FERNS and CT-BFR do not degrade when the number of detected
keypoints increases. 1-NN classifier used in our method performs better and
can provide the pose information.

– BRIEF is not invariant to the in-plane rotation, which fails on ‘graffiti’ and
’boat’. However, it performs well in the cases of lighting variations and per-
spective distortions. ORB was developed to make up the shortage of BRIEF
and it does perform better than BRIEF in the cases with large rotation
changes. However, it is no better than BRIEF in the cases of lighting varia-
tions and perspective distortions. SIFT and SURF can deal with most condi-
tions while cannot perform well on some tough cases like ’graffiti4’, ’boat4’,
’wall4’. CARD performs better than SIFT, SURF and costs less time.

To further study the performance of each compared method, we also plot the
inliers percentage versus correct matches curves on ’graf4’ and ’boat4’ in Fig. 6
by thresholding the accepted distance with different values. Here we query the
keypoints in the test image for the nearest neighbor in the reference image. We
find that the results accords with those above using the one-to-one symmetric
nearest neighbor matching scheme. Our proposed method performs better than
other methods at a large margin on ’graf4’. On ’boat4’, CT-BFR and CARD
outperform other methods. In Fig 8, we also show the example results of CT-
BFR on pose estimation. It can be clearly observed that the proposed CT-BFR
method not only obtains the correct keypoint matching but also estimates the
desirable homography transformation for each keypoint patch.

5.4 Evaluation on Videos

To further demonstrate the effectiveness of our proposed CT-BFR approach, we
perform the keypoint matching and pose estimation on a real video containing
the planar objects with severe bending deformations. Fig. 7 plots the model im-
age and the example results. It can be seen that the presented method estimates
the accurate affine transformation for each patch in the input frame.
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Fig. 8. Examples of keypoint matching and pose estimation using CT-BFR. The first
row shows model images, and the second row plots test images.

6 Conclusion and Future Work

This paper proposed an efficient image patch retrieval-based approach to solve
the keypoint matching and pose estimation simultaneously. Moreover, a novel
convolutional treelets method was presented to effectively extract the binary fea-
tures from the patch surrounding the keypoint. An efficient sub-signature-based
locality sensitive hashing scheme was employed for the fast approximate near-
est neighbor search in patch retrieval. We have conducted extensive evaluations
on both synthetic data and real-world images. The encouraging results showed
that our method performs better than the state-of-the-art approaches. Despite
of these promising results, the major limitation of our method is the dependence
of offline training. For future work, we will address this issue by studying the
idea of online learning and extend our technique to nonrigid object tracking [5].
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