
Complex & Intelligent Systems (2021) 7:2235–2253
https://doi.org/10.1007/s40747-021-00400-2

ORIG INAL ART ICLE

A cooperated shuffled frog-leaping algorithm for distributed
energy-efficient hybrid flow shop scheduling with fuzzy processing
time

Jingcao Cai1 · Deming Lei1

Received: 28 December 2020 / Accepted: 11 May 2021 / Published online: 28 May 2021
© The Author(s) 2021

Abstract
Distributed hybrid flow shop scheduling problem (DHFSP) has attracted some attention; however, DHFSP with uncertainty
and energy-related element is seldom studied. In this paper, distributed energy-efficient hybrid flow shop scheduling problem
(DEHFSP) with fuzzy processing time is considered and a cooperated shuffled frog-leaping algorithm (CSFLA) is presented
to optimize fuzzy makespan, total agreement index and fuzzy total energy consumption simultaneously. Iterated greedy,
variable neighborhood search and global search are designed using problem-related features; memeplex evaluation based
on three quality indices is presented, an effective cooperation process between the best memeplex and the worst memeplex
is developed according to evaluation results and performed by exchanging search times and search ability, and an adaptive
population shuffling is adopted to improve search efficiency. Extensive experiments are conducted and the computational
results validate that CSFLA has promising advantages on solving the considered DEHFSP.

Keywords Distributed scheduling · Hybrid flow shop scheduling · Fuzzy scheduling · Shuffled frog-leaping algorithm ·
Energy consumption

Introduction

Production scheduling is a decision-making process that
plays an important role inmanufacturing and production sys-
tems. In the past decades, scheduling problems have been
extensively investigated in single factory by exact method,
heuristic and meta-heuristics. In recent years, production has
shifted from single factory to multiple factories to quickly
respond to market changes and customer demands and dis-
tributed scheduling inmultiple factories has become themain
topic of the current scheduling researches. A number of
results have been obtained on distributed scheduling in vari-
ous production environments [2–4,21,21].

Hybrid flow shop scheduling problems (HFSP) exten-
sively exist in many manufacturing industries such as elec-
tronics, textile and semiconductor [41]. In recent years,
distributed hybrid flow shop scheduling problem (DHFSP)
has been successfully considered and some progresses are

B Deming Lei
deminglei11@163.com

1 School of Automation, Wuhan University of Technology,
Wuhan, China

made. For DHFSP in homogeneous factories, Ying and Lin
[51] studied DHFSPwithmultiprocessor tasks and presented
a mixed integer programming model and a self-tuning IG
to minimize makespan. Hao et al. [13] proposed a hybrid
brain storm optimization algorithm to optimize makespan.
Cai et al. [6] developed a dynamic SFLA with dynamic
search process for DHFSP with multiprocessor tasks. Cai
et al. [5] addressed bi-objective DHFSP and gave a shuf-
fled frog-leaping algorithm with memeplex quality. Shao et
al. [43] proposed a DNEH with smallest-medium rule and
a multi-neighborhood IG to minimize makespan. Zheng et
al. [54] provided a cooperative coevolution algorithm with
problem-specific strategies by combining estimation of dis-
tribution algorithm and IG for fuzzy DHFSP. Li et al. [29]
designed a discrete artificial bee colony algorithm forDHFSP
with sequence dependent setup time. Regarding DHFSP
in heterogeneous factories, Lei and Wang [21] presented
a shuffled frog-leaping algorithm (SFLA) with memeplex
grouping for distributed two-stage HFSP with the minimiza-
tion of makespan and the number of tardy jobs. Cai et al.
[7] presented a collaborative variable search to solve fuzzy
distributed scheduling in two-stage hybrid flow shop with
sequence-dependent setup time. Li et al. [28] presented an

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00400-2&domain=pdf

2236 Complex & Intelligent Systems (2021) 7:2235–2253

improved artificial bee colony algorithm for DHFSP. Wang
andWang [45] propose a bi-population cooperative memetic
algorithm for solving DHFSP to minimize makespan.

As an important energy-efficient scheduling problem,
energy-efficient HFSP plays an essential part in green man-
ufacturing. In recent years, it has attracted much attention.
Dai et al. [8] developed a genetic-simulated annealing algo-
rithm to minimize makespan and total energy consumption.
Luo et al. [34] presented a novel ant colony optimization
for HFSP with the consideration on electricity consump-
tion cost. Tang et al. [44] developed an improved particle
swarmoptimization for energy-efficient dynamic scheduling.
Lin et al. [32] presented teaching-learning-based optimiza-
tion (TLBO) for the integration of processing parameter
optimization and HFSP with the minimization of makespan
and carbon footprint. Yan et al. [50] proposed a multi-level
optimization method for reducing the total energy consump-
tion and makespan. Lei et al. [17] provided a novel TLBO
to minimize total tardiness regarded as key one and total
energy consumption. Li et al. [26] presented an energy-aware
multi-objective optimization algorithm for HFSP with setup
energy consumptions. Zeng et al. [52] applied a hybrid non-
dominated sorting genetic algorithm-II for flexible flow shop
scheduling with total electricity consumption and material
wastage. Meng et al. [35] proposed an improved GA with a
new energy-conscious decoding method. Li et al. [27] pre-
sented a two-level imperialist competitive algorithm.

In general, DHFSP exists in many real-world manufactur-
ing situations like wafer production in more than one wafer
fab and the consideration of DHFSP can result in greater
improvements in production performances than that of HFSP
in a single factory. It can be found that the previous works
have the following three features.

(1) Homogeneous factories are frequently considered
and heterogeneous factories are seldom handled. Because
the former is an idea case and the latter extensively exits
in the real-life production process, it is vital to investi-
gate DHFSP in heterogeneous factories. (2) Energy-efficient
HFSP has attracted much attention in single factory; how-
ever, the energy-related objective or constraints are hardly
considered in DHFSP. Obviously, energy-saving of multiple
factories production is more important than that of single
factory production, so energy-efficient DHFSP should be
studied fully. (3) Distributed scheduling with uncertainty
attracted limited attention in hybrid flow shop [7,54]. Uncer-
tainty always exists in the real-life manufacturing process
and is an unavoidable property of manufacturing process
[1]. The obtained schedule may be invalid if uncertainty is
neglected in scheduling problem; moreover, the negligence
of uncertainty inmultiple factories will producemore serious
consequences than that in single factory. Thus, it can be con-
cluded from the above analyses that it is important to study
DEHFSP with uncertainty in heterogeneous factories.

In the past decade, fuzzy theory is often adopted in fuzzy
scheduling to depict uncertainty and a number of works have
been done on fuzzy scheduling problem [1,16,18,25,30,31,
33,47] in single factory and fuzzy distributed scheduling in
multiple factories [7,54]. Some works on DHFSP with fuzzy
processing conditions are also done; however, the related
researches are not performed fully.

SFLA is ameta-heuristic byobserving, imitating andmod-
elling the behavior of a group of frogs searching for a location
with the maximum amount of available food [10]. It has fast
convergence speed, effective algorithm structure containing
local search and global information exchanges. SFLA has
been used to handle parallel machine scheduling, flow shop
scheduling and HFSP etc by discretization in single factory
[11,15,22,23,37–39,49,53]. There are some applications of
SFLA to distributed scheduling [6,21]. Not only that, SFLA
performs very well in solving other scheduling problems
[46]. The optimization abilities and advantages of SFLAhave
been validated on scheduling problems.

In the previous works, memeplexes evolve independently
after population is divided into smemeplexes and the cooper-
ation betweenmemeplexes is seldomconsidered based on the
quality evaluation ofmemeplex. For example, the bestmeme-
plex often consists of good solutions and theworstmemeplex
has some worse solutions. The cooperation between these
twomemeplexes can avoid the waste of computing resources
on theworstmemeplex andmake full use of good search abil-
ity of the best memeplex.

In this study, an cooperated shuffled frog-leaping algo-
rithm (CSFLA) is proposed to address fuzzy DEHFSP
in heterogeneous factories. The goal is to optimize fuzzy
makespan and fuzzy total energy consumption and total
agreement index simultaneously. In CSFLA, IG, VNS and
global search (GS) are designedbased on features of the prob-
lemandmemeplex evaluation is done in terms of three quality
indices: solution quality, evolution quality and contribution
degree of archive; to improve search efficiency, an effec-
tive cooperation between the best memeplex and the worst
memeplex is performed in search process of memeplexes
and an adaptive population shuffling is presented. CSFLA is
tested on a number of benchmark instances and compared
with the methods from literature. The computational results
demonstrate that the new strategies of CSFLA are effective
and efficient and CSFLA can generate better results than its
comparative algorithms.

The remained parts of the paper are organized as follows.
Operations on fuzzy scheduling is described in the second
section followed by problem description in third section.
Introduction to SFLA is shown in fourth section. CSFLA
for DEHFSP with fuzzy processing time is given in fifth sec-
tion. Computational results and analyses are provided in sixth
section. The conclusions are drawn and the future research
topics are reported in the final section.

123

Complex & Intelligent Systems (2021) 7:2235–2253 2237

Table 1 Notations and
descriptions

Notation Description

i , f ,l,k Indexes

n The number of jobs

Ji The i-th job

F The number of factories

m The number of stages

w f l The number of parallel machines at stage l of factory f

M f lk The kth machine at stage l of factory f

p̃i f lk Fuzzy processing time of Ji on M f lk , p̃i f lk =
(
p1i f lk , p

2
i f lk , p

3
i f lk

)

d̃i Fuzzy due date of Ji , d̃i = (
d1i , d2i

)

E f lk Energy consumption per unit time in processing mode

SE f lk Energy consumption per unit idle time

AIi The agreement index of Ji
TAI The total agreement index of all jobs

C̃i The completion time of Ji
Cmax The maximum completion time of all jobs

TEC Fuzzy total energy consumption

Φ f lk The set of all jobs processed on M f lk

ID f lk The idle time of M f lk

Ũ TFN Ũ = {U1,U2,U3},where U1,U2,U3 are very large positive numbers

Xi f Decision variable, if Ji is allocated in factory f , Xi f = 1; otherwise Xi f = 0

Yi f lk Decision variable, if Ji is allocated in Mi f lk , Y f lk = 1; otherwise Yi f lk = 0

Zii ′ f l Decision variable, if Ji is processed before Ji ′ at stage l in factory f , Zii ′ f l = 1;

otherwise Zii ′ f l = 0

s̃til The start time of process of Ji at stage l

ẽtil The end time of process of Ji at stage l

P Population

N The number of solutions of P

s The number of memeplexes

μ The baseline of search times of memeplex

Evoi The evolution quality of Mi

Soli The solution quality of Mi

Coni The contribution degree for archive Ω

Mei The quality of Mi

Q The memory solution set

Ω The non-dominated solution set

η The search times of memeplexes

R The maximum search times of VNS1 and VNS2

γ A real number which equals to 0.5

Operations on fuzzy number

Triangular fuzzy number (TFN) is often used to indi-
cate the processing time in fuzzy scheduling because of
its simple operations. Some operations include addition
operation, the ranking methods of TFNs and max oper-
ation of two TFNs are needed to build a fuzzy
schedule.

Addition is used to decide completion time of job. For
TFNs s̃ = (s1, s2, s3) and t̃ = (t1, t2, t3), addition operation
is performed by

s̃ + t̃ = (s1 + t1, s2 + t2, s3 + t3) (1)

For s̃, c1(s̃) = (s1 + 2s2 + s3)/4, c2(s̃) = s2, c3(s̃) =
s3 − s1.

123

2238 Complex & Intelligent Systems (2021) 7:2235–2253

Ranking of s̃ and t̃ is done according to the following
conditions:

If c1(s̃) > c1(t̃), then s̃ > t̃ . If c1(s̃) = c1(t̃) and c2(s̃) >

c2(t̃), then s̃ > t̃ . If ci (s̃) = ci (t̃), i = 1, 2 and c3(s̃) > c3(t̃),
then s̃ > t̃ .

Ranking is adopted to compare fuzzy objectives of solu-
tions.

Max operation is applied to compute beginning time of
job [16] and defined by

if s̃ > t̃, then s̃ ∨ t̃ = s̃; otherwise, s̃ ∨ t̃ = t̃, (2)

where s̃ ∨ t̃ denotes the larger one of s̃ and t̃ .
Multiplication operation is applied to compute total

energy consumption in this study. For TFN s̃ = (s1, s2, s3)
and a constant α, multiplication operation is defined by

α × s̃ = (α × s1, α × s2, α × s3) . (3)

Problem description

DEHFSP with fuzzy processing time can be described as
follows. There are n jobs distributed among F heterogeneous
factories located in different sites. Each factory is a hybrid
flow shop with m stages and there are w f l unrelated parallel
machines at stage l of each factory f . All jobs are available at
time zero. Each machine M f lk exists two modes: processing
mode and stand-by mode.

DEHFSP has some constraints on jobs and machines:
Each machine can process at most one operation at a time.
No jobs may be processed on more than one machine at a

time.
Operations cannot be interrupted.
All machines are available at all times.
DEHFSP can be categorized into three sub-problems: fac-

tory assignment deciding a factory of each job, machine
assignment and scheduling. There are strong coupling rela-
tionships among these sub-problems [6].

The mathematical model of DEHFSP with fuzzy process-
ing time, which is extended fromWang and Wang [45], is as
follows:

Maximize TAI =
n∑

i=1

AIi, (4)

Minimize Cmax = max
i=1,2,...,n

C̃i , (5)

Minimize TEC =
F∑
f =0

m∑
l=0

w f l∑
k=0

(∑
Ji∈Φ f lk

p̃i f lk
(
E f lk − SE f lk

)

+SE f lk × max
Ji∈Φ f lk

{C̃i }
)

, (6)

F∑
f =1

Xi f = 1,∀i, (7)

w f l∑
k=1

Yi f lk = Xi f ,∀i, f , l, (8)

s̃ti1 ≥ {0, 0, 0},∀i, (9)

s̃ti(l+1) ≥ ẽtil ,∀i, l, (10)

ẽtil = s̃til +
F∑
f =1

w f l∑
l=1

(
p̃i f lk × Xi f × Yi f lk

)
,∀i, l, (11)

Zii ′ f l + Zi ′i f l ≤ 1,∀ f , l, i, i ′, (12)

Zii ′ f l + Zi ′i f l ≥ Yi f lk + Yi ′ f lk − 1,∀ f , l, i ′ > i, (13)

s̃ti ′l ≥ ẽt il − Ũ × (
3 − Yi f lk − Yi ′ f lk − Zii ′ f l

)
,

∀i �= i ′, f , l, k ∈ {1, 2, . . . , w f l}, (14)

Xi f ∈ {0, 1},∀i, f , (15)

Yi f lk ∈ {0, 1},∀i, f , l, k ∈ {1, 2, . . . , w f l}, (16)

Zii ′ f l ∈ {0, 1},∀i, i ′, f , l, (17)

whereEq. (4) is tomaximize total agreement index;Eq. (5)
is to minimize fuzzy makespan; Eq. (6) is to minimize fuzzy
total energy consumption; constraint (7) indicates that each
job is processed on only one factory; constraint (8) shows that
each job can only be processed in onemachine at every stage;
constraint (9) demonstrates that each job can be processed
after zero time; constraint (10) indicates that the start time
of process at stage l + 1 is not earlier than the end time
of process at stage l; constraint (11) shows that the process
cannot be interrupted; constraint (12)–(14) demonstrate that
eachmachine can only process one job at one time; constraint
(15)–(17) give the binary decision variables.

Regarding TAI, it is the sum of AIi of all jobs. Agreement
index is defined by Sakawa and Kubota [42] and used to
define the degree of tardiness of C̃i to due date d̃i . Figure 1
shows fuzzy makespan, fuzzy due date and agreement index.
AIi is defined by

AIi = area
(
C̃i ∩ d̃i

)
/area

(
C̃i

)
(18)

With respect to TEC, for machine M f lk , its completion
time is equal to the sum of processing times of all jobs in
Φ f lk plus the sum ID f lk of idle time, that is,

max
Ji∈Φ f lk

{
C̃i

} =
∑

Ji∈Φ f lk

p̃i f lk + ID f lk . (19)

EC f lk is energy consumption of M f lk , Obviously,

EC f lk =
∑

Ji∈Φ f lk

p̃i f lk × E f lk + ID f lk × SE f lk . (20)

TEC can be obtained after the above two equations are
combined together and is adopted to avoid computing ID f lk

123

Complex & Intelligent Systems (2021) 7:2235–2253 2239

Fig. 1 A schedule of the
example

Algorithm 1 SFLA
1: Population initialization
2: while stopping condition is not met do
3: Population division
4: Memeplex search.
5: Population shuffling.
6: end while

because ID f lk is related to the subtraction of TFNs and dif-
ference between two TFNs is not TFNs frequently and hard
to be obtained.

Introduction to SFLA

SFLA was first proposed by Eusuff et al. [10]. SFLA starts
with an initial population P , in which each solution is rep-
resented as the position of a frog. Algorithm 1 shows the
process of SFLA.

Population division is to divide the population into
s memeplexes to form multiple sub-populations, which
described as follows. All solutions are sorted in the descend-
ing order of fitness, then g-th solution is allocated into
memeplex (g−1)(mod s)+1, where g(mod s) indicates the
remainder of g

/
s .

Memeplex search is the main process to find a better
solution. Search within memeplex Mt is shown below. The
following steps are repeated η times: an optimization object
xw is first chosen, then a new solution x ′ is produced by
using xw and xb by Eq. 19, if the new one is better than xw,
then replace xw with x ′; otherwise, a solution x ′ is generated
by Eq. 19 after xg substitutes for xb, if x ′ has better fitness
than xw, then x ′ becomes xw; otherwise, xw is replaced with
a randomly obtained solution, xw, xb and xg are the worst
solution in memeplex, the best solution in memeplex and the
best solution of P .

x ′ = xw + rand × (xb − xw), (21)

where rand is a random number following uniform distribu-
tion in [0,1].

Population shuffling is done in the following way. All
evolved memeplexes M1,M2, . . . ,Ms are combined
together and a new population is formed.

CSFLA for DEHFSP

In SFLA, search within memeplex is often executed inde-
pendently and there are no considerations on cooperation
between memeplexes. Cooperation may be an effective
way to intensify search ability of SFLA. In CSFLA, all
memeplexes are evaluated and sorted, and then cooperation
between the bestmemeplex and theworst one is implemented
and an adaptive population shuffling is done. We describe
these strategies in the following sections.

Initialization and population division

DEHFSP is composed of three sub-problems: factory assign-
ment, machine assignment and scheduling. A two-string
representation is used. For DEHFSP with n jobs and F fac-
tories, a solution is denoted by a factory assignment string
[θ1, θ2, . . . , θn] and a scheduling string [π1, π2, . . . , πn].
θi ∈ {1, 2, . . . , F} indicates the factory allocated for job
Ji , πi ∈ {1, 2, . . . , n}. Machine assignment is decided by a
rule.

The decoding procedure is described below. All allocated
jobs in each factory are decided according to factory assign-
ment string and then permutation of these allocated jobs in
each factory is obtained in terms of scheduling string, then for
job permutation of each factory f , start with the first job, for
each job Ji at stage l, choose a machine M f lk with minimum
completion time and allocate Ji on M f lk .

Table 1 gives an example ofDEHFSP.Apossible solutions
is composed of [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1,
2, 1, 1] and [20, 18, 5, 16, 15, 3, 14, 7, 19, 2, 8, 1, 17, 6,
11, 4, 10, 13, 9, 12]. Figure 1 describes the schedule of the
solution.

Initial population P with N solutions is randomly pro-
duced.

Population division is implemented as follows. A popula-
tion P̄ is first constructed, then g = 1, binary tournament
is performed repeatedly until P̄ is empty: two solutions
x, y ∈ P̄ are randomly chosen, if x
 y(y
 x), then add
x(y) into memeplexMg , and delete x(y) from P̄; otherwise,
randomly choose one of x and y, add the chosen solution into
Mg and remove it from P̄ . g = g+1, g = (g−1)(mod s̄)+1.

x
 y means x dominates y and is defined as follows:
x
 y if TAI(x) ≥ TAI(y), Cmax(x) ≤ Cmax(y), TEC(x) ≤

123

2240 Complex & Intelligent Systems (2021) 7:2235–2253

Table 2 Fuzzy processing time for 20 jobs on 2 factories

Job Machine

M111 M112 M113 M121 M211 M212 M221 M222

J1 (74,74,82) (68,68,78) (67,75,76) (67,68,83) (70,80,82) (52,61,74) (60,64,82) (52,60,62)

J2 (54,62,64) (53,62,62) (53,62,67) (65,77,77) (63,67,75) (72,76,96) (69,71,78) (70,74,81)

J3 (65,75,77) (64,75,82) (52,60,64) (60,63,64) (60,61,67) (65,70,73) (59,66,70) (62,68,83)

J4 (68,77,82) (62,67,70) (76,77,77) (59,67,75) (78,80,100) (67,75,86) (60,66,66) (64,69,81)

J5 (65,77,85) (64,71,75) (64,76,90) (66,70,82) (65,76,76) (65,75,94) (71,77,94) (60,67,72)

J6 (66,70,75) (56,64,64) (68,72,77) (54,63,77) (52,61,62) (58,64,78) (53,60,68) (58,64,65)

J7 (68,77,87) (77,79,80) (54,61,77) (64,67,76) (63,64,73) (66,75,76) (52,61,62) (65,67,79)

J8 (57,63,69) (61,65,67) (62,63,71) (61,68,79) (71,77,78) (71,72,77) (65,76,85) (74,79,80)

J9 (56,64,71) (68,78,81) (76,80,86) (70,72,73) (67,69,74) (64,68,70) (68,75,80) (67,72,81)

J10 (69,69,79) (60,61,74) (65,66,77) (56,67,71) (67,68,76) (68,74,87) (75,76,80) (63,73,84)

J11 (55,62,68) (65,76,80) (70,73,90) (59,69,73) (67,70,88) (66,75,95) (59,67,78) (64,71,83)

J12 (69,70,78) (60,68,78) (59,68,72) (61,61,75) (68,80,84) (69,75,79) (64,71,74) (62,71,75)

J13 (68,80,101) (71,80,85) (64,65,74) (59,66,68) (72,75,82) (67,69,74) (54,60,60) (73,77,83)

J14 (66,76,80) (65,66,77) (59,67,73) (63,69,85) (64,75,92) (58,68,75) (60,67,68) (60,61,64)

J15 (62,71,81) (65,69,84) (59,69,70) (58,62,66) (69,70,77) (76,80,83) (64,67,74) (69,69,72)

J16 (63,73,82) (59,68,70) (60,67,78) (61,72,87) (77,79,81) (70,78,83) (62,63,65) (63,72,87)

J17 (71,73,85) (68,79,88) (56,60,77) (65,71,79) (61,71,71) (66,72,77) (59,65,72) (61,62,74)

J18 (62,66,83) (55,61,62) (65,68,85) (54,60,73) (56,60,75) (76,77,80) (72,79,83) (60,69,74)

J19 (66,69,83) (55,63,66) (65,69,75) (61,70,72) (56,62,76) (62,68,81) (72,76,77) (70,75,89)

J20 (61,68,87) (65,67,75) (64,72,75) (75,78,90) (56,62,71) (61,67,76) (64,73,76) (63,74,82)

J14(0,0,0)

J14(66,76,80)

J11(66,76,80)

J11(121,138,148)

J20(0,0,0)

J20(65,67,75)

J19(65,67,75)

J19(120,130,141)

J12(120,130,141)

J12(180,198,219)

J16(0,0,0)

J16(60,67,78)

J17(60,67,78)

J17(116,127,155)

J13(116,127,155)

J13(180,192,229)

J20(65,67,75)

J20(140,145,165)

J16(140,145,165)

J16(201,217,252)

J14(201,217,252)

J14(264,286,337)

J19(264,286,337)

J19(325,356,409)

J17(325,356,409)

J17(390,427,488)

J11(390,427,488)

J11(449,496,561)

J13(449,496,561)

J13(508,562,629)

J12(508,562,629)

J12(569,623,704)

J18(0,0,0)

J18(56,60,75)

J15(56,60,75)

J15(125,130,152)

J7(125,130,152)

J7(188,194,225)

J8(188,194,225)

J8(259,271,303)

J6(259,271,303)

J6(311,332,365)

J10(311,332,365)

J10(378,400,441)

J5(0,0,0)

J5(65,75,94)

J3(65,75,94)

J3(130,145,167)

J2(130,145,167)

J2(202,221,263)

J1(202,221,263)

J1(254,282,337)

J4(254,282,337)

J4(321,357,423)

J9(321,357,423)

J9(385,425,493)

J5(65,75,94)

J5(136,152,188)

J3(136,152,188)

J3(195,218,258)

J2(202,221,263)

J2(271,292,341)

J1(271,292,341)

J1(331,356,423)

J4(331,356,423)

J4(391,422,489)

J9(385,425,493)

J9(453,500,573)

J18(56,60,75)

J18(116,129,149)

J15(125,130,152)

J15(194,199,224)

J7(194,199,224)

J7(259,266,303)

J8(259,271,303)

J8(333,350,383)

J6(333,350,383)

J6(391,414,448)

J10(391,414,448)

J10(454,487,532)

M222

M221

M212

M211

M121

M113

M112

M111

Fig. 2 A schedule of the example

TEC(y) and at least one objective, take TAI as an example,
TAI(x) > TAI(y).

Initially, P̄ = P , s̄ = s.

Memeplex evalution

Memeplex evaluation is seldom adopted in the previous
SFLAs [6,21,37]. In this study, three quality indices are used
to evaluate and discriminate memeplexes.

123

Complex & Intelligent Systems (2021) 7:2235–2253 2241

For memeplex Mi , its quality Mei is defined by

Mei = Evoi + Soli + Coni . (22)

Evoi is defined by

Evoi =
∑
x∈Mi

λ̄x
/
λx , (23)

where λ̄x and λx are the effective search times and search
times of x ∈ Mi . When x ∈ Mi is selected as optimization
object of memeplex search, λx = λx + 1 if a new solution is
generated, λ̄x = λ̄x + 1 if the new solution is not dominated
by x , that is, the search of x is effective. λ̄x and λx are initial-
ized to 0 before search process is done in each memeplex.

Soli = 1 −
∑
x∈Mi

rankx
/∑
y∈P

ranky, (24)

Coni = |{x ∈ Ω |x ∈ Mi }|
/|Ω|, (25)

where rankx is rank of x obtained by non-dominated sorting
[9] on population P .

s memeplexes are sorted in the descending order of Mei .
Suppose that Me1 ≥ Me2 · · · ≥ Mes , so M1 is the best
memeplex and Ms is the worst one.

Cooperation-basedmemeplex search

Algorithm 2 describes the main steps of memeplex search.
Obviously, memeplex Ms is just given search times η < μ

and M1 has more search times than μ.
In Algorithm 2, GS, IG and two VNS are used and

described in the following. GS(x, u) is described as follows.
For a solution x ∈ Mi , randomly select a non-dominated
solution y ∈ Mi , y �= x ; stochastically pick a coding string
in the same probability and produce a new z by crossover of
the chosen string between x, y; if z is not dominated by x ,
replace x and update Ω with z and update Q with x , other-
wise, randomly decide a coding string in the same probability
and generate a new z by crossover on the selected string
between x and a randomly determined y ∈ Ω; if z is not
dominated by x , replace x and update Ω with z and update
Qwith x , otherwise randomly produce a solution z; if x keeps
invariant, u = u + 1, where the set Q is used to store some
intermediate data and can be regarded asmemory of CSFLA.

Crossover between x, y is performed in the followingway.
Randomlydecide k1, k2, k1 < k2, decide jobs between k1 and
k2 on the chosen string of y; if the chosen one is schedul-
ing string, then adjust relative sequence of these jobs on x
according to their sequence on y; if the chosen one is factory
assignment string, then all genes of x between k1 and k2 are
replaced with those of y on the same position.

Algorithm 2Memeplex search
1: for t = 1 to s do
2: if t < s then
3: η = μ

4: else
5: η = 2 × μ × Mes/(Me1 + Mes)
6: end if
7: for v = 1 to η do
8: u = 1, randomly select a non-dominated solution x ∈ Mt
9: if u = 1 then
10: perform GS(x, u)
11: end if
12: if u = 2 then
13: execute VNS1(x, u)
14: end if
15: if u = 3 then
16: apply IG(x, u)
17: end if
18: end for
19: if t = s then
20: for v = η + 1 to 2μ do
21: randomly choose a non-dominated solution x ∈ M1
22: perform VNS2(x)
23: end for
24: end if
25: end for

IG(x, u) is shown below. For a solution x ∈ Mi , a new
solution z is first obtained by the following steps: determine
one objective randomly, for example, Cmax, and choose a
factory which has the worst objective value; stochastically
select jobs πi , π j from the chosen factory and delete them
from scheduling string, compute the chosen objective value
using the remained jobs; reinsert jobs πi and π j one by one
into a position with the smallest value of the chosen objective
among all possible new positions; then if x
 z, update
memoryQ and u = u + 1; else replace x and update Ω with
z.

Three neighborhood structures are used in VNS1 and
VNS2. N1 is shown below. Select a factory f1 with the
biggest completion time and a factory f2 with the small-
est completion time; randomly select a job πi from factory
f1 and a job π j from factory f2 on position k2 of scheduling
string, insert πi into position k2 −1 on scheduling string and
let θπi = θπ j . If k2 = 1, then πi is deleted and then directly
inserted on position 1.

N2 is described as follows. Decide factories f1, f2 as
done in N1, then randomly decide a job πi from factory
f1 and a job π j from factory f2, and exchange them on
scheduling string and swap θπi and θπ j on factory assign-
ment string. N3 is described below. Stochastically choose
positions k1, k2, k3, 1 ≤ k1 < k2 < k3 ≤ n, on two strings
of a solution, genes between k1 and k2−1 and those between
k2 and k3 are exchanged.

In IG,N1 andN2, factories are not randomly chosen and
selected with the worst objective value or the best objective
value, the movement of jobs in the chosen factory or between

123

2242 Complex & Intelligent Systems (2021) 7:2235–2253

the selected factories can lead to the improvement of the
chosen objective in a high probability, as a result, a new
solution can be obtained easily because of the above features,
which is non-dominated with the current solution at least.

VNS1(x, u) is performed below. g = 1, e = 1, repeat the
following steps: produce z ∈ Ng(x), if x
 z, then update
memory Q with z and g = g + 1; else g = 1, replace x and
update Ω with z. e = e + 1 until g > 3 or e ≥ R.

VNS2(x) is described in Algorithm 3.

Algorithm 3 VNS2(x)
1: g = 1, e = 1
2: while g ≤ 3 and e ≤ R do
3: produce z ∈ Ng(x)
4: if z
 x then
5: apply non-dominated sorting [9] on Ms ,

6: build a setΘ =
{
y ∈ Ms

∣∣∣∣x
 y, ranky = max
x ′∈Ms

{rankx ′ }
}
,

7: replace a randomly selected solution y ∈ Θ with x ,
8: replace x and update Ω with z, g = 1
9: else

10: build a set

{
y ∈ Ms

∣∣∣∣z
 y, ranky = max
x ′∈Ms

{rankx ′ }
}
,

11: replace a randomly selected solution y from the set with z,
12: update memory Q with z, g = g + 1
13: end if
14: e = e + 1
15: end while

Ω is updated as follows. z is added to Ω and all solutions
inΩ are compared based on Pareto dominance, then all dom-
inated solutions are removed. The same way is also used to
update Q with z.

In Algorithm 2, IG, GS and twoVNS are used in a flexible
way, as a result, their search advantages can be used fully
and exploration ability is intensified; on the other hand, η =
2 × μ × Mes/(Me1 + Mes) < μ for Mes < Me1, that is,
the search times of Ms is less than μ, the remained μ − η

times are provided for the best memeplexM1 andVNS2 acts
on a non-dominated solution of M1 and new solutions are
used to updateMs . This is an effective cooperation between
the worst memeplex Ms and the best memeplex M1 by
exchanging search times of Ms and search ability of M1.

Algorithm description

CSFLA is shown in Algorithm 4. The initial Ω is composed
of the non-dominated solutions in initial P . The initial Q is
empty.

Adaptive population shuffling is done in the following
way. Let P̄ be empty, all memeplexesMi meeting Evoi ≤ γ

are added into P̄ and then all solutions Q are added into P̄;
finally, non-dominated sorting is performed on all solutions
in P̄ and the first N × s̄/s solutions are only kept, where γ

is a real number and set to be 0.5 by experiments.

Algorithm 4 CSFLA
1: randomly produce initial population P with N solutions and and

initialize Ω and Q. P̄ = P , s̄ = s.
2: while the terminal condition is not met do
3: divide population P̄ into s̄ memeplexes by binary tournament .
4: evaluate the quality of each memeplex and sort all memeplexes

according to quality.
5: perform searches of all memeplexes.
6: population shuffling to form a new P̄ .
7: end while
8: Output Ω .

CSFLA has the following features. (1) Memeplex is eval-
uated according to solution quality, evolution quality and
contribution degree for archive. All memeplexes are sorted
in terms of quality. (2) An effective cooperation between
the best memeplex and the worst memeplex is implemented.
(3)Memeplexes for shuffling are selected in an adaptive way
and combined with Q to form a new population.

Computational experiments

All experiments are implemented using Microsoft Visual
C++ 2019 and run on 8.0 G RAM 2.4 GHz CPU PC.

Test instances, comparative algorithms andmetrics

Extensive experiments are conducted on 80 instances to test
the performances of CSFLA for DEHFSP. 80 instances are
randomly produced and the basic information are shown in

Table 3. TFN p̃i f lk =
(
δ1 × p′

i f lk, p
′
i f lk, δ2 × p′

i f lk

)
, where

p′
i f lk ∈ [60, 80], δ1 ∈ [0.85, 1] and δ2 ∈ [1, 1.3]. Fuzzy due

date d̃i = (
d ′
i , δ2 × d ′

i

)
, where d ′

i ∈ [(n/F+m−1)×80,m×
80]. w f l ∈ [1, 3]. E f lk ∈ [2, 4]. SE f lk = 1. All the above
data are integers except that δ1 and δ2 are real number.

Four comparative algorithms are chosen, which are multi-
objective tabu search method (MOTS, [48]), multi-objective
colonial competitive algorithm (MO-CCA, [14]), multi-
objective adaptive large neighborhood search (MOALNS,
[40]) and cooperative coevolution algorithm (CCA, [54]).
Two variants of CSFLA are also compared with CSFLA to
show the effect of new strategies of CSFLA.

MOTS is used to solve two-stage hybrid flow shop with
preventive maintenance. It starts from some non-dominated
solutions and generates a set of neighborhood solutions
for each starting solution. MOTS can be applied to handle
DEHFSP after coding string on maintenance is replaced by
factory assignment string, neighborhood structure of main-
tenance is deleted and a neighborhood structure is added,
in which a θi is randomly selected from factory assignment
string and assigned a new value.

123

Complex & Intelligent Systems (2021) 7:2235–2253 2243

Table 3 Information of 80
instances

Instance n F m Instance n F m Instance n F m

1 20 2 2 28 40 3 8 55 80 4 6

2 20 2 4 29 60 3 2 56 80 4 8

3 20 2 6 30 60 3 4 57 100 4 2

4 20 2 8 31 60 3 6 58 100 4 4

5 40 2 2 32 60 3 8 59 100 4 6

6 40 2 4 33 80 3 2 60 100 4 8

7 40 2 6 34 80 3 4 61 20 5 2

8 40 2 8 35 80 3 6 62 20 5 4

9 60 2 2 36 80 3 8 63 20 5 6

10 60 2 4 37 100 3 2 64 20 5 8

11 60 2 6 38 100 3 4 65 40 5 2

12 60 2 8 39 100 3 6 66 40 5 4

13 80 2 2 40 100 3 8 67 40 5 6

14 80 2 4 41 20 4 2 68 40 5 8

15 80 2 6 42 20 4 4 69 60 5 2

16 80 2 8 43 20 4 6 70 60 5 4

17 100 2 2 44 20 4 8 71 60 5 6

18 100 2 4 45 40 4 2 72 60 5 8

19 100 2 6 46 40 4 4 73 80 5 2

20 100 2 8 47 40 4 6 74 80 5 4

21 20 3 2 48 40 4 8 75 80 5 6

22 20 3 4 49 60 4 2 76 80 5 8

23 20 3 6 50 60 4 4 77 100 5 2

24 20 3 8 51 60 4 6 78 100 5 4

25 40 3 2 52 60 4 8 79 100 5 6

26 40 3 4 53 80 4 2 80 100 5 8

27 40 3 6 54 80 4 4

MOCCAis proposed for solvingHFSPwith theminimiza-
tion of makespan and total weighted tardiness and has good
performance. It can be directly applied to solve DEHFSP
after a factory assignment string is added and then VNS1
and GS are used instead of the original VNS and crossover
between colony and its imperialist.

MOALNS is dedicated to deal with distributed reentrant
permutation flow shop scheduling problem with three objec-
tives. MOALNS can be used to solve DEHFSP after cost and
tardiness are replaced with TEC and TAI.

CCA is presented to address multi-objectives DHFSP
with fuzzy processing times and some different objec-
tives from our DEHFSP and can be directly used to
dispose DEHFSP, so it is chosen as a comparative algo-
rithm.

We construct two variants of CSFLA, which are SFLA1
and SFLA2. When memeplex cooperation is moved from
CSFLA, SFLA1 is obtained. The comparison between
CSFLA and SFLA1 is to show the effect of cooperation.
When shuffling is done in SFLA in the fourth section,

SFLA2 is obtained. The comparison between CSFLA and
SFLA2 is to reveal the impact of adaptive population
shuffling.

Three metrics C [55], ρl [24] and inverted generational
distance (IGD, [12,36]) are applied to evaluate the perfor-
mances of algorithms.

Metric C is used to measure the dominance relationship
between the non-dominated solution sets of L and B.C(L, B)

measures the proportion of members of B which are domi-
nated by that of L .

C(L, B) = |{b ∈ B : ∃l ∈ L, l
 b}|
|B| . (26)

Metric ρl indicates the ratio of number of the elements in
the set {x ∈ Ωl |x ∈ Ω∗} to |Ω∗|. The larger the value of ρl ,
the more members that Ωl provides for Ω∗. ρl = 1 indicates
that all solutions of Ω∗ are provided by Ωl .

IGD mainly used to measure the distance between the
solution setΩA of algorithmA and the reference setΩ∗. The

123

2244 Complex & Intelligent Systems (2021) 7:2235–2253

Table 4 Parameters and their levels

Parameters Factor level

1 2 3 4

N 40 50 60 70

s 2 4 6 8

μ 60 80 100 120

R 10 20 30 40

Table 5 The orthogonal array L16
(
44

)

Experiment Factor level IGD

number N s μ R

1 1 1 1 1 0.0814

2 1 2 2 2 0.0557

3 1 3 3 3 0.0168

4 1 4 4 4 0.0845

5 2 1 2 3 0.0927

6 2 2 1 4 0.0970

7 2 3 4 1 0.0174

8 2 4 3 2 0.0487

9 3 1 3 4 0.0099

10 3 2 4 3 0.0717

11 3 3 1 2 0.0129

12 3 4 2 1 0.0137

13 4 1 4 2 0.0105

14 4 2 3 1 0.0548

15 4 3 2 4 0.0255

16 4 4 1 3 0.0988

smaller the value of IGD, the better the overall performance
of algorithm A.

IGD(ΩA,Ω∗) = 1

|Ω∗|
∑
x∈Ω∗

min
y∈ΩA

d(x, y), (27)

where d(x, y) is the Euclidean distance between solution x
and y by normalized objectives.

Parameter settings

CSFLA has five main parameters: stopping condition, N , s,
μ, R. We set 0.1 × n × m CPU time as stopping condition.
We found that CSFLA, its two variants and four comparative
algorithms can converge well when the above time reaches,
sowefirst choose 0.1×n×m CPU timeas stopping condition.

Taguchi method is used to decide settings of other param-
eters. Instances 1, 50 and 80 are selected. The same settings
can be obtained using these instances, so we only exhibit the
results on instance 50.

Table 4 lists the levels of each parameter and Table 5
gives the orthogonal array L9

(
33

)
. CSFLA runs 10 times

independently for instance 50. The results of IGD and S/N
ratio are shown in Fig. 3, in which S/N ratio is defined as
−10 × log10

(
IGD2

)
. As shown in Fig. 3, the best setting is

N = 60, s = 6, μ = 100 and R = 20.
All parameters of MOTS, MOCCA, MOALNS and CCA

are directly selected from Wang and Liu [48], Karimi and
Davoudpour [14], Rifai et al. [40] andZheng et al. [54] except
the stopping condition. Parameters of SFLA1 and SFLA2 are
identical with those of CSFLA.

Results and analyses

Each algorithm randomly runs 10 times for each instance.
The reference set Ω∗ is composed of the non-dominated
solutions in

⋃6
i=1 Ωi , where Ω1,Ω2,Ω3, Ω4, Ω5 and Ω6

are non-dominated solutions of CSFLA, MOTS, MOCCA,
MOALNS, SFLA1 and SFLA2 obtained in 10 runs. Tables 6,
7, 8 and 9 report the results of all algorithms, in which sym-
bol ‘Ins’ indicates instance and ‘CS’, ‘MT’, ‘MC’, ‘MA’,
‘C’, ‘S1’ and ‘S2’ represent CSFLA, MOTS, MOCCA,
MOALNS, CCA, SFLA1 and SFLA2. Figure 4 exhibits box
plot of all algorithms on ρ, C and IGD. Figure 5 provides
the distribution of non-dominated solutions of algorithms on
instances 32 and 68, in which c1(Cmax), c1(TEC) and TAI
are used.

As shown in Tables 6, 8 and 9, CSFLA obtains smaller
IGD than SFLA1 on 79 instances and it also has smaller
C(S1,CS) than C(CS,S1) on 79 instances; moreover,
C(CS,S1) is equal to 1 on 49 instances, that is, all solutions of
SFLA1 is dominated by non-dominated solutions of CSFLA.
Similarly, ρ of CSFLA is more than that of SFLA1 on all
instances and equal to 1 on 14 instances, that is, all members
of the reference setΩ∗ are provided by CSFLA. CSLFA per-
forms notably better than SFLA1. This conclusion also can
be obtained from Figs. 4 and 5. The same conclusion can
be obtained by comparing CSFLA with SFLA2. The notable
performance differences between CSFLA and its two vari-
ants reveal that cooperation and adaptive population shuffling
really have positive impact on the performances of CSFLA.

As illustrated in Tables 7 and 9, solutions of MOTS are
always far away from those of CSFLA on 79 instances
because IGD of CSFLA is less than that of MOTS and
C(CS,MT) is equal to 1 on 45 instances; CSFLA produces
smaller IGD than MOCCA and obtains bigger C(CS,MC)

than C(MC,CS) on all instances;
IGD of CSFLA is smaller than CCA on 68 instance and

C(C,CS) is less than C(CS,C) on 71 instances, and it can
be seen that MOALNS performs significantly worse than
CSFLA on metrics IGD and C on all instances. On the other
hand, ρ of CSFLA is more than that of its all comparative
algorithms on 79 instances, that is, most of the solutions of

123

Complex & Intelligent Systems (2021) 7:2235–2253 2245

4321

0.08

0.07

0.06

0.05

0.04

0.03

0.02

4321 4321 4321

M
ea

n
of

M
ea

ns
Main Effects Plot for Means

4321 4321 4321 4321

M
ea

n
of

SN
ra
ti
os

Main Effects Plot for SN ratios

N s μ R

N s μ R

Fig. 3 Main effects plot for means and main effects plot for S/N ratios

Ω∗ are provided by CSFLA. Obviously, CSLFA performs
notably better than its four comparative algorithms. The same
conclusion also can be drawn from box plot in Figs. 4 and 5.

The promising performances of CSFLA mainly result
from its cooperation between memeplexes and adaptive
shuffling. With the addition of cooperation, the waste of
computing resource on the worst memeplex is avoided and
the good search ability of the best memeplex is used fully.
Adaptive shuffling can keep the stability of solution struc-
ture in some memeplexes with good evolution quality. These
strategies can effectively keep high diversity and avoid search

falling local optima; thus, it can be concluded that CSFLA is
a competitive method for solving DEHFSP with fuzzy pro-
cessing time.

Conclusion

In real-world manufacturing systems, energy consump-
tion, uncertainty and multi-objective optimization are often
required to be considered simultaneously. This paper aims to
solve DEHFSP with fuzzy processing time and apply a new

123

2246 Complex & Intelligent Systems (2021) 7:2235–2253

Table 6 Comparison results of CSFLA, SFLA1 and SFLA2 on metric C
Ins C(CS,S1) C(S1,CS) C(CS,S2) C(S2,CS) Ins C(CS,S1) C(S1,CS) C(CS,S2) C(S2,CS)

1 1.000 0.000 1.000 0.000 41 0.978 0.000 1.000 0.000

2 0.976 0.000 1.000 0.000 42 1.000 0.000 1.000 0.000

3 1.000 0.000 1.000 0.000 43 1.000 0.000 0.932 0.000

4 0.891 0.011 0.984 0.006 44 0.993 0.000 0.981 0.000

5 1.000 0.000 1.000 0.000 45 1.000 0.000 1.000 0.000

6 1.000 0.000 1.000 0.000 46 0.881 0.004 0.989 0.000

7 1.000 0.000 1.000 0.000 47 1.000 0.000 1.000 0.000

8 1.000 0.000 1.000 0.000 48 1.000 0.000 1.000 0.000

9 1.000 0.000 1.000 0.000 49 0.879 0.086 0.823 0.019

10 0.872 0.000 0.920 0.000 50 1.000 0.000 1.000 0.000

11 1.000 0.000 1.000 0.000 51 1.000 0.000 1.000 0.000

12 1.000 0.000 1.000 0.000 52 1.000 0.000 1.000 0.000

13 0.561 0.000 0.971 0.000 53 0.895 0.000 0.597 0.005

14 1.000 0.000 1.000 0.000 54 0.982 0.000 1.000 0.000

15 1.000 0.000 1.000 0.000 55 1.000 0.000 1.000 0.000

16 1.000 0.000 1.000 0.000 56 1.000 0.000 1.000 0.000

17 0.636 0.000 1.000 0.000 57 0.959 0.000 0.753 0.014

18 0.400 0.023 0.797 0.023 58 1.000 0.000 1.000 0.000

19 1.000 0.000 1.000 0.000 59 1.000 0.000 0.986 0.000

20 1.000 0.000 0.979 0.000 60 1.000 0.000 1.000 0.000

21 0.830 0.011 0.870 0.026 61 1.000 0.000 1.000 0.000

22 1.000 0.000 0.989 0.006 62 0.757 0.417 0.989 0.000

23 0.986 0.000 0.992 0.000 63 0.957 0.024 0.969 0.024

24 0.184 0.485 1.000 0.000 64 1.000 0.000 0.912 0.000

25 0.958 0.000 0.974 0.000 65 1.000 0.000 0.986 0.000

26 1.000 0.000 0.906 0.000 66 1.000 0.000 0.763 0.022

27 0.979 0.000 1.000 0.000 67 1.000 0.000 1.000 0.000

28 0.984 0.000 1.000 0.000 68 1.000 0.000 1.000 0.000

29 1.000 0.000 1.000 0.000 69 0.913 0.000 0.804 0.014

30 1.000 0.000 1.000 0.000 70 0.947 0.000 0.935 0.000

31 1.000 0.000 1.000 0.000 71 1.000 0.000 1.000 0.000

32 1.000 0.000 1.000 0.000 72 1.000 0.000 1.000 0.000

33 1.000 0.000 1.000 0.000 73 0.864 0.000 0.840 0.000

34 0.971 0.000 1.000 0.000 74 1.000 0.000 1.000 0.000

35 1.000 0.000 1.000 0.000 75 1.000 0.000 1.000 0.000

36 0.992 0.000 1.000 0.000 76 0.925 0.000 0.899 0.000

37 0.993 0.000 0.977 0.000 77 1.000 0.000 0.891 0.000

38 1.000 0.000 1.000 0.000 78 0.956 0.000 0.976 0.000

39 0.778 0.000 1.000 0.000 79 1.000 0.000 1.000 0.000

40 0.960 0.000 1.000 0.000 80 1.000 0.000 1.000 0.000

123

Complex & Intelligent Systems (2021) 7:2235–2253 2247

Table 7 Comparison results of CSFLA, SFLA1 and SFLA2 on metric C
Ins C(CS,MT) C(MT,CS) C(CS,MC) C(MC,CS) C(CS,MA) C(MA,CS) C(CS,C) C(C,CS)

1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

2 0.940 0.033 1.000 0.000 1.000 0.000 0.900 0.021

3 0.968 0.000 1.000 0.000 1.000 0.000 1.000 0.000

4 0.620 0.050 1.000 0.000 1.000 0.000 1.000 0.000

5 1.000 0.000 1.000 0.000 1.000 0.000 0.714 0.014

6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

7 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

8 0.994 0.000 1.000 0.000 1.000 0.000 0.462 0.015

9 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

10 0.976 0.000 1.000 0.000 1.000 0.000 0.167 0.078

11 0.992 0.000 1.000 0.000 1.000 0.000 0.556 0.002

12 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

13 0.905 0.000 1.000 0.000 1.000 0.000 0.778 0.049

14 1.000 0.000 1.000 0.000 1.000 0.000 0.600 0.017

15 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

16 1.000 0.000 1.000 0.000 1.000 0.000 0.500 0.024

17 1.000 0.000 1.000 0.000 1.000 0.000 0.000 1.000

18 0.864 0.023 1.000 0.000 1.000 0.000 0.167 0.138

19 1.000 0.000 1.000 0.000 1.000 0.000 0.667 0.000

20 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000

21 0.817 0.079 1.000 0.000 1.000 0.000 0.905 0.032

22 0.885 0.025 1.000 0.000 1.000 0.000 1.000 0.000

23 0.453 0.211 1.000 0.000 1.000 0.000 1.000 0.000

24 0.448 0.309 0.941 0.000 1.000 0.000 1.000 0.000

25 1.000 0.000 1.000 0.000 1.000 0.000 0.947 0.000

26 1.000 0.000 1.000 0.000 1.000 0.000 0.545 0.000

27 0.865 0.012 1.000 0.000 1.000 0.000 1.000 0.000

28 0.792 0.017 1.000 0.000 1.000 0.000 1.000 0.000

29 1.000 0.000 1.000 0.000 1.000 0.000 0.667 0.029

30 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

31 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

32 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

33 1.000 0.000 1.000 0.000 1.000 0.000 0.091 0.332

34 1.000 0.000 1.000 0.000 1.000 0.000 0.400 0.058

35 1.000 0.000 1.000 0.000 1.000 0.000 0.750 0.000

36 1.000 0.000 1.000 0.000 1.000 0.000 0.750 0.000

37 0.993 0.000 1.000 0.000 1.000 0.000 0.000 0.482

38 1.000 0.000 1.000 0.000 1.000 0.000 0.750 0.004

39 0.923 0.000 1.000 0.000 1.000 0.000 0.000 0.162

40 1.000 0.000 1.000 0.000 1.000 0.000 0.333 0.000

123

2248 Complex & Intelligent Systems (2021) 7:2235–2253

Table 7 continued

Ins C(CS,MT) C(MT,CS) C(CS,MC) C(MC,CS) C(CS,MA) C(MA,CS) C(CS,C) C(C,CS)

41 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

42 0.500 0.249 1.000 0.000 1.000 0.000 0.500 0.061

43 0.437 0.182 1.000 0.000 1.000 0.000 1.000 0.000

44 1.000 0.000 1.000 0.000 1.000 0.000 0.600 0.000

45 0.996 0.004 1.000 0.000 1.000 0.000 0.474 0.059

46 0.833 0.019 1.000 0.000 1.000 0.000 0.600 0.061

47 0.973 0.002 1.000 0.000 1.000 0.000 0.833 0.000

48 0.995 0.000 1.000 0.000 1.000 0.000 1.000 0.000

49 0.967 0.010 1.000 0.000 1.000 0.000 0.000 0.432

50 0.972 0.000 1.000 0.000 1.000 0.000 1.000 0.000

51 1.000 0.000 1.000 0.000 1.000 0.000 0.900 0.003

52 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

53 0.897 0.000 1.000 0.000 1.000 0.000 0.692 0.030

54 1.000 0.000 1.000 0.000 1.000 0.000 0.667 0.000

55 1.000 0.000 1.000 0.000 1.000 0.000 0.857 0.010

56 1.000 0.000 1.000 0.000 1.000 0.000 0.333 0.042

57 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.796

58 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.327

59 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.040

60 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.174

61 1.000 0.000 1.000 0.000 1.000 0.000 0.857 0.000

62 0.910 0.009 1.000 0.000 1.000 0.000 0.556 0.014

63 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

64 0.873 0.073 0.974 0.000 1.000 0.000 0.857 0.000

65 0.885 0.047 1.000 0.000 1.000 0.000 0.250 0.000

66 0.988 0.000 1.000 0.000 1.000 0.000 1.000 0.000

67 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

68 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

69 0.984 0.000 1.000 0.000 1.000 0.000 0.846 0.005

70 0.739 0.000 1.000 0.000 1.000 0.000 0.375 0.026

71 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

72 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

73 0.707 0.015 1.000 0.000 1.000 0.000 0.444 0.028

74 1.000 0.000 1.000 0.000 1.000 0.000 0.750 0.004

75 0.873 0.000 1.000 0.000 1.000 0.000 0.600 0.005

76 0.944 0.000 1.000 0.000 1.000 0.000 0.715 0.000

77 0.931 0.000 1.000 0.000 1.000 0.000 0.947 0.000

78 1.000 0.000 1.000 0.000 1.000 0.000 0.801 0.000

79 1.000 0.000 1.000 0.000 1.000 0.000 0.532 0.064

80 1.000 0.000 1.000 0.000 1.000 0.000 0.259 0.120

123

Complex & Intelligent Systems (2021) 7:2235–2253 2249

Table 8 Comparison results of CSFLA, SFLA1, SFLA2, MOTS, MOCCA, MOALNS, CCA on metric ρ

Ins CS S1 S2 MT MC MA C Ins CS S1 S2 MT MC MA C

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 41 0.991 0.009 0.000 0.000 0.000 0.000 0.000

2 0.942 0.012 0.000 0.041 0.000 0.000 0.004 42 0.817 0.000 0.000 0.156 0.000 0.000 0.028

3 0.990 0.000 0.000 0.010 0.000 0.000 0.000 43 0.743 0.000 0.011 0.246 0.000 0.000 0.000

4 0.885 0.013 0.003 0.099 0.000 0.000 0.000 44 0.988 0.003 0.003 0.000 0.000 0.000 0.006

5 0.993 0.000 0.000 0.000 0.000 0.000 0.007 45 0.958 0.000 0.000 0.004 0.000 0.000 0.038

6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 46 0.935 0.000 0.000 0.050 0.000 0.000 0.015

7 1.000 0.000 0.000 0.000 0.000 0.000 0.000 47 0.993 0.000 0.000 0.005 0.000 0.000 0.002

8 0.990 0.000 0.000 0.000 0.000 0.000 0.010 48 0.998 0.000 0.000 0.002 0.000 0.000 0.000

9 1.000 0.000 0.000 0.000 0.000 0.000 0.000 49 0.927 0.000 0.005 0.000 0.000 0.000 0.067

10 0.922 0.039 0.000 0.007 0.000 0.000 0.033 50 0.987 0.000 0.000 0.013 0.000 0.000 0.000

11 0.992 0.000 0.000 0.000 0.000 0.000 0.008 51 0.998 0.000 0.000 0.000 0.000 0.000 0.002

12 1.000 0.000 0.000 0.000 0.000 0.000 0.000 52 1.000 0.000 0.000 0.000 0.000 0.000 0.000

13 0.819 0.145 0.006 0.006 0.000 0.000 0.024 53 0.855 0.009 0.110 0.009 0.000 0.000 0.018

14 0.994 0.000 0.000 0.000 0.000 0.000 0.006 54 0.992 0.005 0.000 0.000 0.000 0.000 0.003

15 1.000 0.000 0.000 0.000 0.000 0.000 0.000 55 0.998 0.000 0.000 0.000 0.000 0.000 0.002

16 0.995 0.000 0.000 0.000 0.000 0.000 0.005 56 0.987 0.000 0.000 0.000 0.000 0.000 0.013

17 0.000 0.000 0.000 0.000 0.000 0.000 1.000 57 0.777 0.000 0.043 0.000 0.000 0.000 0.181

18 0.953 0.000 0.009 0.017 0.000 0.000 0.021 58 0.971 0.000 0.000 0.000 0.000 0.000 0.029

19 0.995 0.000 0.000 0.000 0.000 0.000 0.005 59 0.978 0.000 0.004 0.000 0.000 0.000 0.018

20 0.981 0.000 0.003 0.000 0.000 0.000 0.016 60 0.991 0.000 0.000 0.000 0.000 0.000 0.009

21 0.833 0.039 0.025 0.098 0.000 0.000 0.005 61 0.986 0.000 0.000 0.000 0.000 0.000 0.014

22 0.923 0.000 0.006 0.071 0.000 0.000 0.000 62 0.783 0.115 0.006 0.070 0.000 0.000 0.025

23 0.717 0.000 0.000 0.283 0.000 0.000 0.000 63 0.930 0.047 0.023 0.000 0.000 0.000 0.000

24 0.747 0.188 0.000 0.059 0.005 0.000 0.000 64 0.857 0.000 0.034 0.101 0.004 0.000 0.004

25 0.977 0.014 0.005 0.000 0.000 0.000 0.005 65 0.870 0.000 0.006 0.105 0.000 0.000 0.019

26 0.972 0.000 0.017 0.000 0.000 0.000 0.011 66 0.924 0.000 0.076 0.000 0.000 0.000 0.000

27 0.955 0.000 0.000 0.045 0.000 0.000 0.000 67 1.000 0.000 0.000 0.000 0.000 0.000 0.000

28 0.966 0.002 0.000 0.032 0.000 0.000 0.000 68 1.000 0.000 0.000 0.000 0.000 0.000 0.000

29 0.981 0.000 0.000 0.000 0.000 0.000 0.019 69 0.930 0.013 0.048 0.000 0.000 0.000 0.009

30 1.000 0.000 0.000 0.000 0.000 0.000 0.000 70 0.870 0.002 0.002 0.116 0.000 0.000 0.010

31 1.000 0.000 0.000 0.000 0.000 0.000 0.000 71 1.000 0.000 0.000 0.000 0.000 0.000 0.000

32 1.000 0.000 0.000 0.000 0.000 0.000 0.000 72 1.000 0.000 0.000 0.000 0.000 0.000 0.000

33 0.944 0.000 0.000 0.000 0.000 0.000 0.056 73 0.894 0.017 0.006 0.055 0.000 0.000 0.029

34 0.963 0.015 0.000 0.000 0.000 0.000 0.022 74 0.996 0.000 0.000 0.000 0.000 0.000 0.004

35 0.997 0.000 0.000 0.000 0.000 0.000 0.003 75 0.947 0.000 0.000 0.048 0.000 0.000 0.005

36 0.997 0.000 0.000 0.000 0.000 0.000 0.003 76 0.830 0.000 0.000 0.000 0.000 0.000 0.170

37 0.926 0.000 0.012 0.003 0.000 0.000 0.058 77 0.922 0.000 0.034 0.022 0.000 0.000 0.022

38 0.996 0.000 0.000 0.000 0.000 0.000 0.004 78 0.656 0.018 0.018 0.000 0.000 0.000 0.307

39 0.966 0.000 0.000 0.000 0.000 0.000 0.034 79 0.613 0.000 0.000 0.000 0.000 0.000 0.387

40 0.996 0.000 0.000 0.000 0.000 0.000 0.004 80 0.783 0.000 0.000 0.000 0.000 0.000 0.217

123

2250 Complex & Intelligent Systems (2021) 7:2235–2253

Table 9 Comparison results of CSFLA, SFLA1, SFLA2, MOTS, MOCCA, MOALNS, CCA on metric IGD

Ins CS S1 S2 MT MC MA C Ins CS S1 S2 MT MC MA C

1 0.000 0.172 0.117 0.109 0.337 0.510 0.150 41 0.000 0.090 0.076 0.053 0.234 0.512 0.068

2 0.003 0.090 0.080 0.052 0.232 0.316 0.040 42 0.035 0.094 0.102 0.025 0.273 0.272 0.035

3 0.000 0.134 0.145 0.060 0.415 0.621 0.102 43 0.005 0.120 0.113 0.016 0.252 0.337 0.163

4 0.001 0.051 0.082 0.016 0.286 0.351 0.137 44 0.000 0.103 0.068 0.075 0.206 0.244 0.058

5 0.000 0.211 0.253 0.270 0.459 0.514 0.045 45 0.003 0.180 0.167 0.140 0.380 0.440 0.053

6 0.000 0.227 0.210 0.243 0.497 0.524 0.038 46 0.005 0.142 0.119 0.073 0.225 0.284 0.026

7 0.000 0.344 0.357 0.304 0.658 0.794 0.317 47 0.000 0.152 0.190 0.051 0.383 0.506 0.062

8 0.000 0.154 0.195 0.129 0.343 0.390 0.020 48 0.000 0.192 0.158 0.083 0.317 0.357 0.096

9 0.000 0.337 0.437 0.392 0.848 1.005 0.118 49 0.044 0.228 0.192 0.190 0.362 0.444 0.000

10 0.004 0.088 0.111 0.133 0.360 0.462 0.002 50 0.000 0.151 0.195 0.118 0.402 0.597 0.080

11 0.000 0.344 0.411 0.327 0.526 0.569 0.025 51 0.000 0.234 0.252 0.218 0.432 0.528 0.046

12 0.000 0.500 0.364 0.331 0.732 0.785 0.125 52 0.000 0.304 0.323 0.115 0.707 0.793 0.104

13 0.002 0.051 0.103 0.126 0.229 0.254 0.047 53 0.002 0.131 0.056 0.095 0.468 0.572 0.057

14 0.000 0.335 0.364 0.359 0.560 0.626 0.036 54 0.000 0.204 0.209 0.216 0.544 0.676 0.032

15 0.000 0.399 0.299 0.296 0.533 0.781 0.050 55 0.000 0.219 0.235 0.181 0.570 0.690 0.042

16 0.001 0.446 0.439 0.368 0.690 0.748 0.016 56 0.002 0.409 0.421 0.324 0.784 0.928 0.015

17 0.316 0.534 0.533 0.613 0.820 0.842 0.000 57 0.129 0.285 0.309 0.280 0.185 0.228 0.000

18 0.011 0.149 0.153 0.164 0.239 0.451 0.011 58 0.022 0.208 0.203 0.258 0.591 0.740 0.000

19 0.000 0.248 0.270 0.197 0.602 0.853 0.018 59 0.005 0.252 0.261 0.224 0.443 0.434 0.000

20 0.000 0.266 0.215 0.192 0.395 0.501 0.000 60 0.018 0.321 0.380 0.249 0.593 0.625 0.000

21 0.004 0.057 0.077 0.045 0.247 0.350 0.095 61 0.000 0.105 0.106 0.131 0.262 0.379 0.076

22 0.001 0.098 0.120 0.050 0.316 0.403 0.077 62 0.032 0.057 0.104 0.051 0.245 0.275 0.045

23 0.006 0.109 0.118 0.018 0.292 0.332 0.073 63 0.003 0.111 0.148 0.198 0.417 0.443 0.137

24 0.017 0.008 0.136 0.031 0.373 0.431 0.175 64 0.003 0.193 0.133 0.073 0.260 0.330 0.137

25 0.000 0.145 0.091 0.143 0.312 0.388 0.104 65 0.001 0.133 0.124 0.049 0.469 0.573 0.018

26 0.000 0.118 0.085 0.093 0.261 0.304 0.022 66 0.001 0.140 0.085 0.081 0.485 0.596 0.099

27 0.000 0.137 0.174 0.053 0.460 0.570 0.051 67 0.000 0.253 0.161 0.095 0.450 0.545 0.195

28 0.000 0.126 0.145 0.031 0.375 0.482 0.060 68 0.000 0.107 0.177 0.106 0.507 0.487 0.064

29 0.004 0.385 0.304 0.414 0.714 0.855 0.164 69 0.001 0.090 0.064 0.107 0.428 0.441 0.098

30 0.000 0.221 0.169 0.150 0.519 0.627 0.060 70 0.001 0.124 0.112 0.055 0.265 0.380 0.019

31 0.000 0.288 0.326 0.182 0.423 0.730 0.083 71 0.000 0.237 0.154 0.101 0.590 0.716 0.074

32 0.000 0.416 0.430 0.420 0.793 0.862 0.155 72 0.000 0.239 0.245 0.130 0.583 0.794 0.116

33 0.018 0.204 0.170 0.182 0.459 0.525 0.005 73 0.004 0.120 0.153 0.144 0.320 0.315 0.025

34 0.004 0.240 0.264 0.311 0.366 0.463 0.037 74 0.000 0.234 0.164 0.168 0.584 0.921 0.051

35 0.000 0.261 0.167 0.248 0.537 0.584 0.022 75 0.000 0.165 0.108 0.063 0.587 0.628 0.022

36 0.000 0.290 0.328 0.291 0.552 0.560 0.118 76 0.000 0.221 0.175 0.162 0.444 0.529 0.059

37 0.113 0.212 0.273 0.203 0.219 0.284 0.000 77 0.000 0.105 0.080 0.068 0.456 0.697 0.058

38 0.000 0.344 0.321 0.310 0.706 0.841 0.053 78 0.000 0.194 0.187 0.167 0.362 0.406 0.107

39 0.007 0.281 0.274 0.275 0.616 0.839 0.000 79 0.001 0.271 0.225 0.226 0.577 0.643 0.036

40 0.000 0.333 0.310 0.312 0.536 0.567 0.033 80 0.010 0.232 0.282 0.176 0.547 0.614 0.016

123

Complex & Intelligent Systems (2021) 7:2235–2253 2251

Fig. 4 Box plot of metric ρ, C
and IGD 1.0

0.8

0.6

0.4

0.2

0.0

CMAMCMTS2S1CS

1.0

0.8

0.6

0.4

0.2

0.0

CMAMCMTS2S1CS

1.0

0.8

0.6

0.4

0.2

0.0

(,)CS MT (,)MT CS (,)CS MC (,)MC CS (,)CS MA (,)MA CS (,)CS C (,)C CS

ρ IG
D

(, 1)CS S (1,)S CS (, 2)CS S (2,)S CS

Fig. 5 The distribution of non-dominated solutions

123

2252 Complex & Intelligent Systems (2021) 7:2235–2253

algorithm named CSFLA to optimize fuzzy makespan, total
agreement index and fuzzy total energy consumption simul-
taneously. In SFLA, three search strategies named IG,GSand
VNS are designed based on problem-related features. After
memeplexes evaluation, the best memeplex and the worst
memeplex cooperate each other through exchanging search
times and search ability. An adaptive shuffling is adopted to
improve search efficiency. The performances of CSFLA are
tested and the computational results show that CSFLA is a
promising method to solve the considered DEHFSP.

In the near future, we will continue to study scheduling
problems of distributed hybrid flow shop. Swarm intelli-
gence optimizations are also the focus of our attention and
we will try to carry out effective labor division and collabo-
ration among multiple groups. We will also pay attention to
DHFSPwith some special constraints like distributed assem-
bly hybrid flow shop scheduling problem.

Acknowledgements Thisworkwas supported byNational Natural Sci-
ence Foundation of China (Grant nos. 61573264, 71471151).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdullah S, Abdolrazzagh-Nezhad M (2014) Fuzzy job-shop
scheduling problems: a review. Inf Sci 278:380–407

2. Behnamian J (2014) Decomposition based hybrid VNS-TS algo-
rithm for distributed parallel factories scheduling with virtual
corporation. Comput Oper Res 52:181–191

3. Behnamian J, Ghomi SMTF (2013) The heterogeneous multi-
factory production network scheduling with adaptive communi-
cation policy and parallel machine. Inf Sci 219:181–196

4. Behnamian J, Ghomi SMTF (2016) A survey of multi-factory
scheduling. J Intell Manuf 27:231–249

5. Cai J, Lei D, Li M (2020a) A shuffled frog-leaping algorithm with
memeplex quality for bi-objective distributed scheduling in hybrid
flow shop. Int J Prod Res 2020:1–8

6. Cai J, Zhou R, Lei D (2020b) Dynamic shuffled frog-leaping
algorithm for distributed hybrid flow shop scheduling with mul-
tiprocessor tasks. Eng Appl Artif Intel 90:103540

7. Cai J, Zhou R, Lei D (2020c) Fuzzy distributed two-stage hybrid
flow shop scheduling problem with setup time: collaborative vari-
able search. J Intell Fuzzy Syst 38:3189–3199

8. Dai M, Tang D, Zheng K, Cai Q (2013) An improved genetic-
simulated annealing algorithm based on a hormone modulation

mechanism for a flexible flow-shop scheduling problem.AdvMech
Eng 5:124903

9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE T Evolut Comput
6:182–197

10. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algo-
rithm: a memetic meta-heuristic for discrete optimization. Eng
Optimiz 38:129–154

11. Gao Z, Peng J, Han Z, Jia M (2019) Flow shop scheduling with
variable processing times basedondifferential shuffled frog leaping
algorithm. Int J Model Ident Control 33:179–187

12. Gong G, Chiong R, Deng Q, Han W, Zhang L, Lin W, Li K (2020)
Energy-efficient flexible flow shop scheduling with worker flexi-
bility. Expert Syst Appl 141:112902

13. Hao JH, Li JQ, DuY, SongMX, Duan P, Zhang YY (2019) Solving
distributed hybrid flowshop scheduling problems by a hybrid brain
storm optimization algorithm. IEEE Access 7:66879–66894

14. Karimi N, Davoudpour H (2016) Multi-objective colonial compet-
itive algorithm for hybrid flowshop problem. Appl Soft Comput
49:725–733

15. Karpagam M, Geetha K, Rajan C (2020) A modified shuffled frog
leaping algorithm for scientific workflow scheduling using cluster-
ing techniques. Soft Comput 24:637–646

16. Lei D (2010) A genetic algorithm for flexible job shop scheduling
with fuzzy processing time. Int J Prod Res 48:2995–3013

17. Lei D, Gao L, Zheng Y (2018) A novel teaching-learning-based
optimization algorithm for energy-efficient scheduling in hybrid
flow shop. IEEE T Eng Manage 65:330–340

18. Lei D, Guo X (2012) Swarm-based neighbourhood search algo-
rithm for fuzzy flexible job shop scheduling. Int J Prod Res
50:1639–1649

19. Lei D, Liu M (2020) An artificial bee colony with division for
distributed unrelated parallel machine scheduling with preventive
maintenance. Comput Ind Eng 141:106320

20. Lei D, Wang T (2020) Solving distributed two-stage hybrid flow-
shop scheduling using a shuffled frog-leaping algorithm with
memeplex grouping. Eng Optimiz 2020:1–14

21. Lei D, Yuan Y, Cai JC (2020) An improved artificial bee colony for
multi-objective distributed unrelated parallel machine scheduling.
Int J Prod Res 2020:1–13

22. Lei D, Zheng Y, Guo X (2017) A shuffled frog-leaping algorithm
for flexible job shop scheduling with the consideration of energy
consumption. Int J Prod Res 55:3126–3140

23. Lei DM, Guo XP (2015) A shuffled frog-leaping algorithm for
hybrid flow shop scheduling with two agents. Expert Syst Appl
42:9333–9339

24. Lei DM, LiM,Wang L (2019) A two-phasemeta-heuristic formul-
tiobjective flexible job shop scheduling problem with total energy
consumption threshold. IEEE T Cybern 49:1097–1109

25. Li JQ, Pan QK (2013) Chemical-reaction optimization for solv-
ing fuzzy job-shop scheduling problem with flexible maintenance
activities. Int J Prod Econ 145:4–17

26. Li JQ, SangHY,HanYY,WangCG,GaoKZ (2018)Efficientmulti-
objective optimization algorithm for hybrid flow shop scheduling
problems with setup energy consumptions. J Clean Prod 181:584–
598

27. Li M, Lei D, Cai J (2019) Two-level imperialist competitive algo-
rithm for energy-efficient hybrid flow shop scheduling problem
with relative importance of objectives. SwarmEvolComput 49:34–
43

28. Li Y, Li X, Gao L, Meng L (2020a) An improved artificial bee
colony algorithm for distributed heterogeneous hybrid flowshop
scheduling problemwith sequence-dependent setup times. Comput
Ind Eng 2020:147

29. Li Y, Li X, Gao L, Zhang B, Pan QK, Tasgetiren MF, Meng L
(2020b) A discrete artificial bee colony algorithm for distributed

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems (2021) 7:2235–2253 2253

hybrid flowshop scheduling problem with sequence-dependent
setup times. Int J Prod Res 2020:1–20

30. Lin J (2019) Backtracking search based hyper-heuristic for the
flexible job-shop scheduling problem with fuzzy processing time.
Eng Appl Artif Intel 77:186–196

31. Lin J, Zhu L, Wang ZJ (2019) A hybrid multi-verse optimization
for the fuzzy flexible job-shop scheduling problem. Comput Ind
Eng 127:1089–1100

32. LinW,YuDY,ZhangC,LiuX,ZhangS, TianY,Liu S,XieZ (2015)
A multi-objective teaching-learning-based optimization algorithm
to scheduling in turning processes for minimizing makespan and
carbon footprint. J Clean Prod 101:337–347

33. Liu GS, Zhou Y, Yang HD (2017)Minimizing energy consumption
and tardiness penalty for fuzzy flow shop scheduling with state-
dependent setup time. J Clean Prod 147:470–484

34. Luo H, Du B, Huang GQ, Chen H, Li X (2013) Hybrid flow shop
scheduling considering machine electricity consumption cost. Int
J Prod Econ 146:423–439

35. Meng L, Zhang C, Shao X, Ren Y, Ren C (2019) Mathematical
modelling and optimisation of energy-conscious hybrid flow shop
scheduling problem with unrelated parallel machines. Int J Prod
Res 57:1119–1145

36. Ngoc Hoang L, La Poutre H, Bosman PAN (2018) Multi-objective
gene-pool optimal mixing evolutionary algorithm with the inter-
leaved multi-start scheme. Swarm Evol Comput 40:238–254

37. Pan QK, Wang L, Gao L, Li J (2011) An effective shuffled frog-
leaping algorithm for lot-streaming flow shop scheduling problem.
Int J Adv Manuf Tech 52:699–713

38. Rahimi-Vahed A, Dangchi M, Rafiei H, Salimi E (2009) A novel
hybrid multi-objective shuffled frog-leaping algorithm for a bi-
criteria permutation flow shop scheduling problem. Int J Adv
Manuf Tech 41:1227–1239

39. Rahimi-Vahed A, Mirzaei AH (2008) Solving a bi-criteria permu-
tation flow-shop problem using shuffled frog-leaping algorithm.
Soft Comput 12:435–452

40. Rifai AP, Huu-ThoN, Dawal SZM (2016)Multi-objective adaptive
large neighborhood search for distributed reentrant permutation
flow shop scheduling. Appl Soft Comput 40:42–57

41. Ruiz R, Vazquez-Rodriguez JA (2010) The hybrid flow shop
scheduling problem. Eur J Oper Res 205:1–18

42. Sakawa M, Kubota R (2000) Fuzzy programming for multiobjec-
tive job shop scheduling with fuzzy processing time and fuzzy
duedate through genetic algorithms. Eur J Oper Res 120:393–407

43. Shao W, Shao Z, Pi D (2020) Modeling and multi-neighborhood
iterated greedy algorithm for distributed hybrid flow shop schedul-
ing problem. Knowl-Based Syst 2020:105527

44. Tang D, Dai M, Salido MA, Giret A (2016) Energy-efficient
dynamic scheduling for a flexible flow shop using an improved
particle swarm optimization. Comput Ind 81:82–95

45. Wang J, Wang L (2020) A bi-population cooperative memetic
algorithm for distributed hybrid flow-shop scheduling. IEEE Trans
Emerg Top Comput Intell 2020:1–15

46. Wang L, Fang C (2011) An effective shuffled frog-leaping algo-
rithm for multi-mode resource-constrained project scheduling
problem. Inf Sci 181:4804–4822

47. Wang L, ZhouG, XuY, LiuM (2013) A hybrid artificial bee colony
algorithm for the fuzzy flexible job-shop scheduling problem. Int
J Prod Res 51:3593–3608

48. Wang S, LiuM (2014) Two-stage hybrid flow shop schedulingwith
preventive maintenance using multi-objective tabu search method.
Int J Prod Res 52:1495–1508

49. Xu Y, Wang L, Liu M, Wang, S.y., (2013) An effective shuffled
frog-leaping algorithm for hybrid flow-shop scheduling with mul-
tiprocessor tasks. Int J Adv Manuf Tech 68:1529–1537

50. Yan J, Li L, ZhaoF,ZhangF,ZhaoQ (2016)Amulti-level optimiza-
tion approach for energy-efficient flexible flow shop scheduling. J
Clean Prod 137:1543–1552

51. Ying KC, Lin SW (2018) Minimizing makespan for the distributed
hybrid flowshop scheduling problem with multiprocessor tasks.
Expert Syst Appl 92:132–141

52. Zeng Z, HongM,Man Y, Li J, Zhang Y, Liu H (2018) Multi-object
optimization of flexible flow shop scheduling with batch process—
consideration total electricity consumption and material wastage.
J Clean Prod 183:925–939

53. Zhang X, Wang Y, Yan D, Ji Z (2017) Improved shuffled frog-
leaping algorithm for solving flexible job shop scheduling problem.
J Syst Simul 29:2093–2099

54. Zheng J, Wang L, Wang JJ (2020) A cooperative coevolution
algorithm for multi-objective fuzzy distributed hybrid flow shop.
Knowl-Based Syst 2020:105536

55. Zitzler E, Thiele L (2000) Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach. IEEE
T Evol Comput 3:257–271

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time
	Abstract
	Introduction
	Operations on fuzzy number
	Problem description
	Introduction to SFLA
	CSFLA for DEHFSP
	Initialization and population division
	Memeplex evalution
	Cooperation-based memeplex search
	Algorithm description

	Computational experiments
	Test instances, comparative algorithms and metrics
	Parameter settings
	Results and analyses

	Conclusion
	Acknowledgements
	References

