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Abstract— In this paper two different vision based systems for vehicle

detection are described and their integration discussed. The first approach

is based on the use of a specific model for vehicles and mostly relies on

monocular vision. Conversely, the second system is based on the use of

stereo vision and allows to refine the coarse results obtained by the former.

A preliminary integration of the two systems has been tested on the

ARGO experimental vehicle and some remarks about reliability and ro-

bustness are also included.
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I. INTRODUCTION

Several vision-based approaches are used for the detection of

obstacles in an automotive environment [1]. Depending on the

definition of obstacle the techniques exploited for the detection

may vary. In case only vehicles are to be detected, specific pat-

terns can be used for the search, for example: shape [2], sym-

metry [3], texture [4], or the use of an approximant contour [5].

In such a case the processing can be reduced to the analysis of a

single still image. While this approach has been widely demon-

strated to be effective for a mere vehicle detection, it is difficult

to accurately determine the vehicle distance. Moreover, in the

case of single image processing, specific patterns on the scene

(e.g. shadows, lane markings, or other artifacts on the road sur-

face) can potentially confuse the vision system.

A more challenging task is the detection of any object that

can obstruct the vehicle’s driving path, namely a generic obsta-

cle. In such a case, more complex techniques are used, mostly

being based on the processing of two or more images, such

as the optical flow field analysis [6, 7] or the use of stereovi-

sion [8, 9]. These techniques feature a higher computational

complexity mainly due to the higher amount of data to be pro-

cessed. In addition, they must also be robust enough to tolerate

noise caused by vehicle movements and drifts impacting on the

calibration of the vision system.

This work presents the integration of the vision-based systems

for vehicle detection developed by the Universities of Parma and

Rouen. The former is based on the processing of monocular im-

ages and the use of a specific model for vehicles. The results

of the computation are fed to the latter that, conversely, is based

on the use of stereo-vision and does not rely on a specific model

for obstacles. Both systems have been installed and tested on

ARGO, an experimental vehicle equipped for testing vision al-

gorithms and autonomous driving [5].
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the Université de Rouen et INSA de Rouen, FRANCE. E-mail:
{abdelaziz.bensrhair,pierre.miche,stephane.mousset,gwenaelle.toulminet}@insa-
rouen.fr.

M. Bertozzi is with the Dip. di Ingegneria dell’Informazione, Università di
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This paper is organized as follows: section II briefly depicts

the two different stereo vision systems; section III details the

algorithms used; results and timings performance are discussed

in section IV, while section V ends the paper with some final

remarks.

II. VISION SYSTEMS DETAILS

A. University of Parma vision system

Two small (3.2 cm × 3.2 cm) cameras are used to syn-

chronously acquire pairs of grey level images. They feature a

6.0 mm focal length and a 360 lines resolution and receive the

synchronism from an external signal generator.

The cameras are installed inside ARGO behind the top cor-

ners of the windscreen (see figure 1), thus maximizing the lon-

gitudinal distance between the two cameras. The camera optical

axes are parallel and, in order to handle the detection of tall ve-

hicles, part of the scene over the horizon is captured, even if the

framing of a portion of the sky can be critical for image bright-

ness: in case of high contrast the sensor may happen to acquire

oversaturated images.

Fig. 1

THE UNIVERSITY OF PARMA VISION SYSTEM INSTALLED INTO ARGO.

The images are acquired by a PCI Matrox board, which is

able to grab three 768×576 pixel images simultaneously. They

are directly stored into the main memory of the host computer

thanks to the use of DMA and PCI bus-mastering. The comput-

ing engine used for this experiment is a Pentium II 450 MHz PC

with Linux OS. The acquisition can be performed in real time,

at a 25 Hz rate in case of full frames or at a 50 Hz rate in case of

single field acquisition.

B. University of Rouen stereovision system

The University of Rouen has designed a passive stereovision

sensor made up of a rigid body, two similar lenses and two

Philips VMC3405 camera modules whose centers are separated
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by 12.7 cm (figure 2). During the experiment, two different set

of lenses have been used: 16 mm and 50 mm to test its behavior

in correspondence to different vehicle distances.

Fig. 2

THE UNIVERSITY OF ROUEN SENSOR INSTALLED INTO ARGO.

An Imaging Technology PC-RGB frame grabber controls

these two cameras, and acquires simultaneously their two im-

ages (720× 568 or 720× 284 pixels). The clock on the frame

grabber AD-converter is the pixel clock of one of the two cam-

eras. It is a timing signal which is used to divide the incoming

lines of the video signals into pixels. With such a clock max-

imum resolution can be reached and alias effects are avoided.

Furthermore, the two camera-lens units are set up so that their

optical axes are parallel and, in order to respect the epipolar con-

straint, the straight line joining the two optical centers is parallel

to each images horizontal line.

Based on the epipolar configuration of this sensor, depth in-

formation is given in meters by:

Z =
f × e

p×δ
(1)

where e is the distance between the two optical centers, p is

the width of the CCD pixel, f is the focal length of the two

lenses. δ is given in pixels and is the horizontal disparity of

two stereo-corresponding points. Let PL and PR be two stereo-

corresponding points of a 3D point P of an object (figure 3). Let

(XL,YL), (XR,YR) and (X ,Y,Z) be their coordinates. (XL,YL) and

(XR,YR) are given in pixels, (X ,Y,Z) is given in meters. Then,

due to the epipolar configuration, YL = YR and δ = (XR −XL).
The architecture used for this experiment is a Pentium III

800 MHz with the Windows OS.

III. ALGORITHMS FOR VEHICLE DETECTION

In this section the monocular and stereo approaches to vehicle

detection are detailed.

A. Monocular phase

A vehicle, generally, features a high degree of symmetry

(when framed from the rear) and is characterized by a rectangu-

lar bounding box with a specific aspect-ratio. Initially, an area of

interest is identified on the basis of perspective constraints and

searched for possible vertical symmetries. Once the symme-

try position and width have been detected, a new search begins,

aimed at the detection of the two bottom corners of a simpli-

fied vehicle model, namely a rectangular bounding box. Since

f
�

e
✁

X
✂

R

YR

XL

YL

X

Y
✄

Z
☎

P(
✆

X,Y,Z)

P
✝

R(X
✂

R,X
✂

R,X
✂

R)
✞

P
✝

R(XR,XR,XR)
✞

Fig. 3

THE CONFIGURATION OF THE STEREOVISION SENSOR.

this approach relies on monocular vision only, an approximated

distance is computed.

A.1 Symmetry detection

In order to determine the symmetry content of acquired im-

ages a symmetry map is used. The symmetry map is an image

whose pixels encode the symmetry content. The horizontal co-

ordinate of each pixel refers to the position of the vertical sym-

metry axis within the area of interest. The vertical coordinate is

related to the horizontal width of the image area considered for

computing the symmetry. The brighter the pixel the higher the

symmetry.

The analysis of gray level images only does not suffice for

determining all symmetrical features. In order to increase the

detection robustness, also vertical and horizontal edges are ex-

tracted, thresholded, and symmetries are computed into these

domains as well.

A combined symmetry map is computed as a weighted sum

of the symmetry map obtained from the grey level image and the

ones obtained by the analysis of horizontal and vertical edges.

Figure 4 shows both the partial symmetry maps computed start-

ing from grey level and edges images and their weighted com-

bination.

A.2 Model matching

The symmetry map identifies a specific region of interest in

which a model of a vehicle, a rectangular bounding box, is

looked for. This model is detected through a search for its

corners. Initially, the symmetrical region in the edge image is

checked for the presence of two corners representing the bottom

of the bounding box. The presence of corners is validated using

perspective and size constraints [10].

This process is followed by the detection of the top part of the

bounding box, which is looked for in a specific region whose

location is again determined by perspective and size constraints.

A backtracking approach is used in case no valid bounding

boxes are found in correspondence to the symmetry maximum.

This situation is generally due to the presence of background

symmetrical patterns. The following local maxima are consid-

ered and the search for a bounding box is performed again.
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Fig. 4

COMPUTING THE RESULTING SYMMETRY: (a) GREY-LEVEL SYMMETRY;

(b) EDGE SYMMETRY; (c) HORIZONTAL EDGES SYMMETRY; (d) VERTICAL

EDGES SYMMETRY; (e) TOTAL SYMMETRY. FOR EACH ROW THE

RESULTING SYMMETRY AXIS IS SUPERIMPOSED ONTO THE LEFTMOST

ORIGINAL IMAGE.

A.3 Distance computation

Thanks to the knowledge of the vision system calibration it is

possible to compute the distance from the leading vehicle. Fig-

ure 5 shows the output of this monocular phase and the distance

computed by the system relying on monocular vision only.

Unfortunately, it may happen that the lower part of the vehicle

is not correctly detected, therefore leading to wrong values for

vehicle distance. Sometimes, in fact, the luminance gradient of

the region between the rear bumper and the chassis is so high

to be misinterpreted as the lower part of the vehicle. In order to

refine this measurement an adjustment step is mandatory.

A stereo vision approach to distance refinement has already

been developed and described in [10]. Anyway, in the following

paragraph we present an alternate solution based on a second

vision system able not only to refine the result but to validate it

too.

Fig. 5

VEHICLE DETECTION RESULTS OF THE MONOCULAR PHASE: A BRIGHT

BOUNDING BOX IS SUPERIMPOSED ON THE ACQUIRED IMAGE WHERE THE

VEHICLE IS DETECTED AND ALSO THE COMPUTED DISTANCE (28 m, IN

THIS CASE) IS SHOWN. ON THE RIGHT, A RECONSTRUCTION OF THE ROAD

SEEN FROM THE TOP DEPICTS THE POSITION OF THE VEHICLE WITHIN THE

AREA IN FRONT OF THE VISION SYSTEM.

B. The stereovision phase

The result of the detection discussed in the previous phase is

used to construct a depth map of the vehicle. As a consequence,

we have to find the projection of the rectangular bounding box

that characterizes the vehicle detected by ARGO in our depth

map. To do this, the cooperation process is made up of two

major parts. The result of the previous processing is cropped

along the vehicle bounding box. The data used for the cropping

are: vehicle distance D, width W , height H, and the coordinates

(XP,YP,D) of bounding box bottom midpoint P. In the second

part, using the 3D points previously computed, 3D curves are

built. Some criteria are used to select 3D curves belonging to

the vehicle. Then, the smallest rectangle that contain the remain-

ing 3D curves is considered to be the projection of the vehicle

bounding box.

The complete process is presented in figure 6 and described

in the following section.

B.1 Segmentation and cropping

The segmentation step uses a self-adaptive and mono-

dimensional operator, the declivity [11]. Declivity is defined as a

set of consecutive pixels in an image line, whose grey levels are

a strictly monotonous function of their positions. Each declivity

is characterized by its amplitude defined by: di = I(xi+1)−I(xi).
Relevant declivities are extracted by thresholding these am-

plitudes. To be self-adaptive, the threshold value is defined

by [11]:

dt = 5.6×σ (2)

where σ is the standard deviation of the component of a white

noise which is supposed Gaussian and calculated by using the

histogram of grey levels variations of pixels in an image line.

The coefficient value is fixed in order to reject 99.5% of incre-

ments due to noise. In order to have a good depth map accuracy,
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CHARACTERISTICS PARAMETERS OF A DECLIVITY.

efficient locations of relevant declivities are essential. The po-

sition of a declivity is calculated using the mean position of the

declivity points weighted by the gradients squared:

Xi =

xi+1−1

∑
x=xi

[I(x+1)− I(x)]2 (x+0.5)

xi+1−1

∑
x=xi

[I(x+1)− I(x)]2
(3)

where Xi is the position of the declivity on an image line as

shown in figure 7.

Before the segmentation step, right and left grey level images

are only cropped in height, in order to have a good estimation of

σ ; After the segmentation step and before the matching process,

right and left declivity maps are cropped in width (figure 6). The

height of the two final frames is h + 2δh and their widths are

w + 2δw, where h and w are the height and width, in pixels, of

the vehicle bounding box. δH and δW are inserted to compensate

data inaccuracy. Let be (xrP,yP) and (xlP,yP) the coordinates of

the projection of point P in the right and left images. Thus,

due to the sensor configuration, left and right grey level images

are segmented line by line, from line yP−δH to line yP +h+δH .

Concerning width cropping, we just keep left relevant declivities

from column xlP −
w
2
− δW to column xlP + w

2
+ δW in the left

declivity map; and right relevant declivities from column xrP −
w
2
−δW to column xrP + w

2
+δW in the right declivity map.

B.2 The matching algorithm

The matching algorithm provides depth information, based

on the positions of left and right relevant declivities, by using a

dynamic programming method. Due to the configuration of the

stereo vision sensor, it is done line by line. Then, the match-

ing problem can be summarized as finding an optimal path on

a two-dimensional graph whose vertical and horizontal axes re-

spectively represent the declivities of a left line and the decliv-

ities of the stereo-corresponding right line. Axes intersections

are nodes that represent hypothetical declivity associations. Op-

timal matches are obtained by the selection of the path which

corresponds to a maximum value of a global gain. It is computed

by using local gains which represent the qualities of hypothetical

declivity associations. Local gain function is non-linear. Thus,

the matching algorithm is self-adaptive, robust and fast.

The matching algorithm consists of three steps. In the first

step, we construct all possible declivity associations taking into

consideration geometric and photometric constraints. For each

declivity association, we calculate a local gain. In the second

step, nodes corresponding to hypothetical associations are posi-

tioned on the graph. During graph construction, several paths

are also constructed from initial nodes to intermediate nodes. In

the last step, among all the final nodes generated, we chose the

one that corresponds to a maximum global gain. Then, starting

from this node and until the initial nodes is reached, we move

up the graph following the optimal path and applying order and

uniqueness constraints. The nodes obtained are correct decliv-

ity associations whose disparity is calculated. The result of the

matching algorithm is a 3D edge points map.

B.3 Processing 3D curves

By means of line by line processing, 3D curves are made

based on 3D points, using relatedness and depth criteria. Then,

small curves and curves that have no points whose depth is be-

tween D +∆D and D−∆D are eliminated, where ∆D is inserted

to compensate depth inaccuracy. As road environment is struc-

tured, 3D curves can be approximated by means of one or sev-

eral 3D straight segments. Since our purpose is vehicle detec-

tion, we only retain the 3D segments which are almost vertical

in the image. So, by an iterative partition method, 3D curves

are decomposed into 3D segments whose slopes in the image

are calculated by a least square method. Then, 3D curves whose

3D segments are not almost vertical are eliminated. Finally, the

image is cropped. The new frame is the smallest rectangle that

contains all the 3D curves. Because the vehicle has two sides,

from this frame we only keep lines starting from the first one that

contains at least two 3D points to the last one that also contains

two 3D points. In order to achieve depth map of the vehicle de-

tected during the monocular phase, an interpolation step is used.

At the end, for each 3D curves, the depth mean value of its 3D

points is calculated. The closest curve is the depth of the vehicle

calculated by the stereovision system.
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(a) (b) (c) (d) (e)

Fig. 8

RESULTS OF VEHICLE DETECTION: (a) IMAGE ACQUIRED BY THE MONOCULAR VISION SYSTEM WITH THE SUPERIMPRESSION OF A BOUNDING BOX

DETECTING THE VEHICLE, (b) AND (c) IMAGES ACQUIRED BY THE STEREO VISION SYSTEM, (d) DECLIVITY, AND (e) DEPTH MAP.

IV. RESULTS

In order to evaluate the performance of the two phases and de-

termine possible enhancements, an extensive test has been car-

ried out. A target vehicle has been positioned in front of the

ARGO at given distances and the measure of the distance com-

puted.

Figure 8 shows few images and results of the test: column (a)

displays the result of the computation of the monocular phase,
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namely a bounding box superimposed on the original image en-

coding both distance and size of the detected obstacle, (b) and

(c) present the two images acquired by the stereo vision system

using two different lenses sets (16 mm focal for the five upper

rows and 50 mm for the other rows), while (d) shows the de-

clivity computed on the portion of stereo images (b) and (c) that

contains the detected vehicle; the final result, namely a depth

map of the vehicle, is shown in (e).

Table I presents a number of results showing the computed

distances and comparing them with the actual distance.

TABLE I

DISTANCES COMPUTED BY THE TWO PHASES.

Distances (m)

Mono Phase 9.7 13.5 15.6 21.7 20.7 27.1 34.6 28.3

Stereo Phase 10.3 16.8 18.8 21.4 31.9 26.6 36.5 53.2

Actual 14.4 16.4 18.4 25.0 30.0 34.4 40.3 45.0

The monocular vision phase takes nearly 20 ms on a 450 MHz

Pentium II architecture. The stereo vision phase requires 300 ms

on a 800 MHz Pentium III machine processing the entire image;

conversely, it needs around 250 ms in case only the portion of

the image that contains the vehicle is analyzed; it is to be noticed

that the code used for the stereo vision phase has not yet been

optimized.

V. DISCUSSION

In this work a cooperative system for vehicle detection has

been presented. It is based on two separate phases: a first one

relying on monocular vision only followed by a second process-

ing based on stereo vision.

The main target of this work is to exploit the best of each

approach and to overcome the weak points of each phase. In

fact monocular vision is not as effective as stereo vision in re-

covering vehicles distance, but, at the same time, stereo vision

requires to process a larger amount of data thus being implicitly

slower.

The monocular phase allows to select a reduced portion of the

image where a vehicle is detected. The subsequent stereo vision

processing is performed on a reduced portion of the scene, there-

fore speeding up the process.

The next research steps include a more strict integration

(hardware and software) between the two systems. The stereo

vision phase, thanks to its superior precision, can validate and

refine the result of the monocular phase, allowing the detection

of mistakes in the first processing or the development of a track-

ing phase.
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