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Abstract—A cooperative coevolutionary algorithm (CCEA) is
an extension to an evolutionary algorithm (EA); it employs a
divide and conquer strategy to solve an optimization problem.
In its basic form, a CCEA splits the variables of an optimization
problem into multiple smaller subsets and evolves them inde-
pendently in different subpopulations. The dynamics of a CCEA
is far more complex than an EA and its performance can vary
from good to bad depending on the separability of the optimiza-
tion problem. This paper provides some insights into why CCEA
in its basic form is not suitable for nonseparable problems
and introduces a Cooperative Coevolutionary Algorithm with
Correlation based Adaptive Variable Partitioning (CCEA-AVP)
to deal with such problems. The performance of CCEA-AVP
is compared with CCEA and EA to highlight its benefits.
CCEA-AVP offers the possibility to deal with problems where
separability among variables might vary in different regions of
the search space.

I. INTRODUCTION

Practitioners often encounter varieties of optimization
problems ranging from single objective to multi-objective
and unconstrained to constrained. Evolutionary algorithms
have been quite successful as generic optimizers as they are
easy to apply and do not require assumptions on the continu-
ity or the slope of the function and are able to deliver a set
of non-dominated solutions for multi-objective problems [1].
The performance of such EAs is known to deteriorate with
an increase in the number of variables (commonly referred
as the curse of dimensionality), which makes it hard to be
applied to problems with larger dimensions.

In an attempt to improve the performance of EAs for
problems with a large number of variables or problems with
multiple subcomponents, divide and conquer strategy was in-
troduced by Potter and DeJong [2], which has since then been
referred as cooperative coevolutionary algorithm (CCEA).
While the concept of evolving subcomponents of a problem
independently and coadaptively sounds natural and attractive,
the dynamics of CCEA is far more complex as compared to
EA [3]. In a CCEA, in addition to the parameters of EA (viz.
population size, number of generations, crossover and mu-
tation rates), decisions regarding variable partitions, number
of generations at each subpopulation level and collaboration
strategies (single best, random etc) play a significant role in
the algorithm’s performance. It is quite likely that the basic
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implementation without appropriate choices of the above
could lead to a large variation in outcome ranging from good
to disappointing as echoed in the paper by Popovici and De
Jong [4].

In an attempt to better understand the underlying dy-
namics of CCEA, empirical studies have focused on var-
ious aspects – choice of collaborators [5], [6], interaction
frequency [7], sequential and parallel versions of informa-
tion exchange referred as update timing [8], disconnec-
tion between the external goal and the internal behavior
of CCEA [3], etc. All these studies have highlighted the
complexity of the dynamics of CCEA.

On a parallel front, CCEA and its variants such as co-
evolutionary particle swarms [9], coevolutionary differential
evolution [10], cooperative coevolutionary models based on
self-adaptive neighborhood search differential evolution [11],
and the original study on cooperative coevolutionary algo-
rithm [2] have been applied to a number of single and multi-
objective, separable and nonseparable benchmark problems.

It is interesting to note that in these applications very
little attention was paid to the selection of the coevolutionary
parameters and yet good results were obtained. The purpose
of this paper is to investigate the performance of the basic
CCEA and the effects on problem size, number of partitions
and number of generations allocated to evolve subpopulations
on a number of separable and nonseparable problems. The
second objective of this paper is to introduce a cooperative
coevolutionary algorithm with adaptive variable partition-
ing (CCEA-AVP) in an attempt to deal with nonseparable
problems.

The details of the basic CCEA are described in Section II,
while the numerical results are presented in Section III
to highlight the deficiencies of the above CCEA. In Sec-
tion IV, CCEA-AVP (Cooperative Coevolutionary Algorithm
with Adaptive Variable Partitioning) is introduced and its
performance is studied using several examples. The summary
of preliminary findings is listed in Section V.

II. BACKGROUND

Before getting on with the details of the proposed CCEA,
it is necessary to define the following terms.

A function with N -variables said to be separable if

f(x) =
m∑

i=1

fi(x), m > 1

where each subfunction fi(x) depends on atmost k(< N)
variables and number of functions that depend on a particular
variable is atmost one [12].
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In a CCEA, a solution vector is split into a number of
subcomponents without any overlap among their decision
variables. Each subcomponent is then evolved in a subpopu-
lation for a number of generations. The term “subevolve 20”
used later in the paper refers to each subpopulation evolving
over 20 generations prior to any communication with the next
subpopulation. The variable values of the best solution of a
subpopulation are used while evolving other subpopulations
and is referred as single best collaboration strategy.

To be consistent with comparisons between CCEA and
EA, we have used the same underlying evolutionary mech-
anism in both. The EA used in this study is Non-dominated
Sorting Genetic Algorithm (NSGA-II) [1], which for single
objective optimization problems ranks the solutions based
on objective function value, and treats a feasible individual
better than an infeasible one. The recombination mechanism
is controlled through simulated binary crossover and poly-
nomial mutation. The pseudo code of the basic CCEA is
presented in Algorithm 1.

Algorithm 1 Basic CCEA
Require: NG (Number of Generations), NV (Number

of variables for the problem), NP (Population size),
NS (Number of generations which the subpopulations
evolve independently), CR (Crossover Rate), MR (Mu-
tation Rate), Distribution index of Crossover and Distri-
bution index of Mutation.

1: Initialize Population (P ), Pi,j denotes the jth variable
of ith solution, i ∈ (1, . . . , NP ) and j ∈ (1, . . . , NV )

2: for generations = 1 to NG do
3: Evaluate (P )
4: Partition population P into K subpopulations

P1, P2, . . . , PK where PIi,j is the first subpopula-
tion with i ∈ (1, . . . , NP ) and j ∈ (1, . . . , NV

K ).
5: Select the best solution obtained in Step 3 and store

it as XBest

6: for I = 1 to K do
7: Create a Subpopulation: Make NP copies of XBest

and replace the appropriate variables using PI
8: Evolve the Subpopulation over Ns generations.
9: Update XBest

10: end for
11: end for

For all the numerical examples studied in this paper,
the probability of crossover was set to 1.0, probability of
mutation as 0.1, distribution index of crossover as 15 and
the distribution index of mutation as 20.

III. NUMERICAL EXAMPLES

The test functions chosen for this study are the ones
commonly used in cooperative coevolutionary studies. The
separable test functions are Rastrigin and Schwefel; the
nonseparable functions are Rosenbrock and Ackley. For all
the CCEA runs, the variables are divided into 2 subpopu-
lations unless specifically mentioned. The details of the test
functions used in this study are listed below.

1) Rastrigin: The function is defined as

Minimize f(x) =
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

−5.12 ≤ xi ≤ 5.12

The function is separable but has numerous local
minima.

2) Schwefel: The function is defined as

Minimize f(x) = 418.9829n−
n∑

i=1

(
xi sin

(√
|xi|
))

−500 ≤ xi ≤ 500

The function is separable and multimodal. There are
many local minima and the global optimum is located
far away from the second best optimum, which often
acts as a trap.

3) Rosenbrock: The function is defined as

Minimize f(x) =
n−1∑

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]

−30 ≤ xi ≤ 30

The function is nonseparable [13].
4) Ackley: The function is defined as

Minimize f(x) = −20 exp

⎛

⎝−0.2

√√√√ 1
n

n∑

i=1

x2
i

⎞

⎠−

exp

(
1
n

n∑

i=1

cos(2πxi)

)
+ 20 + e

−32 ≤ xi ≤ 32

The function is nonseparable and multimodal.

A. Case 1: Performance on 2D Test functions

The results of EA and CCEA for the 2D test functions
with a population size of 20 evolved over 500 generations
are presented in the following figures. The averaged objective
function values over 20 independent runs are plotted against
the number of function evaluations in Figures 1–4. One can
observe that EA performs consistently better than CCEA for
all four problems although for its rate of convergence is slow
at initial stages for Rosenbrock.
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Fig. 1: Performance of CCEA and EA on 2D Rastrigin
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Fig. 2: Performance of CCEA and EA on 2D Schwefel

B. Case 2: Performance on 50D and 100D test functions

Since CCEAs are claimed to be attractive for problems
with a large number of variables, we conducted tests on 50D
and 100D problems using a population size of 100 evolving
over 1000 generations. The results for 50D and 100D are
presented in Figures 5–12. It is interesting to observe that
CCEA performs better than EA for all the problems (50D and
100D) independent of the number of generations allocated to
evolve the subpopulations. Potter and DeJong [2] observed
the performance of coevolutionary algorithm was better for
Ackley function in 30D even though they employed each
variable in separate subpopulation and a binary coding for
the variables. As we expect a coevolutionary algorithm to
face difficulty for nonseparable problems (Rosenbrock and
Ackley), a test on highly nonseparable function Shifted
Rotated Rastrigin was conducted.

C. Case 3: Performance on Shifted Rotated 50D Rastrigin
Function

Shifted Rotated Rastrigin function is a function F10 from
CEC-2005 benchmark [14]. The problem is multimodal and
nonseparable, with a large number of local optima.
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Fig. 3: Performance of CCEA and EA on 2D Rosenbrock
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Fig. 4: Performance of CCEA and EA on 2D Ackley

Minimize f(x) =
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

−5.12 ≤ xi ≤ 5.12, z = (x − o) × M

where o is the shifted global optimum and M is the linear
Transformation Matrix (Rastrigin M D50).

Results of CCEA runs with 2 subpopulations are presented
in Figure 13 and with 10 subpopulations are presented in
Figure 14. It is clear from Figure 14 that CCEA with sub-
populations evolving for 2 generations performs better than
subpopulations evolving independently for 100 generations.
It is also worth taking note from Figure 13 that EA performs
better than CCEA or vice versa depending on how long the
algorithm is run.

D. Case 4: Constrained optimization problem

In order to further observe the performance of CCEA
on constrained optimization problems, a test was conducted
using the test function G2 [15] in 50D. The details of the
test function are provided below.
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Fig. 5: Performance of CCEA and EA on 50D Rastrigin
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Fig. 6: Performance of CCEA and EA on 50D Schwefel

Maximize f(x) =

∣∣∣∣∣

∑n
i=1 cos4(xi) − 2

∏n
i=1 cos2(xi)√∑n

i=1 ix2
i

∣∣∣∣∣

subject to

g1(x) = 0.75 −
n∏

i=1

xi ≤ 0

g2(x) =
n∑

i=1

xi − 7.5n ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum
is unknown and the function is nonlinear; the best reported
value for 20D is f(x∗) = 0.803619.

The study was conducted using 2 fixed subpopulations and
the results are shown in Figure 15. It is clear from the results
that CCEA is worse off as compared with EA and subevolve
2 is better than subevolve 100. The above studies highlight
that the basic form of CCEA has difficulties in solving
problems, which are nonseparable (Shifted Rotated Rastrigin
and G2) and the choices of the number of partitions and
the number of generations allocated to evolve subpopulations
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Fig. 7: Performance of CCEA and EA on 50D Rosenbrock
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Fig. 8: Performance of CCEA and EA on 50D Ackley

have significant effect on the algorithm’s performance. This
is the motivation to develop a Cooperative Coevolutionary
Algorithm with Adaptive Variable Partitioning (CCEA-AVP)
which is described in following Section.

IV. PROPOSED CCEA WITH ADAPTIVE VARIABLE

PARTITIONING BASED ON CORRELATION

In order to deal with nonseparable problems and to allevi-
ate the problems associated with the selection of number of
subpopulations and variable partitioning, a correlation based
variable partitioning scheme was designed within CCEA
which is referred as CCEA-AVP. In CCEA-AVP, the first
M (currently set to 5) generations, all variables evolve
within a single partition (single population) similar to an
EA. At the (M + 1)th generation, the correlation matrix is
computed based on the top 50% solutions of the population
and the variables are partitioned into multiple subpopulations.
The variables having a correlation coefficient greater than
a prescribed threshold (0.6 used in this study) are grouped
together subject to a predefined maximum number of subpop-
ulations (set to 10 in this study). Correlation based variable
partitioning is repeated at every generation subsequently.
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Fig. 9: Performance of CCEA and EA on 100D Rastrigin
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Fig. 10: Performance of CCEA and EA on 100D Schwefel

In order to test the efficacy of the proposed CCEA-AVP
algorithm for nonseparable problems, the 50D G2 function
was first selected as a candidate. The results of CCEA-AVP
averaged over 20 runs are listed in Table I. It is clear from
the results in Table I (CCEA-AVP) and Figure 15 (CCEA),
that CCEA-AVP is better than basic CCEA and marginally
worse as compared to an EA. It is also worth mentioning
that CCEA-AVP incurs an additional cost of computing
correlation matrices. It can also be observed from Figure 16,
that CCEA almost performs like an EA with single partition
in most of the generations due to the nonseparable nature of
the problem.

TABLE I: Results of CCEA-AVP and EA for 50D G2
Best Worst Average

Subevolve 2 -0.7835 -0.6569 -0.7419
Subevolve 20 -0.8104 -0.7305 -0.7739
Subevolve 40 -0.8103 -0.7066 -0.7743
Subevolve 60 -0.8101 -0.6456 -0.7733
Subevolve 80 -0.8015 -0.6039 -0.7537
Subevolve 100 -0.8034 -0.5200 -0.7576
EA -0.8120 -0.7319 -0.7775
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Fig. 11: Performance of CCEA and EA on 100D Rosenbrock
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Fig. 12: Performance of CCEA and EA on 100D Ackley

The next example is the highly nonseparable Shifted
Rotated Rastrigin function. The performance of CCEA-AVP
for this function is listed in Table II. Average results of
CCEA-AVP are better than CCEA with 10 subpopulations
while the average performance is comparable with a 2
partition CCEA and EA. The performance of CCEA-AVP
is identical to a single population EA provided all variables
in the population have a correlation coefficient greater than
the threshold (0.6 used in the study) at all generations.
The number of partitions of the shifted rotated Rastrigin
function is significantly less than the number of partitions of
the original Rastrigin function indicating a higher variable
interaction.

The third example is a separable problem Rastrigin 50D
where it is interesting to observe that CCEA-AVP gener-
ates comparable results with EA and its performance is
worse when compared to a 2 partition CCEA, as seen from
Table III. It is counter-intuitive to observe that Subevolve
100 performs worse than Subevolve 20 for this separable
problem. A look into Figure 16 explains that the algo-
rithm partitioned variables into 7 subsets on an average and
evolving each partition over 100 generations amounts to a
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Fig. 13: Performance of CCEA with 2 subpopulations and
EA on 50D Rotated Shifted Rastrigin
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Fig. 14: Performance of CCEA with 10 subpopulations and
EA on 50D Rotated Shifted Rastrigin

significant number of function evaluations in each generation
and it soon ran out of the maximum allowable number of
function evaluations.

V. SUMMARY AND CONCLUSIONS

This paper investigates the performance of a Single Best
Collaboration Strategy Coevolutionary Algorithm for separa-
ble and nonseparable test functions. The results of CCEA are
compared with an EA using identical evolution mechanism
and the same random seeds. The results suggest that the
basic CCEA may not be suitable for nonseparable problems
and the number of predefined partitions and the number of
generations allocated to evolve subpopulations independently
play a significant role in its performance. It is imperative that
the use of the basic CCEA as a generic optimizer for various
classes of problems is likely to produce results ranging from
good to poor when compared with EA.

In order to deal with nonseparable optimization problems,
CCEA with adaptive variable partitioning (CCEA-AVP)
based on correlation was developed. CCEA-AVP partitions
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Fig. 15: Performance of CCEA and EA on 50D G2
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Fig. 16: Number of Partitions created by CCEA-AVP across
generations

the variables into subpopulations based on observed correla-
tion and hence does not require apriori partition rules. The
results of CCEA-AVP for nonseparable problems indicate
that it is better than the basic CCEA and has comparable
average performance as EAs. For the separable problems,
CCEA-AVP is better than an EA (subevolve 2 and subevolve
20). The study has also highlighted that even in separable
problems, a large number of partitions coupled with large
number of subevolutions within each partition could blow
out the limit of the computational budget. The result would
be poor final solutions due to few generations allocated for
the top level evolution process. Since a problem might have
different levels of variable correlation in different regions
of the search space, CCEA-AVP provides an opportunity
to adaptively capture and exploit their relationships. CCEA-
AVP would behave identical to a single population EA if all
the variables have correlations greater than the user defined
threshold. Since separability or nonseparability of an opti-
mization problem cannot be identified apriori, CCEA-AVP
offers some hope to deal with black box functions within a
cooperative coevolutionary framework. It is also worth high-
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TABLE II: Results of CCEA-AVP and EA for Shifted
Rotated Rastrigin 50D

Best Worst Average

Subevolve 2 101.96 184.73 123.69
Subevolve 20 93.757 152.59 116.65
Subevolve 40 97.274 146.58 118.27
Subevolve 60 91.082 155.34 116.83
Subevolve 80 102.11 167.88 122.06
Subevolve 100 98.472 209.33 138.84
EA 85.70 169.56 115.27

TABLE III: Results of CCEA-AVP and EA for Original
Rastrigin 50D

Best Worst Average

Subevolve 2 0.9430 15.071 3.3412
Subevolve 20 4.5265 31.995 16.872
Subevolve 40 8.0651 95.015 44.346
Subevolve 60 7.5714 102.677 37.143
Subevolve 80 24.335 122.933 56.550
Subevolve 100 44.497 154.75 79.041
EA 18.44 29.19 23.98

lighting that the performance of a CCEA and CCEA-AVP is
also dependent on the underlying recombination operator. For
a set of positively or negatively correlated variables evolving
in a subpopulation of CCEA-AVP, specific operators could be
designed to sample along the directions of interest. Further
studies are underway to identify the changes in correlation
patterns, the effects of partitioning frequency (currently done
every generation) and the performance of CCEA-AVP on
problems with hundreds of variables.
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