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ABSTRACT

There is increasing interest in developing personalized Task-oriented

Dialogue Systems (TDSs). Previous work on personalized TDSs of-

ten assumes that complete user pro�les are available for most or

even all users. This is unrealistic because (1) not everyone is will-

ing to expose their pro�les due to privacy concerns; and (2) rich

user pro�les may involve a large number of attributes (e.g., gen-

der, age, tastes, . . . ). In this paper, we study personalized TDSs

without assuming that user pro�les are complete. We propose a

Cooperative Memory Network (CoMemNN) that has a novel mech-

anism to gradually enrich user pro�les as dialogues progress and to

simultaneously improve response selection based on the enriched

pro�les. CoMemNN consists of two core modules: User Pro�le En-

richment (UPE) and Dialogue Response Selection (DRS). The former

enriches incomplete user pro�les by utilizing collaborative infor-

mation from neighbor users as well as current dialogues. The latter

uses the enriched pro�les to update the current user query so as

to encode more useful information, based on which a personalized

response to a user request is selected.

We conduct extensive experiments on the personalized bAbI

dialogue benchmark datasets. We �nd that CoMemNN is able to

enrich user pro�les e�ectively, which results in an improvement of

3.06% in terms of response selection accuracy compared to state-of-

the-art methods. We also test the robustness of CoMemNN against

incompleteness of user pro�les by randomly discarding attribute

values from user pro�les. Even when discarding 50% of the attribute

values, CoMemNN is able to match the performance of the best

performing baseline without discarding user pro�les, showing the

robustness of CoMemNN.
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1 INTRODUCTION

The use of Task-oriented Dialogue Systems (TDSs) is becoming

increasingly widespread. Unlike Open-ended Dialogue Systems

(ODSs) [12, 48], TDSs are meant to help users achieve speci�c

goals during multiple-turn dialogues [3]. Applications include book-

ing restaurants, planning trips, grocery shopping, customer ser-

vice [e.g., 2, 21, 25, 26, 39, 45].

Considerable progress has been made in improving the perfor-

mance of TDSs [e.g., 2, 7, 14, 15, 17, 27, 42]. Human-human di-

alogues re�ect diverse personalized preferences in terms of, e.g.,

modes of expression habits [6, 46], individual needs and related to

speci�c goals [9, 19, 23]. Recent work has begun to explore how

to improve the user experience by personalizing TDSs in similar

ways. Several personalized TDS models have been proposed and

have achieved good performance [9, 19, 47]. Personalized TDS mod-

els use user pro�les in order to be able to capture, and optimize

for, users’ personal preferences. Those user pro�les may not al-

ways be available or complete. While pro�les may be obtained

by asking users to �ll in personal pro�les with all prede�ned at-

tributes [9, 19, 47], more often than not, they are incomplete and

have missing values for some of the attributes of interest: (1) not

all users are willing to expose their pro�les due to privacy con-

cerns [37]; Tigunova et al. [36] have shown that users rarely reveal

their personal information in dialogues explicitly; and (2) user pro-

�les may involve many attributes (such as, e.g., gender, age, tastes),

which makes it hard to collect values for all of them. For example,

even if we know a user’s favorite food is “�sh and chips,” this does

not mean the user does not like “hamburgers.”

In this paper, we study the problem of personalized TDSs with in-

complete user pro�les. This problem comes with two key challenges:

(1) how to infer missing attribute values of incomplete user pro�les;

and (2) how to use enriched pro�les so as to enhance personalized

TDSs. There have been previous attempts to extract user pro�les

from open-ended dialogues [11, 13, 35, 36, 41] but to the best of our

knowledge the problem of inferring and using missing attribute

values has not been studied yet in the context of TDSs.

We address the problem of personalized TDSs with incomplete

user pro�les by proposing an end-to-end Cooperative Memory Net-

work (CoMemNN) in which pro�les and dialogues are used to

mutually improve each other. See Figure 1 for an intuitive sketch.
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Figure 1: Cooperative interaction between user pro�les and

dialogues.

The intuition behind Cooperative Memory Network (CoMemNN)

is that user pro�les can be gradually improved (i.e., missing values

can be added) by leveraging useful information from each dialogue

turn, and, simultaneously, the performance of Dialogue Response

Selection (DRS) can be improved based on enriched pro�les for later

turns. For example, when user u1 produces the utterance “Does it

have ‘decent’ french fries?” and the user reveals his like of “french

fries,” the attribute ‘favorite food’ in his user pro�le can be enriched

with the value of “french fries.” In addition, we want to consider

collaborative information from similar users, assuming that similar

users have similar preferences as re�ected in their user pro�les.

For example, a young male non-vegetarian who is a big fan of

“pizza” might also love “�sh and chips” if there are several users

with similar pro�les stating “�sh and chips” as their favorite food.

In turn, knowledge of these preferences can a�ect the choice of

the response selected by a TDS in case there are multiple candi-

date responses. In other words, users with similar pro�les may

expect the same or a similar response given a certain dialogue con-

text [19]. CoMemNN operationalizes these intuitions with two key

modules: User Pro�le Enrichment (UPE) and Dialogue Response

Selection (DRS). The former enriches incomplete user pro�les by

utilizing useful information from the current dialogue as well as

collaborative information from similar users. The latter uses the

enriched pro�les to update the query representing all requested

information, based on which a personalized response is selected to

reply to user requests.

To verify the e�ectiveness of CoMemNN, we conduct extensive

experiments on the personalized bAbI dialogue (PbAbI) benchmark

dataset, which comes in two �avors, a small version which has 1,000

dialogues, and a large version, which has 12,000 dialogues. First, we

�nd that CoMemNN improves over the best baseline by 3.06%/2.80%

on the small/large dataset, respectively, when using all available

user pro�les. Second, to assess the performance of CoMemNN in the

presence of incomplete user pro�les, we randomly discard values

of attributes with varying probabilities and �nd that even when it

discards 50% of the attribute values, the performance of CoMemNN

matches the performance of the best performing baseline without

discarding user pro�les. In contrast, the best performing baseline

decreases 2.12%/1.97% in performance on the small/large dataset

with the same amount of discarded values.

The main contributions of this paper are as follows:

• We consider the task personalized TDSs with incomplete user

pro�les, which has not been investigated so far, to the best of our

knowledge.

• We devise a CoMemNN model with dedicated modules to gradu-

ally enrich user pro�les as a dialogue progresses and to improve

response selection based on enriched pro�les at the same time.

• We carry out extensive experiments to show the robustness of

CoMemNN in the presence of incomplete user pro�les.

2 RELATED WORK

In this section, we brie�y present an overview of related work on

personalized Open-ended Dialogue Systems (ODSs) and personal-

ized Task-oriented Dialogue Systems (TDSs).

2.1 Personalized Open-ended Dialogue Systems

Previous studies on personalized ODSs mainly fuse unstructured

persona information [22, 48]. Li et al. [12] �rst attempt to incorpo-

rate a persona into the Seq2Seq framework [34] to generate person-

alized responses. Ficler and Goldberg [6] apply an RNN language

model conditioned on a persona to control response generation

with linguistic style. Zhang et al. [48] �nd that selection models

based on Memory Networks [33] are more promising than recur-

rent generation models based on Seq2Seq [34]. Mazare et al. [22]

develop a response selection model based on MemNN and model

persona to improve the performance of an ODS. Song et al. [32]

explore how to generate diverse personalized responses using a

variational autoencoder conditioned on a persona memory. Liu et al.

[16] make use of persona interaction between two interlocutors.

Xu et al. [43] further exploit topical information to extend persona.

Prior attempts to address data sparsity problems in order to

enhance personalized ODSs have considered pretraining [8, 51],

sketch generation and �lling [30], multiple-stage decoding [31],

multi-task learning [18], transfer learning [40, 44, 49], and meta-

learning [20]. Only few studies have explored structured user pro-

�les for ODSs [28, 50, 52].

Most of the methods listed above focus on unstructured persona

information while we target structured user pro�les. Importantly,

they focus on ODSs, so they cannot be applied to TDSs directly.

2.2 Personalized Task-oriented Dialogue
Systems

Unlike ODSs, personalized TDSs have not been investigated ex-

tensively so far. Joshi et al. [9] release the �rst and, so far, only

benchmark dataset for personalized TDSs, to the best of our knowl-

edge. They propose a memory network based model, MemNN, to

encode user pro�les and conduct personalized response selection.

They also propose an extension of MemNN, Split MemNN, which

splits a memory into a pro�le memory followed by a dialogue mem-

ory. Zhang et al. [47] introduce Retrieval MemNN by incorporating

a retrieval module into memory network, which enhances the per-

formance by retrieving the relevant responses from other users. Luo

et al. [19] present Personalized MemNN which learns distributed

embeddings for user pro�les, dialogue history, and the dialogue

history from users with the same gender and age, and shows bet-

ter performance by using the idea user bias towards Knowledge

Base (KB) entries over candidate responses. Mo et al. [23] introduce

1553



A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Summary of main notation used in the paper.

Xu
t User utterance at turn t .

X s
t System response at turn t .

Dt Dialogue history at turn t .

ht Hidden representation of Dt .

u A user pro�le in the form of {(ai ,vi )}
m
i=1, vi is a candidate

value of i-th attribute ai .

p One-hot representation of u.

qt A query representation that represents the user’s current

request at turn t .

MP
t Pro�le memory that contains user pro�le presentations of u

and his/her neighbors at turn t .

MD
t Dialogue memory that contains dialogue history presentation

of u and his/her neighbors at turn t .

a transfer reinforce learning paradigm to alleviate data scarcity,

which uses a collection of multiple users as a source domain and

an individual user as a target domain.

The methods above all assume that complete user pro�les can

be obtained by urging users to �ll in all blanks in user pro�les,

which is unrealistic in practice. Thus, it remains unexplored how

the methods above perform when incomplete user pro�les are

provided, and whether we can bridge the gap in performance if

their performance is negatively a�ected. An alternative is to �rst

infer missing user pro�les, e.g., by mining query logs or previous

conversations [11, 13, 35, 36], and then apply the model with the

above methods. But to do so, we need to train a model to infer

missing user pro�les asynchronously. Besides, it will likely bring

cumulative errors to downstream TDS tasks. Instead, we propose

to enrich user pro�les and achieve a TDS simultaneously with an

end-to-end model.

3 METHOD

3.1 Task

In this work, we follow previous studies and model a personalized

TDS as a response selection task, which selects a response from

prede�ned candidates given a dialogue context [5, 9, 19, 27, 29, 38,

47]. Table 1 summarizes the main notation used in this paper.

Given a dialogue context (u,Dt ,X
u
t ) at the t-th dialogue turn,

our goal is to select an appropriate response yt = X s
t from can-

didate responses Y = {X s
j }|
|Y |
j=1. Here, u is the user pro�le, which

consists ofm attribute-value pairs {(ai ,vi )}
m
i=1, where ai is the i-th

attribute andvi is a candidate value of ai . For example, in Fig. 1, the

user pro�le is denoted as {(Gender, Male), (Age, Young), (Dietary,

Non-vegetarian), (Favorite food, Fish and Chips)}. Dt = X1:t−1 is

the dialogue history. Similar to [9, 19, 47], Dt is represented as a

sequence of words that are aggregated from historical utterances

[Xu
1 ,X

s
1 , . . . ,X

u
t−1,X

s
t−1], alternating between the user u or system

s . Xu
t denotes the current user utterance, representing the user’s

current request.

3.2 Overview of CoMemNN

An overview of the proposed architecture, CoMemNN, is shown in

Fig. 2. A key aspect of the architecture is that it aims to capture

Figure 2: An overview of the CoMemNN architecture, which

consists of two cooperative modules: UPE and DRS.

all useful information from the given dialogue context (u,Dt ,X
u
t ),

based on which we learn a query representation qt to represent

the user’s current request. qt is usually initialized with the cur-

rent user utterance Xu
t [9, 19, 47]. Then, qt is updated by the User

Pro�le Enrichment (UPE) module by incorporating dialogue and

personal information from dialogues and user pro�les, respectively.

Speci�cally, UPE captures the interaction between user pro�les

and dialogues with three submodules: Memory Initialization (MI),

Memory Updating (MU) and Memory Reading (MR). MI searches

neighbors of the current user to initialize the pro�le memoryMP
t ,

which contains pro�les from both the current user and his/her

neighbors. MI also initializes the dialogue memoryMD
t with the di-

alogue history of both the current user and his/her neighbors, each

of which is represented by addressing dialogue historical utterance

representations with qt . MU updates the pro�le memoryMP
t and

the dialogue memory MD
t by considering their interaction, after

which the user pro�les are enriched by inferring missing values

based on the dialogue and personal information from the current

user and his/her neighbors. Afterwards, MR updates the query rep-

resentation qt by reading from the enriched pro�le memory as well

as dialogue memory. Finally, the Dialogue Response Selection (DRS)

module uses the updated query to match candidate responses so as

to select an appropriate response. Next, we introduce each of the

modules MI, MU and MR, one by one.

3.3 Memory Initialization (MI)

Profile Memory Initialization. To model user-pro�le relations, we

initialize the pro�le memory as: MP
t = [Ψ(u1), . . . ,Ψ(uk )] ∈ R

k×d ,

where u1 is the Current Pro�le (CP) from the current user. The

others are Neighbor Pro�les (NPs) from neighbor users. For each

user pro�le, the i-th attribute can be represented as an one-hot

vector p̃i ∈ R
C(pi ), where there are C(ai ) candidate values for

pi . Then, each user pro�le can be initialized as an one-hot vector

p = Concat(p̃1, . . . , p̃m ) ∈ R
n (n =

∑m
i=1(C(pi )), which is the con-

catenation of one-hot representations of attributes. k is the number
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Figure 3: An overview of the dynamic pipeline of the CoMemNN model. The UPE modules captures the interaction between

user pro�les and dialogues by three submodules: MI, MU and MR. The DRS module and the UPE module cooperate so as to

select better responses. Section 3 contains a walkthrough of the model.

of users, d is the embedding dimension, and Ψ is a linear transfor-

mation function. Given any user pro�le u, we �nd his/her (k − 1)

nearest neighbors based on dot product similarity.

Dialogue Memory Initialization. To model user-dialogue relations,

we initialize a dialogue memoryMD
t = [h

1
t , . . . , h

k
t ] ∈ R

k×d , where

h1t is the representation of the Current Dialogue (CD) from the

current user. The others are the Neighbor Dialogues (NDs) from

neighbor users. For each user, the dialogue history can be computed

as:

ht =

2(t−1)
∑

i=1

λitH
i
t ∈ R

d

λit = (q̃t )
T · Hi

t ∈ R
1
,

(1)

where we use the updated query q̃t to address the aggregated

dialogue history Ht , the addressing weight λit is computed by the

dot product of query q̃t and the i-th utterance representation Hi
t .

Following [4, 19], we represent each utterance as a bag-of-words

using the embedding matrix E ∈ Rd×V , where d is the embedding

dimension, V is the vocabulary size, Φ(·) maps the utterance to a

bag of dimension V . At the beginning of turn t , the updated query

q̃t is initialized as:

q̃t = EΦ(Xu
t ) ∈ R

d
. (2)

Similarly, the aggregated dialogue history Ht of the current user

u1 can be embedded as:

Ht =

[EΦ(Xu
1 ),EΦ(X

s
1 ), . . . ,EΦ(X

u
t−1),EΦ(X

s
t−1)] ∈ R

2(t−1)×d
.

(3)

3.4 Memory Updating (MU)

Dialogue Memory Updating. To obtain an intermediate dialogue

memory M̃D
t , we update the i-th dialogue memory slot M̃D

t [:, i] us-

ing the newest updated query q̃t to address initial dialogue memory

MD
t as:

M̃D
t [:, i] =

k
∑

j=1

β
j
tM

D
t [:, j] ∈ R

d

β
j
t = (q̃t )

T ·MD
t [:, j] ∈ R

1
.

(4)

Next, the initial dialogue memory is updated by assigning MD
t =

M̃D
t . As the dialogue evolves, the pro�le memory will gradually

improve the dialogue memory because q̃t contains information

from the previous pro�le memory, so addressing with q̃t links

pro�le-dialogue relations to the dialogue memory.

Profile Memory Updating. Similarly, we can obtain an intermediate

pro�le memory M̃P
t with the following steps:

M̃P
t [:, i] =

k
∑

j=1

α
j
tM

P
t [:, j] ∈ R

d

α
j
t = (M

P
t [:, i])

T ·MP
t [:, j] ∈ R

1
.

(5)

Next, the pro�le memory slot MP
t [:, i] is updated by a function Γ(·)

using the intermediate pro�le memory slot M̃P
t [:, i] and the newest

updated dialogue memory slot M̃D
t [:, i]:

MP
t [:, i] = Γ(M̃P

t [:, i], M̃
D
t [:, i]) ∈ R

d
, (6)

where Γ(·) is a mapping function that is implemented by a Multiple

Layer Perceptron (MLP) in this work. In this process, the dialogue

memory helps to improve the pro�le memory because Γ(·) links

dialogue-pro�le relations to the pro�le memory.

3.5 Memory Reading (MR)

Dialogue Memory Reading. Since the �rst memory slot corresponds

to the current user, we compute mD
t by hard addressing and use it

to update the query q̃t as follows:

q̃t = q̃t +m
D
t ∈ R

d

mD
t = M̃D

t [:, 1] ∈ R
d
.

(7)
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Profile Memory Reading. Similarly, we obtain mP
t by hard address-

ing and use it to update the query q̃t as follows:

q̃t = q̃t +m
P
t ∈ R

d

mP
t = MP

t [:, 1] ∈ R
d
.

(8)

3.6 Dialogue Response Selection

Weuse the latest updated query q̃t tomatchwith candidate dialogue

responses and the predicted response distribution is computed as

follows:

ỹt = So�max(q̃Tt r1 + b1, . . . , q̃
T
t r |Y | + b |Y |) ∈ R

|Y |

bj =

{

fi ∈ R
1 if rj mentions i-th attribute of a KB entry

0 otherwise

f = ReLU(Fp1) ∈ R
kb
,

(9)

where rj is the representation of the j-th candidate response, |Y |

is the number of all candidate responses. We follow Luo et al. [19]

to model the user bias towards KB entries over the j-th candidate

response by a term bj , where the dimension kb is the number of

attributes of a KB entry. p1 ∈ R
n is the one-hot representation of

the current user pro�le. F ∈ Rkb×n maps user pro�les into a KB

entry.

3.7 Learning of CoMemNN

Multiple-hop reading or updating has been shown to help improve

performance of MemNN by reading or updating the memory mul-

tiple times [9, 19, 33]. To enhance CoMemNN, we devise a learning

algorithm to update the query and memories with multiple hops,

and further di�erentiate the speci�c losses of the UPE and DRS

modules. The learning procedure is shown in Algorithm 1. First,

MI searches neighbors {u2, . . . ,uk } of the current user u1 to ini-

tialize the pro�le memoryMP
t and dialogue memoryMD

t . Second,

MU and MR are conducted HopN times, and for each time: MU

updates the dialogue memory MD
t and the pro�le memory MP

t by

considering their cooperative interaction. After that, MR updates

the query representation qt by reading from the enriched dialogue

memory followed by pro�le memory. Last, the Dialogue Response

Selection (DRS) module uses the newest updated query q̃t to match

candidate responses so as to predict a response distribution ỹt .

To evaluate the performance of DRS and UPE, we de�ne two

mapping functions to get prediction labels:

• Argmax(·): it outputs the index yt with the highest probability

in a predicted response distribution ỹt ;

• PiecewiseArgmax(·): it generates a 1-0 vector from the predicted

enriched pro�le mP
t , where p̃

1
t [i] = 1 only if mP

t [i] achieves the

highest probability among the values that belong to the same

attribute.

To optimize DRS, we use a standard cross-entropy loss between the

prediction ỹ and the one-hot encoded true label y:

LDRS(θ ) = −
1

N1

N1
∑

i=1

|Y |
∑

j=1

yj log ỹj , (10)

where θ are all parameters in the model and N1 is the number of

training samples.

Algorithm 1:Multiple hop CoMemNN.

Input: turn t , user u1, pro�le p1, dialogue history Ht ,

query qt , response candidates {r1, . . . , r |Y |}, max

hop HopN , (k − 1) neighbors

Output: A index yt of next response; An one-hot vector p̃1t
presenting the enriched pro�le.

1 {u2, . . . ,uk } ← Search(p1,k − 1); ▷ MI

2 MP
t ← [p1, . . . , pk ];

3 MD
t ← [h

1
t , . . . , h

k
t ]; h

i
t ← (q̃t ,H

i
t ), i ∈ [1,k]; q̃t ← qt ;

4 while hop ≤ HopN do

5 M̃D
t ← MD

t ; M̃
P
t ← MP

t ; ▷ MU

6 MD
t ← M̃D

t ;

7 MP
t ← Γ(M̃P

t , M̃
D
t );

8 mD
t ← MD

t ; q̃t ← q̃t +m
D
t ; ▷ MR

9 mP
t ← MP

t ; q̃← q̃t +m
P
t ;

10 end

11 ỹt ← So�max(q̃Tt r1 + b1, . . . , q̃
T
t r |Y | + b |Y |) ; ▷ DRS

12 yt ← Argmaxj (ỹt );

13 p̃1t ← PiecewiseArgmax(mP
t )

To control the learning of UPE, we introduce the element-wise

mean squared loss between the sampled pro�le p = {p1, . . . ,pN2
}

and its corresponding enriched pro�le p̃ = {p̃1, . . . , p̃N2
}:

LUPE(θ ) = −
1

N2

N2
∑

i=1

(pi − p̃i ), (11)

where θ are all parameters in the model and N2 is the number of

sampled values.

Finally, the �nal loss is a linear combination:

L(θ ) = µLDRS(θ ) + (1 − µ)LUPE(θ ), (12)

where µ is a hyper-parameter to balance the relative importance of

the constituent losses.

4 EXPERIMENTAL SETUP

4.1 Research questions

We seek to answer the following questions in our experiments:

(Q1) How well does CoMemNN perform? Does it signi�cantly and

continuously outperform state-of-the-art methods? (Q2) What are

the e�ects of di�erent components in CoMemNN? (Q3) Do di�erent

pro�le attributes contribute di�erently? and (Q4) How well does

CoMemNN perform in terms of robustness?

4.2 Dataset and evaluation

We use the personalized bAbI dialogue (PbAbI) dataset [9] for our

experiments; this is an extension of the bAbI dialogue (bAbI) dataset

that incorporates personalization [2]. To the best of our knowledge,

this is the only available open dataset for personalized TDSs. There

are two versions: a large version with around 12,000 dialogues

and a small version with 1,000 dialogues. These two datasets share

the same vocabulary with 14, 819 tokens and candidate response

set with 43, 863 responses. It de�nes four user pro�le attributes

(gender, age, dietary preference, and favorite food) and composes
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corresponding attribute-value pairs to a user pro�le. Each conver-

sation is provided with all of the above user pro�le attributes, e.g.,

{(Gender, Male), (Age, Young), (Dietary, Non-vegetarian), (Favorite:

Fish and Chips)}. But this does not mean the given user pro�le is

complete because the user may also like “Paella”, although “Fish and

Chips” is his/her favorite food. To simulate incomplete pro�les with

various degrees of incompleteness, we randomly discard attribute

values from a user pro�le with probabilities of [0%, 10%, 30%, 50%,

70%, 90%, 100%] and obtain 7 alternative datasets, respectively.

We evaluate the performance of the full dialogue task using the

following two metrics [9]:

• Response Selection Accuracy (RSA): the fraction of correct re-

sponses out of all candidate responses [9, 19]; and

• Pro�le Enrichment Accuracy (PEA): we de�ne this metric as the

fraction of correct pro�le values out of all discarded pro�le values.

We use a paired t-test to measure statistical signi�cance (p < 0.01)

of relative improvements.

To compare model stability, we propose a statistic σ , namely

stability coe�cient, which is de�ned as the standard deviation of

a list of performance results. Formally, given a list of evaluation

values [z1, . . . , zN+1], either RSA or PEA scores, σ is computed as

follows:

σ (z) =

√

√

√

1

N

N
∑

i=1

(zi − z̄)2

z = [z2 − z1, . . . , zN+1 − zN ],

(13)

where z̄ is the mean of the values in performance di�erence list z.

4.3 Baselines

We compare with all the methods that have reported results on the

PbAbI dataset [9].

• MemoryNetwork (MemNN). It regards the pro�le information

as the �rst user utterance ahead of each dialogue and achieves

personalization by modeling dialogue context using the standard

MemNN model [1].

• Split Memory Network (SMemNN). It splits memory into a

pro�le memory and a dialogue memory. The former encodes user

pro�le attributes as separate entries and the latter operates the

same as the MemNN. The element-wise sum of both memories

are used for �nal decision [9].

• Retrieval Memory Network (RMemNN). It features an en-

coder-encoder memory network with a retrieval module that

employs the user utterances and user pro�les to collect relevant

information from similar users’ conversations [47].

• PersonalizedMemory Network (PMemNN). It uses MemNN

to model the current user pro�le, the current dialogue history, as

well as the dialogue history of all users with the same gender and

age. It also models user bias towards di�erent KB entries [19].

• Neighbor-based Personalized Memory Network (NPMem-

NN). Our implementation of PMemNN is based on Pytorch. Un-

like PMemNN, we use the dialogue history from the nearest

(k − 1) neighbors instead of all users with the same gender and

age.

4.4 Implementation details

We follow the experimental settings detailed in [19]. The embedding

size of word/pro�le is 128. The size of memory is 250. The mini-

batch size is 64. The maximum number of training epoch is 250,

and the number of hops is 3 (see Algorithm 1). The K-Nearest

Neighbors (KNN) algorithm is implemented based on faiss1 with the

inner product measurement and the number of collaborative users

k = 100. We implement NPMemNN and CoMemNN in PyTorch.2

And the code of the other models is taken from the original papers.

We use Adam [10] as our optimization algorithm with learning

rate of 0.01 and initialize the learnable parameters with the Xavier

initializer. We also apply gradient clipping [24] with range [−10, 10]

during training. We use l2 regularization to alleviate over�tting,

the weight of which is set to 10−5. We treat the importance of losses

of DRS and UPE equally, i.e., µ = 0.5. The code is available online.3

5 RESULTS (Q1)

5.1 Results without discarding user pro�les

We show the overall response selection performance of all methods

in Table 2.

Table 2: Overall performance in terms of the RSA met-

ric. Bold face indicates leading results. Signi�cant improve-

ments over NPMemNN are marked with ∗ (paired t-test, p <

0.01).

Small set (%) Large set (%)

MemNN [9] 77.74 85.10

SMemNN [9] 78.10 87.28

RMemNN [47] 83.94 87.33

PMemNN [19] 88.07 95.33

NPMemNN 87.91 97.49

CoMemNN 91.13∗ 98.13∗

First, CoMemNN outperforms all baselines on both the small and

large datasets by a large margin. It signi�cantly outperforms the

best baseline PMemNN by 3.06% on the small dataset and 2.80% on

the large dataset. The improvements demonstrate the e�ectiveness

of CoMemNN. We believe the main reason is that the proposed

cooperative mechanism is able to enrich the incomplete pro�les

gradually as dialogues progress and the enriched pro�les improve

help to response selection simultaneously. We will analyze this in

more depth in the next session.

Second, the performance of NPMemNN is comparable to that of

PMemNN on the small dataset and achieves 2.16% higher RSA on

the large dataset. Recall that NPMemNN is our implementation of

PMemNN using Pytorch; the only di�erence is the KNN algorithm

used for neighbor searching, so the result shows that our new

neighbor searching method is more e�ective. Since our CoMemNN

is built upon NPMemNN, for the remaining experiments, we will

use NPMemNN for further comparison and analysis.

Third, the results on the small and large datasets mostly show

consistent trends. For the remaining analysis experiments in the

1https://github.com/facebookresearch/faiss
2https://pytorch.org/
3https://github.com/Jiahuan-Pei/CoMemNN
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next section (Section 6), we will report results on the small dataset

only. The �ndings on the large dataset are qualitatively similar.

5.2 Results with di�erent pro�le discard ratios

We compare CoMemNN and NPMemNN under di�erent pro�le

discard ratios. The results are shown in Table 3.

Table 3: Comparison of CoMemNN and NPMemNN in terms

of the RSA metric w.r.t. di�erent pro�le discard ratios. Bold

face indicates leading results. Signi�cant improvements

over NPMemNN are marked with ∗ (paired t-test, p < 0.01).

The values of Di�. are computed by absolute di�erence of

RSA (%) between CoMemNN and NPMemNN.

Discard Ratio 0% 10% 30% 50% 70% 90% 100%

NPMemNN 87.91 86.11 86.56 85.79 83.93 84.08 84.83

CoMemNN 91.13∗ 89.90∗ 88.69∗ 87.80∗ 86.35∗ 84.83∗ 82.85

Small Set/Di�. 3.22 3.79 2.13 2.01 2.42 0.75 −1.98

NPMemNN 97.49 97.01 96.05 95.52 95.40 90.96 90.50

CoMemNN 98.13∗ 97.94∗ 97.68∗ 97.53∗ 96.98∗ 96.63∗ 92.73∗

Large Set/Di�. 0.64 0.93 1.63 2.01 1.58 5.67 2.23

First, CoMemNN signi�cantly outperforms NPMemNN on both

the small and large datasets when the pro�le discard ratios range

from 0% to 90%. Speci�cally, it gains an improvement of 0.75%–

3.79% on the small dataset and 0.64%–5.67% on the large dataset, re-

spectively. Without discarding pro�le attribute values, CoMemNN

achieves 3.22% / 0.64% of improvement compared with NPMemNN.

Unlike the raw pro�les where each attribute has only one value,

the enriched pro�le generated by CoMemNN is able to represent a

distribution over all possible values, which can better capture users’

preference. For example, a user may label “Fish and Chips” as his

favorite food, but this does not mean he does not like “Paella.” With

the raw pro�le, this is not addressed.

Second, the performance of CoMemNN steadily decreases with

the increase of the pro�le discard ratio, as is to be expected. This is

reasonable as it becomesmore andmore challenging for CoMemNN

to �nd back missing values of user pro�les. Interestingly, the per-

formance di�erence between CoMemNN and NPMemNN �rst in-

creases and then decreases with the increase of the pro�le discard

ratio. A possible reason is that CoMemNN is able to infer the miss-

ing values of user pro�les e�ectively with lower pro�le discard

ratios. However, the pro�le enrichment ability decreases due to

the lack of too many pro�le values. This hypothesis can be veri-

�ed by the results that the increase trend lasts longer on the large

dataset. Because even with the same pro�le discard ratio, there are

more values of user pro�les left on the large dataset for CoMemNN

to infer the missing ones. We note that NPMemNN outperforms

CoMemNNwhen all user pro�les are discarded on the small dataset.

The reason is that UPE cannot enrich user pro�les properly in this

case, which results in a negative impact on DRS. But this is not the

case on the large dataset where UPE can still enrich user pro�les

properly when the model can �nd enough personal information

clues from more dialogue history.

Third, to answer Q4, we compute the statistic σ (Eq. 13) to

compare the model stability. The σ values for CoMemNN and

NPMemNN are 0.3357/1.0407 on the small dataset and 1.3479/1.4849

on the large dataset, respectively. Thus, NPMemNN has higher devi-

ations, which shows that CoMemNN ismore stable thanNPMemNN

with various pro�le discard ratios.

6 ANALYSIS

Weanalyze the performance of the following variants of CoMemNN:

• CoMemNN. The full model.

• CoMemNN-PEL. CoMemNN without Pro�le Enrichment Loss

(PEL), de�ned in Eq. 11.

• CoMemNN-PEL-UPE. CoMemNNwithout PEL or UPE. This is

exactly NPMemNN.

• CoMemNN-NP. CoMemNN without the Neighbor Pro�le (NP)

as input for UPE.

• CoMemNN-NP-CP. CoMemNNwithout NP or the Current Pro-

�le (CP) as input for UPE.

• CoMemNN-ND. CoMemNN without the Neighbor Dialogue

(ND) of dialogues as input for UPE.

• CoMemNN-ND-CD. CoMemNN without ND or the Current

Dialogue (CD) of dialogues as input for UPE.

• CoMemNN-ND-NP. CoMemNNwithout ND orNP of dialogues

as input for UPE.

6.1 Ablation study on PEA (Q2)

We study the Pro�le Enrichment Accuracy (PEA) performance of

di�erent variants in Table 4.

First, CoMemNN can e�ectively enrich user pro�les by inferring

the missing values. It is able to correctly predict more than 98.98%

of missing values in user pro�les under di�erent pro�le discard

ratios. We believe UPE bene�ts a lot from modeling the interac-

tion between user pro�les and dialogues. UPE is able to capture

more personal information from dialogue history with dialogues

gradually going on. The PEA scores are all very high, because the

PbAbI dataset is simulated, which makes it relatively easy to predict

missing attribute values of user pro�les.

Second, we can see that each component of UPE generally has

a positive e�ect on the performance since most PEA scores of

most variants decrease. Speci�cally, CoMemNN-PEL decreases by

8.38%–14.20% compared with CoMemNN. This means that it is im-

portant to add the UPE loss (Eq. 11), rather than only optimizing

the DRS loss (Eq. 10). We also show how the four components

of UPE (i.e., NP, CP, ND, and CD as de�ned in Section 3.3) af-

fect its performance. We �nd that: (1) CoMemNN-ND-NP contin-

uously decreases 0.90%–2.32% with the increase of the pro�le dis-

card ratio. This means that neighbor users play an important role.

(2) CoMemNN-ND-CD (with 100% pro�le discard ratio) decreases

dramatically, which is as expected, because CoMemNN cannot in-

fer the missing values without any dialogue history and pro�les.

This also explains the increase of the corresponding RSA score in

Table 5. (3) The decrease is mostly less than 2.32% except that the

decrease of CoMemNN-ND-CD (with 100% pro�le discard ratio, i.e.,

no NP or CP as well) is 64.2%. This reveals that di�erent information

sources are complementary to each other. The performance will

not be a�ected largely unless all the four inputs (i.e., NP, CP, ND,

CD) are removed.
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Table 4: Performance of UPE evaluated in terms of Pro�le EnrichmentAccuracy (PEA). In each cell, the �rst number represents

the PEA (%), and the number in parentheses shows the di�erence compared with CoMemNN. ↓ and | | denote a decrease and

no change compared to CoMemNN, respectively.

Discard Ratio 10% 30% 50% 70% 90% 100%

CoMemNN 99.99 99.93 99.82 99.83 99.38 98.98

CoMemNN-PEL 85.71 (↓14.28) 87.85 (↓12.08) 91.34 (↓8.48) 89.19 (↓10.64) 90.04 (↓9.34) 90.60 (↓8.38)

CoMemNN-NP 99.87 (↓0.12) 99.85 (↓0.08) 99.24 (↓0.58) 99.15 (↓0.68) 99.13 (↓0.25) 98.86 (↓0.12)

CoMemNN-NP-CP 98.89 (↓1.10) 99.09 (↓0.84) 99.16 (↓0.66) 99.20 (↓0.63) 99.14 (↓0.23) 98.92 (↓0.06)

CoMemNN-ND 99.72 (↓0.26) 99.87 (↓0.06) 99.80 (↓0.02) 99.46 (↓0.37) 98.72 (↓0.66) 97.23 (↓1.75)

CoMemNN-ND-CD 99.99 (| |0.00) 99.86 (↓0.07) 99.68 (↓0.14) 99.69 (↓0.14) 99.19 (↓0.19) 34.78 (↓64.2)

CoMemNN-ND-NP 99.09 (↓0.90) 98.98 (↓0.95) 97.95 (↓1.87) 97.69 (↓2.14) 97.06 (↓2.32) 97.23 (↓1.75)

Table 5: Ablation study onDRS evaluated in termsResponse SelectionAccuracy (RSA). In each cell, the �rst number represents

the RSA (%), and the number in parentheses shows the di�erence compared with CoMemNN. ↓ and ↑ denote decrease and

increase, respectively. Underlining marks results that are ≥1.0% higher than those of CoMemNN.

Discard Ratio 0% 10% 30% 50% 70% 90% 100%

CoMemNN 91.13 89.90 88.69 87.80 86.35 84.83 82.85

CoMemNN-PEL 90.84 (↓0.29) 90.29 (↑0.39) 89.07 (↑0.38) 87.18 (↓0.62) 85.42 (↓0.93) 80.54 (↓4.29) 81.23 (↓1.62)

CoMemNN-PEL-UPE 87.91 (↓3.22) 86.11 (↓3.79) 86.56 (↓2.13) 85.79 (↓2.01) 83.93 (↓2.42) 84.08 (↓0.75) 84.83 (↑1.98)

CoMemNN-NP 91.06 (↓0.07) 91.23 (↑1.33) 89.17 (↑0.48) 85.26 (↓2.54) 83.30 (↓3.05) 82.10 (↓2.73) 82.83 (↓0.02)

CoMemNN-NP-CP 86.60 (↓4.53) 86.10 (↓3.80) 84.56 (↓4.13) 83.53 (↓4.27) 82.48 (↓3.87) 81.95 (↓2.88) 81.35 (↓1.50)

CoMemNN-ND 90.91 (↓0.22) 87.33 (↓2.57) 89.06 (↑0.37) 87.49 (↓0.31) 86.59 (↑0.24) 85.38 (↑0.55) 85.41 (↑2.56)

CoMemNN-ND-CD 87.70 (↓3.43) 90.44 (↑0.54) 85.79 (↓2.90) 84.90 (↓2.90) 83.56 (↓2.79) 82.57 (↓2.26) 85.38 (↑2.53)

CoMemNN-ND-NP 90.04 (↓1.09) 91.08 (↑1.18) 89.23 (↑0.54) 87.38 (↓0.42) 85.76 (↓0.59) 85.46 (↑0.63) 85.41 (↑2.56)

Lastly, we compute the stability coe�cient σ (Eq. 13) of the

variants in Table 4 which are 0.1867, 1.8781, 0.2236, 0.1402, 25.6845,

0.1867, 0.4182, respectively. This shows that all variants are robust

in terms of the performance of UPE with small stability coe�cient,

except for CoMemNN-ND-CD.

6.2 Ablation study on RSA (Q2)

We investigate the RSA performance of di�erent variants in Table 5.

First, the performance decreases generally by removing any

component of UPE. In particular, CoMemNN-PEL has a greater

e�ect on RSA when the pro�le discard ratios get larger. This is

reasonable because the larger the pro�le discard ratio, the more

space for improvement the proposed model has compared with

NPMemNN. CoMemNN-PEL-UPE is inferior to CoMemNN-PEL

generally, which means that the UPE module helps as it implic-

itly impact the DRS loss (Eq. 10). But this ability weakens when the

pro�le discard ratio is larger than 90%.

Second, we observe that the four information sources (i.e., NP,

CP, ND, CD) have di�erent e�ects under di�erent pro�le discard

ratios. Particularly, the pro�les of the current users and their neigh-

bors generally contribute most to the RSA performance. We can

see that CoMemNN-NP-CP drops 1.50%–4.53% under all pro�le dis-

card ratios. The reason is that user pro�les directly store personal

information; it is easier to infer missing values from collaborative

user pro�les than from dialogues.

Third, we �nd that NP and ND are complementary to each other.

CoMemNN-NP either has a massive drop (2.54%–3.05%) or small

changes (≤0.48%) with the most pro�le discard ratios, except for

one obvious rise (1.33%) under the 10% pro�le discard ratio. In

contrast, CoMemNN-ND works �ne under the 10% pro�le discard

ratio, but it performs poorly for the rest. Thus, the performance of

CoMemNN is in�uence strongly by a drop in attribute values unless

we remove both NP and ND under 100% pro�le discard ratios.

Lastly, the dialogue history also contributes to the RSA perfor-

mance in most cases. CoMemNN-ND-CD shows decrease (2.26%–

3.43%) or a small change (0.54%) for most of cases, except for an

obvious increase under the 100% pro�le discard ratio. We think

that the reason is that some of the predicted pro�les are not even

in provided pro�les, which leads to a very limited PEA score of

34.78% under the 100% pro�le discard ratio (see Table 4). But these

predicted values happen to be useful for selecting an appropriate

response in DRS.

6.3 E�ect of multiple-hop mechanism (Q2)

We compare the RSA performance of CoMemNN and NPMemNN

with di�erent numbers of hops. The results are shown in Table 6.

We see that CoMemNN greatly outperforms NPMemNN by a

large margin (1.96%–3.56%) with all number of hops. This fur-

ther con�rms the non-trivial improvement of CoMemNN. Besides,

CoMemNN improves by 1.06% when the number of hop changes

from 1 to 3 and slightly decreaseswith 4. Thismeans that CoMemNN

bene�ts from a multiple-hop mechanism.

1559



A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 6: Analysis of the e�ect of hop number on DRS. Bold

face indicates leading results. Signi�cant improvements

over NPMemNN are marked with ∗ (paired t-test, p < 0.01).

The values of Di�. are computed by absolute di�erence of

RSA (%) between CoMemNN and NPMemNN.

#Hop 1 2 3 4

NPMemNN 88.11 87.22 87.91 87.61

CoMemNN 90.07∗ 90.78∗ 91.13∗ 90.77∗

Di�. 1.96 3.56 3.22 3.16

6.4 E�ect of di�erent pro�le attributes (Q3)

We explore how the four types of pro�le attributes (i.e., gender, age,

dietary preference, and favorite food) a�ect the RSA performance.

The results are shown in Table 7.

Table 7: Analysis of pro�le attribute importance to DRS. Dis-

card attribute table shows we discard all values of a speci�c

attribute or a combination of two speci�c attributes. Retain

attribute table shows we retain all values of a speci�c at-

tribute and discard all values for the rest. Underline indi-

cates the lower bound baseline that retains no attributes.

Bold face indicates the upper bound baseline that retains all

attributes.

Discarded attribute none gender age dietary favorite all

gender / 93.05 91.94 88.86 91.95 /

age / / 92.26 89.37 91.04 /

dietary / / / 86.74 86.42 /

favorite / / / / 90.25 /

Retained attribute 82.85 87.46 87.93 90.57 87.37 91.13

First, each attribute works well in isolation. Speci�cally, when we

only retain the values of each single attribute, we obtain the results

in the last row as 87.46%, 87.93%, 90.57%, 87.37% for gender, age,

dietary, favorite, respectively. The attribute “dietary” contributes

most followed by “age”, “gender” and “favorite.”

Second, di�erent types of attributes depend on each other and

in�uence the RSA performance di�erently. If we only remove the

values of one attribute, we get the results on the diagonal: 93.05%,

92.26%, 86.74%, 90.25%, respectively. Removing “dietary” drops most

followed by “favorite.” Thus, “dietary” contributes more than the

rest.

An exception is that the RSA performance increases when dis-

carding “gender” and “age.” We believe this is the e�ect of the

neighbors. To show this, we further investigate the e�ect of “gen-

der” and “age” without using neighbor information. The results are

shown in Table 8.

We can see that removing “gender” and “age” decreases the

performance in this case. Thus, the di�erent e�ects of “gender” and

“age” are due to the neighbors.

7 CONCLUSION

In this paper, we have studied personalized TDSs without assuming

that we have complete user pro�les. We have proposed Cooperative

Table 8: Analysis of pro�le attribute importance to DRS

without the e�ect of neighbors. Bold face indicates the base-

line of CoMemNN without neighbors. In each cell, the �rst

number represents the RSA (%), and the number in paren-

thesis shows the di�erence values, and ↓ denotes decrease

compared with the baseline.

RSA (Di�.)

CoMemNN w/o neighbors 90.34

CoMemNN w/o neighbors - gender 88.25 (↓2.09)

CoMemNN w/o neighbors - age 85.62 (↓4.72)

CoMemNN w/o neighbors - gender - age 83.73 (↓6.61)

Memory Network (CoMemNN), which introduces a cooperative

mechanism to enrich user pro�les gradually as dialogues progress,

and to improve response selection based on enriched pro�les simul-

taneously. We also devise a learning algorithm to e�ectively learn

CoMemNN with multiple hops.

Extensive experiments on the personalized bAbI dialogue (PbAbI)

dataset demonstrate that CoMemNN signi�cantly outperforms state-

of-the-art baselines. Further analysis experiments con�rm the ef-

fectiveness of CoMemNN by analyzing the performance and con-

tribution of each component.

A limitation of our work is that we tested the performance of

CoMemNN on the only open available personalized TDSs dataset

PbAbI.We encourage the community to work on creating additional

resources for this task.

As to future work, we hope to experiment on more datasets and

investigate how the performance varies on di�erent datasets and

whether we can further improve the performance by leveraging

non-personalized TDS datasets.
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