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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Designing a user interface is an ill-defined problem 

making cooperative problem solving systems a promising 

approach to support user interface designers. Cooperative 

problem solving systems are modular systems that support 

the human designer with multiple, independent system 

components. We present a system architecture and an 

implemented system, FRAMER, that demonstrate the 

cooperative problem solving approach. FRAMER represents 

design knowledge in formal, machine-interpretable 

knowledge sources such as critics and dynamic specifica- 

tion sheets, and in semi-formal knowledge sources such as 

a palette of user interface building blocks and a checklist. 

Each of these components contributes significantly to the 

overall usefulness of the system while requiring only 

limited resources to be designed and implemented. ’ 

Cooperative Problem Solving 

Artificial intelligence research has traditionally focused on 

building systems that autonomously solve complex 

problems (e.g., Rl/XCON (McDermott, 1982) and 

MYCIN (Buchanan, Shortliffe, 1984)). This approach is 

however not easily applicable in ill-defined problem 

domains, such as user interface design. Consistency 

(Grudin, 1989), learnability, and many other concepts of 

user interface design cannot be adequately formalized in a 

precise way. 

Alternatively, one can design cooperative problem solv- 

ing systems (Fischer, 1988) that work in conjunction with 

human problem solvers rather than replacing them. 

Cooperative problem solving systems are located between 

systems that design with human guidance (e.g., UofA*, 

(Singh, Green, 1989)) and passive CAD tools (e.g., 

MENULAY, (Buxton et al., 1983)). 

A desirable characteristic of practical cooperative 

problem solving systems is a modular, incremental ar- 

chitecture with simple but extensible components. In con- 

trast, many intelligent support systems that have been 
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proposed carry a heavy weight of complex system com- 

ponents. For example, a natural language based help sys- 

tem requires a natural language understanding component, 

a problem solver, and a natural language generator. Each 

of these components is large and complex, and all three 

components have to exist for the whole system to function 

properly. A system with an incremental architecture, 

however, can be gradually improved by extending its com- 

ponents and by adding new components. There is a low 

threshold for creating a low-end system and quickly intro- 

ducing it into practical use. 

To build effective cooperative problem solving systems, 

the limitations of both autonomous expert systems and 

human problem solvers must be understood. This 

knowledge will enable us to complement intclligcnt 

machines where they are limited, and to augment the 

human intellect where it needs support. Contributions 

from the machine must enable the human to proceed in 

ways that were not possible without them and vice versa. 

Among the limitations of autonomous intclligcnt 

machines are the difficulty of capturing a sufficiently com- 

plete store of domain knowledge, the opaqueness of expert 

decision making process, the specification problem, and 

issues of conflicting and subjective practice. Of thcsc, the 

specification problem is one of the hardest to ovcrcomc. It 

refers to the fact that, for ill-defined problems (Eastman, 

1969; Simon, 1973), specification and solution arc 

developed hand in hand and not in sequence (Rittel, 1972; 

Swartout, Balzer, 1982). At the start of a design process, a 

specification may be lacking in at least two ways. First, 

the specification may be incomplete, i.e., certain charac- 

teristics of the artifact have been left unspecified although 

they are important. For example, the behavior of com- 

puter systems in exceptional situations is often left un- 

specified. Second, for some characteristics, the desired 

values may yet be unknown, for example, because their 

consequences have not been evaluated. For these 

problems, an interactive approach is ncccssLary because the 

human is unable to specify all the relevant information and 

preferences in advance and because specifying the 

problem is itself a problem solving process. 

Human problem solving is limited by fundamental cog- 

nitive limitations such as short term memory capacity, for- 

getting, and slow long term memory access. At a higher 

level, it has been found that inexperienced problem solvers 

LEMKEANDFISCHER 479 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



do not consider and deliberate enough alternatives but 

rather use the first one they find (Jeffries et al., 1981). 

Humans do not search for information of whose existence 

they are unaware (Fischer, 1989), and they are unable to 

keep all relevant factors in mind when making decisions. 

The purpose of our systems is to reduce the knowledge 

needed to design and to help less experienced designers 

achieve better results by providing external knowledge 

sources. Cooperative problem solving systems must be 

able to communicate design knowledge to the user. Typi- 

cal AI knowledge representation formalisms, such as rules 

or frames, are designed to be efficiently executable by 

inference engines but are not necessarily applicable in 

cooperative problem solving systems where the knowledge 

must be interpreted by humans as well. Our approach is 

based on a combination of formal, machine-interpretable 

and semi-formal knowledge sources that can only partially 

used by the system to control its actions. The kinds of 

semi-formal knowledge structures we are employing are 

easier to acquire and modify than formal knowledge struc- 

tures (Peper, MacIntyre, Keenan, 1989). Semi-formal 

knowledge structures are also useful in ill-defined problem 

domains where concepts and relationships cannot always 

be captured in a complete, executable way. Semi-formal 

knowledge structures alone, however, can not give users 

sufficient support-they have to do “all the work.” Thus, 

we complement them with formal knowledge structures 

that allow the system to solve well-defined subproblems 

for the user. 

In the following section, we describe a system architec- 

ture for .cooperative problem solving systems that ad- 

dresses these questions. The architecture employs system 

components that serve as formal and semi-formal 

knowledge sources. 

Framer: A Cooperative User Interface 

Design Environment 

Our research has focussed on devising methods and tools 

to support the above-mentioned design activities. We 

describe our results using the example of the FRAMER 

design environment. FRAMER (Figure 1) is a knowledge- 

based design environment for program frameworks, which 

are high-level building blocks for window-based user in- 

terfaces. Program frameworks consist of a window frame 

of nonoverlapping panes and an event loop for processing 

mouse clicks, keyboard input, and other input events. 

Program frameworks also manage the update of infor- 

mation displayed on the screen. The current Framer sys- 

tem and its architecture is the result of an iterative 

development process that has gone through three major 

stages: tool kits, construction kits, and knowledge-based 

design environments. In this sequence, each later stage is 

an extension of its predecessor. We describe version 2 of 

the FRAMER system, which is based on experience with 

FRAMERS . 

Tool Kits 

The first stage, tool kits, aims at providing domain- 

oriented building blocks, such as windows and menus. 

Examples of tool kits are Xlib, NextStep, and the Macin- 

tosh toolbox. Tool kits enable designers to work in terms 

of concepts of their domain of expertise rather than at the 

level of a general-purpose programming language. 

FRAMER uses the Symbolics user interface toolkit, spccifi- 

tally program frameworks and different kinds of windows 

and menus. Tool kits represent a limited amount of design 

knowledge that was used in the design of the building 

blocks. 

Construction Kits 

Toolkits provide domain-oriented building blocks, but 

they do not support the processes of finding and combin- 

ing the blocks4esigners have to know what blocks exist 

and how they are used. Construction kits address this 

problem by providing a palette and a work area (see 

Figure 1). The palette displays representations of the 

building blocks and thus shows what they are and makes 

them easily accessible. The palette provides an answer to 

the question what the possible components of the design 

are. The work area is the principal medium for design and 

construction in the FRAMER design environment. This is 

where the designer builds a window layout by assembling 

building blocks taken from the palette. Examples of user 

interface construction kits are the Symbolics FrameUp 

system, MENLJLAY (Buxton et al., 1983), the Next user 

interface builder, and WIDES and TRIKIT (Fischer, 

Lemke, 1988). 

Design Environments 

Knowledge-based design environments address shortcom- 

ings that we have found in construction kits. Construction 

kits support design of interfaces at a syntactic level only, 

and our experience with this class of systems has shown 

that it is easy to create a functioning interface, but creating 

a good interface requires a great deal of additional 

knowledge that is not provided by construction kits. 

Design environments provide additional design knowledge 

through critics, checklists, and other means described 

below. 

Critics. Critics are a formal knowledge source in 

FRAMER. Critics (Fischer et al., 1990) are demons that 

evaluate the evolving artifact. When the system detects a 

suboptimal aspect of the artifact, it displays a message 

describing the shortcoming in the critic window entitled 

“Things to take care of” (Figure 1) The critics trigger as 

soon as the designer makes an inferior design decision and 

they update the critic window continuously. 

FRAMER2 distinguishes between mandatory and 

optional suggestions. Mandatory suggestions must bc 

carried out by the designer. They represent system re- 

quirements for the construction of a functioning program 

framework. For example, a frame must be completely 

covered with panes if correct LISP code is to be generated, 
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Check List  
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Framer2 Version 4.0 

1 What you can do: 
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Yes neans that  users nay invoke connands by typi 
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low  evaluat ion of lisp expressions: Yes No 

Yes neans that  users nay type in arbitrary lisp 
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“g thelr “anes to a listener or 

expressi o”s, w hich your program w ill 

I 
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Yes neans that  users nay invoke connands by typing a single key on the keyboard. For 
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w ould be defined by specifying :ke ybo ard-ac c e le rato r #\c-I ) in the definit ion of the 

i ; delete connand. 

Things to take care of: 

-Add a listener or interactor pane, or disallow  

typed connands and lisp expressions. (Re quire d) 

pGiq 

w ont nrea Palette 

ttckz-pane 

Implay-pane 

m 

I lillm.,pmrI  

tnteractor-pane 

+zG-G-j 

menu-pane 

Figure 1: FRAMER 

In the situation shown in the figure, the designer makes a decision about what types of user input should be supported in the 

interface. The system responds to this decision by displaying a critic message in the critic window entitled “ Things to take care 

of.”  The critic message identifies a discrepancy between the specification sheet (entitled “ What you can do” ) and the work 

area. The designer can either modify the window layout in the work area or change the specification sheet. 

and the suggestion to take care of this is mandatory. Op- 

tional suggestions recommend typical design choices, but 

they can be ignored by the designer if desired. The 

Explain button accesses prestored explanations of why the 

system critiques and what the designer can do about it. 

Designers can indicate their intent to disregard the sugges- 

tion through the Reject operation. For some critic mes- 

sages, a Remedy operation is available; that is, FRAMER 
can provide a default solution for a problem it has 

detected. 

Critics provide heuristics to decide design questions and 

point out interactions between different subproblems. The 

critic knowledge base contains rules about naming the 

program, arranging window panes, specific knowledge 

about title panes, dialog panes, and menu panes, and 

knowledge about invoking a program and selecting inter- 

action modes. These rules are based on a study of existing 

systems in our computing environment. We interviewed 

the system designers and elicited the rules they were using. 

Some of the rules represent system constraints, for ex- 

ample, that a window frame must be complctcly divided 

up into panes. Other rules concern the consistency among 

different applications and functional grouping. 

Figure 2 shows a typical critic rule. This rule contains 

knowledge about the relationship of interaction mode and 

configuration of window panes in the interface. If the 

mouse-and-keyboard interaction mode is selected, then the 

rule suggests adding a dialog pane. A Remedy action is 

also defined. Invoking the Remedy operation associated 

with this rule causes the system to add a listener pane at 

the bottom of the window frame. 

The critics in FRAMERS were passive, i.e., had to be 

explicitly invoked by the designer. FRAMERS was tcstcd 
in a video-taped thinking-aloud study, which showed that 

the critics substantially improved the performance of user 

interface designers when compared to a construction kit. 

But the passive critics failed to be effective in some cases. 

Subjects invoked the critics only after they thought they 

LEMKE AND FISCHER 481 



;; A critic rule named need-dialog-pane. 

(define-critic-rule need-dialog-pane 

* * I I Applicability condition. This rule is applicable if the 

;: interaction mode is mouse-and-keyboard. 

:applicability (equal Sinteraction-mode 

mouse-and-keyboard) 

:; The rule is violated if there is no pane of type dialog-pane 

* l I I in the set on inferiors of a program framework. 

:condition 

(not (exists x (type x dialog-pane))) 

* l I I The Remedy operation adds a listener-pane. 

:remedy 

(let ((pane(make-instance 'listener-pane 

:x (+ x 20) :y (+ y 184) 

:superior self))) 

(add-inferior self pane) 

(display-icon pane)) 

:: Text of the suggestion made to the user if critic is 

:; applicable. 

:suggestion 

"Add a listener or interactor pane, or 

set the interaction mode to mouse-only." 

; ; Text for Praise command. 

:praise 

"There is a listener or interactor pane." 

;; Text for Explain command. 

:explanation "Since the interaction mode 

is mouse-and-keyboard, a dialog pane is 

required for typing in commands.") 

Figure 2: An Example of a Critic Rule 

This is a slightly paraphrased FRAMER critic rule that applies to 

program frameworks. The rule suggests adding a listener or inter- 

actor pane if the interaction mode mouse-and-keyboard was 

specified. 

had completed the design. Thus, the critics were not ac- 

tivated early enough to prevent designers from going down 

garden paths. In FRAMER& the system described here, an 

active critiquing strategy has been chosen and has proved 

to be much more effective. 

Specification Sheets. The window layout of an interface 

has a natural graphical representation as shown in the 

work area. This is, however, not true of all characteristics 

of an interface. Behavioral characteristics, for instance, 

must be described in a different way. In the FRAMER 

system, these other characteristics are described in a sym- 

bolic way as fillers in the fields of a specification sheet 

(see the “What you can do” window in Figure 1). 

Through the sheet, the system brings design issues and 

their possible answers to the user’s attention. Associated 

texts explain the significance and consequences of the dif- 

ferent design choices. 

In the example of Figure 1, the designer makes a deci- 
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sion about what types of user input should be supported in 

the interface. The system responds to this decision by 

displaying a critic message in the critic window enti tlcd 

“Things to take care of.” The system can also respond by 

modifying the construction situation in the work arca. 

This is accomplished through procedural demons attached 

to the fields of the specification sheet. The specification 

sheet is dynamic in that the set of fields in the sheet is 

dynamically determined based on information that the 

designer has previously specified. 

Catalog. The catalog is a collection of predesigncd ar- 

tifacts illustrating the space of possible designs in the 

domain. Rather than starting from scratch, the designer 

starts the design process by invoking the catalog (Figure 3) 

and selecting a suitable program framework in the catalog. 

The selected framework is inserted into the work arca, and 

the designer modifies and adapts it to fit the rcquiremcnts 

of the problem. Our experiments have shown that USC of 

the catalog can substantially reduce the difficulties in 

using the design environment. The catalog provides 

design knowledge in the form of concrete examples that 

allow reuse and case-based design. 

Select a Dronram framework to start out with. 

:RRMER2 : This is the progran franew ork of the Framer system 

itself. It supports typed command input, evaluat ion of lisp 

rxpressi ons, and single key abbreviat ions for comnands. 

Example 3 of 4. 

Previous Next Select This Framework Abort 

Figure 3: The FRAMER=! Catalog 

Users of FQAMER~ tended to design frameworks from 

scratch without using the catalog. In FRAMER& the use of 

the catalog has been made mandatory, which climinatcd 

many low-level tasks. Making the use of the catalog man- 

datory is not really a restriction because designers can 

choose very generic frameworks that are almost equivalent 

to starting from scratch. However, subjects did use more 

complex examples from the catalog. 

Checklist. Another problem in FRAMERS was that dcsig- 

ners who were not familiar with the program framework 

abstraction were unable to decide what steps had to bc 

done to create a complete functional program framework. 

The checklist in FRAMER2 addresses this problem by 

providing the designers with an explicit problem dccom- 

position that is appropriate for the design of program 



System System communicates to user (unin- System communicates to user (inter- 

Component User communicates to system terpreted knowledge) preted knowledge) 

checklist current focus of attention how to decompose design problem raise subproblems depending on infor- 

mation from designer 

palette What primitive components are used What are the primitive components? - 

in the artifact? 

specification User symbolically specifies answers to System brings design issues to the System raises design issues depending 

sheets design issues. designer’s attention. on information from the designer. 

System presents potential answers. System updates artifact according to 

System explains significance and con- 
specified information. 

sequences of different design choices. 

critics User may reject the system’s critique. - System points out suboptimal design 

decisions. 

System explains why it objects. 

Critics provide heuristics for making 

decisions. 

catalog 

code 

generator 

User selects an artifact to reuse and 

modify. 

System provides design knowledge in - 

the form of examples, allows “ case- 

based”  design. 

System generates an executable 

representation of the designated ar- 

tifact. 

Table 1: Components of Cooperative Problem Solving Systems 

frameworks. 

The checklist serves as the main organizing tool for the 

interaction with F'RAMER. With the checklist, the system 

indicates to the user how to decompose the problem of 

designing a program framework, and it helps to ensure that 

designers attend to all necessary issues, even if they do not 

know about them in advance. Each item in the checklist is 

one subproblem of the total design process. By selecting a 

checklist item, designers tell the system their current focus 

of attention in the design process. 

When the designer selects an subproblem in the check- 

list, the system responds by displaying the corresponding 

options in the specification sheet shown in the neighboring 

“What you can do” window and, thus, provides further 

detail about the subproblem. The critics are grouped ac- 

cording to the checklist items. The critic pane always 

displays exactly those critic messages that are related to 

the currently selected checklist item. 

When designers believe that the topic of one checklist 

item has been completed, they indicate this fact to the 

system by checking off the associated check box. This 

causes the system to verify whether all constraints 

represented in the active critics are satisfied. Only then 

does the system insert a check mark into the check box. 

By showing check marks for completed subproblems, the 

checklist is also a tool for the designer to keep track of 

which issues have or have not been resolved. 

The exact set of checklist items displayed depends on 

the designer’s previous design decisions. The system dis- 

plays only those items that are currently relevant (i.e., it is 

context-sensitive); for example, the prompt item is only 

displayed if command-based interaction is specified. 

Code Generator. The ultimate goal of user interface 

design is the generation of an executable program code, 

and the design activity supported by FRAMER can be 

viewed as creating a specification for the code. The code 

generator component of FRAMER is an formal knowledge 

source that takes care of creating syntactically correct, ex- 

ecutable code. 

An Architecture for Cooperative Problem 

Solving Systems 

FRAMER cooperates with the user in a structured dialog 

mediated through the following system components: 

checklist, palette, specification sheets, critics, catalog, and 

code generator. Table 1 shows how these diffcrcnt com- 

ponents contribute to the cooperative problem solving 

process. 

The cooperative system architecture of FRAMER was 

designed to cope with the ill-structured nature of the user 

interface domain. Most cooperative design support sys- 

tems operate in well-defined domains. For example, 

PRIDE (Mittal, Araya, 1986) operates in the well-defined 

domain of paper path design for copiers. In this domain, 

the design problem can be complctcly specified and 

decomposed in advance, and for each design question 

there is a well-known set of possible answers. These 
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premises are not true for the user interface domain. The 

challenge for the FRAMER system was to define an ar- 

chitecture that can support designers effectively even if the 

system’s knowledge is incomplete. 

Conclusions and Ongoing Research 

The goal of this work is to build a cooperative support 

system for user interface design. For cooperative systems, 

not only internal representation and reasoning mechanisms 

but, in particular, the external presentation and com- 

munication of that knowledge to the user is of crucial im- 

portance. The proposed architecture provides a migration 

path from simple tool kits to sophisticated design environ- 

ments. By incrementally adding relatively simple com- 

ponents such as critics and checklists, the utility of a sup- 

port system can be significantly improved. 

Our approach was driven by the needs of designers, i.e., 

their needs for support in decomposing the problem, find- 

ing applicable building blocks, and understanding the ef- 

fects of design decisions. Knowledge-based design en- 

vironments are unique in addressing these needs with a 

rich set of semi-formal and formal knowledge sources. 

The FRAMER system is an object of ongoing research in 

several directions. The existence of the knowledge 

sources in FRAMER does not guarantee that users find and 

take advantage of them, and the control of the user’s atten- 

tion to the great variety of available information becomes 

a problem. We are investigating ways to control attention 

using a cognitive modeling approach using the construc- 

tion integration model of cognition (Kintsch, 1989). 

Another active research area is the design of generaliza- 

tions of the checklist and the specification sheets. These 

two components taken together represent a two level 

hierarchy of design issues. We are extending this to an 

unlimited number of levels by using the concept of issue- 

based information systems (IBIS) in the form of (McCall, 

1987). Issue-based information systems represent ar- 

gumentative design knowledge as hierarchies of issues, 

answers, and arguments for or against choosing those 

answers. To make an IBIS component more responsive, 

we are adding active mechanisms similar to the ones found 

in the checklist and the specification sheets. 
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