
A Cooperative Problem Solving System

for User Interface

Andreas C. Lemke and Gerhard Fischer

Department of Computer Science and Institute of Cognitive Science

Engineering Center ECOT 7-7, University of Colorado, Boulder, CO 803094430

(andreas, gerhard) @ boulder.colorado.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Designing a user interface is an ill-defined problem

making cooperative problem solving systems a promising

approach to support user interface designers. Cooperative

problem solving systems are modular systems that support

the human designer with multiple, independent system

components. We present a system architecture and an

implemented system, FRAMER, that demonstrate the

cooperative problem solving approach. FRAMER represents

design knowledge in formal, machine-interpretable

knowledge sources such as critics and dynamic specifica-

tion sheets, and in semi-formal knowledge sources such as

a palette of user interface building blocks and a checklist.

Each of these components contributes significantly to the

overall usefulness of the system while requiring only

limited resources to be designed and implemented. ’

Cooperative Problem Solving

Artificial intelligence research has traditionally focused on

building systems that autonomously solve complex

problems (e.g., Rl/XCON (McDermott, 1982) and

MYCIN (Buchanan, Shortliffe, 1984)). This approach is

however not easily applicable in ill-defined problem

domains, such as user interface design. Consistency

(Grudin, 1989), learnability, and many other concepts of

user interface design cannot be adequately formalized in a

precise way.

Alternatively, one can design cooperative problem solv-

ing systems (Fischer, 1988) that work in conjunction with

human problem solvers rather than replacing them.

Cooperative problem solving systems are located between

systems that design with human guidance (e.g., UofA*,

(Singh, Green, 1989)) and passive CAD tools (e.g.,

MENULAY, (Buxton et al., 1983)).

A desirable characteristic of practical cooperative

problem solving systems is a modular, incremental ar-

chitecture with simple but extensible components. In con-

trast, many intelligent support systems that have been

‘This research was partially supported by grants No.

DCR-8420944 and No. IRI-8722792 from the National Science

Foundation, grant No. MDA903-86CO143 from the Army

Research Institute, and grants from the Intelligent Interfaces

Group at NYNEX and from Software Research Associates

(SRA), Tokyo.

proposed carry a heavy weight of complex system com-

ponents. For example, a natural language based help sys-

tem requires a natural language understanding component,

a problem solver, and a natural language generator. Each

of these components is large and complex, and all three

components have to exist for the whole system to function

properly. A system with an incremental architecture,

however, can be gradually improved by extending its com-

ponents and by adding new components. There is a low

threshold for creating a low-end system and quickly intro-

ducing it into practical use.

To build effective cooperative problem solving systems,

the limitations of both autonomous expert systems and

human problem solvers must be understood. This

knowledge will enable us to complement intclligcnt

machines where they are limited, and to augment the

human intellect where it needs support. Contributions

from the machine must enable the human to proceed in

ways that were not possible without them and vice versa.

Among the limitations of autonomous intclligcnt

machines are the difficulty of capturing a sufficiently com-

plete store of domain knowledge, the opaqueness of expert

decision making process, the specification problem, and

issues of conflicting and subjective practice. Of thcsc, the

specification problem is one of the hardest to ovcrcomc. It

refers to the fact that, for ill-defined problems (Eastman,

1969; Simon, 1973), specification and solution arc

developed hand in hand and not in sequence (Rittel, 1972;

Swartout, Balzer, 1982). At the start of a design process, a

specification may be lacking in at least two ways. First,

the specification may be incomplete, i.e., certain charac-

teristics of the artifact have been left unspecified although

they are important. For example, the behavior of com-

puter systems in exceptional situations is often left un-

specified. Second, for some characteristics, the desired

values may yet be unknown, for example, because their

consequences have not been evaluated. For these

problems, an interactive approach is ncccssLary because the

human is unable to specify all the relevant information and

preferences in advance and because specifying the

problem is itself a problem solving process.

Human problem solving is limited by fundamental cog-

nitive limitations such as short term memory capacity, for-

getting, and slow long term memory access. At a higher

level, it has been found that inexperienced problem solvers

LEMKEANDFISCHER 479

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

do not consider and deliberate enough alternatives but

rather use the first one they find (Jeffries et al., 1981).

Humans do not search for information of whose existence

they are unaware (Fischer, 1989), and they are unable to

keep all relevant factors in mind when making decisions.

The purpose of our systems is to reduce the knowledge

needed to design and to help less experienced designers

achieve better results by providing external knowledge

sources. Cooperative problem solving systems must be

able to communicate design knowledge to the user. Typi-

cal AI knowledge representation formalisms, such as rules

or frames, are designed to be efficiently executable by

inference engines but are not necessarily applicable in

cooperative problem solving systems where the knowledge

must be interpreted by humans as well. Our approach is

based on a combination of formal, machine-interpretable

and semi-formal knowledge sources that can only partially

used by the system to control its actions. The kinds of

semi-formal knowledge structures we are employing are

easier to acquire and modify than formal knowledge struc-

tures (Peper, MacIntyre, Keenan, 1989). Semi-formal

knowledge structures are also useful in ill-defined problem

domains where concepts and relationships cannot always

be captured in a complete, executable way. Semi-formal

knowledge structures alone, however, can not give users

sufficient support-they have to do “all the work.” Thus,

we complement them with formal knowledge structures

that allow the system to solve well-defined subproblems

for the user.

In the following section, we describe a system architec-

ture for .cooperative problem solving systems that ad-

dresses these questions. The architecture employs system

components that serve as formal and semi-formal

knowledge sources.

Framer: A Cooperative User Interface

Design Environment

Our research has focussed on devising methods and tools

to support the above-mentioned design activities. We

describe our results using the example of the FRAMER

design environment. FRAMER (Figure 1) is a knowledge-

based design environment for program frameworks, which

are high-level building blocks for window-based user in-

terfaces. Program frameworks consist of a window frame

of nonoverlapping panes and an event loop for processing

mouse clicks, keyboard input, and other input events.

Program frameworks also manage the update of infor-

mation displayed on the screen. The current Framer sys-

tem and its architecture is the result of an iterative

development process that has gone through three major

stages: tool kits, construction kits, and knowledge-based

design environments. In this sequence, each later stage is

an extension of its predecessor. We describe version 2 of

the FRAMER system, which is based on experience with

FRAMERS .

Tool Kits

The first stage, tool kits, aims at providing domain-

oriented building blocks, such as windows and menus.

Examples of tool kits are Xlib, NextStep, and the Macin-

tosh toolbox. Tool kits enable designers to work in terms

of concepts of their domain of expertise rather than at the

level of a general-purpose programming language.

FRAMER uses the Symbolics user interface toolkit, spccifi-

tally program frameworks and different kinds of windows

and menus. Tool kits represent a limited amount of design

knowledge that was used in the design of the building

blocks.

Construction Kits

Toolkits provide domain-oriented building blocks, but

they do not support the processes of finding and combin-

ing the blocks4esigners have to know what blocks exist

and how they are used. Construction kits address this

problem by providing a palette and a work area (see

Figure 1). The palette displays representations of the

building blocks and thus shows what they are and makes

them easily accessible. The palette provides an answer to

the question what the possible components of the design

are. The work area is the principal medium for design and

construction in the FRAMER design environment. This is

where the designer builds a window layout by assembling

building blocks taken from the palette. Examples of user

interface construction kits are the Symbolics FrameUp

system, MENLJLAY (Buxton et al., 1983), the Next user

interface builder, and WIDES and TRIKIT (Fischer,

Lemke, 1988).

Design Environments

Knowledge-based design environments address shortcom-

ings that we have found in construction kits. Construction

kits support design of interfaces at a syntactic level only,

and our experience with this class of systems has shown

that it is easy to create a functioning interface, but creating

a good interface requires a great deal of additional

knowledge that is not provided by construction kits.

Design environments provide additional design knowledge

through critics, checklists, and other means described

below.

Critics. Critics are a formal knowledge source in

FRAMER. Critics (Fischer et al., 1990) are demons that

evaluate the evolving artifact. When the system detects a

suboptimal aspect of the artifact, it displays a message

describing the shortcoming in the critic window entitled

“Things to take care of” (Figure 1) The critics trigger as

soon as the designer makes an inferior design decision and

they update the critic window continuously.

FRAMER2 distinguishes between mandatory and

optional suggestions. Mandatory suggestions must bc

carried out by the designer. They represent system re-

quirements for the construction of a functioning program

framework. For example, a frame must be completely

covered with panes if correct LISP code is to be generated,

480 INTELLIGENTINTERFACES

Check List

q (Init ial progran framew ork)

la{ Progran nane

q Invoking this progran

fl ~Rrrangenent of panes 5

El< Connand loop funct ion

El< Connand defining nacro

=>fg (
Types of input

• I pGq

la< Conmand tables

fq Code Generat ion

Framer2 Version 4.0

1 What you can do:

low typed commands: Yes No

Yes neans that users nay invoke connands by typi

interactor pane.

low evaluat ion of lisp expressions: Yes No

Yes neans that users nay type in arbitrary lisp

eualuate.

I I !Rll ow single key abbreviat ions for connands: Yes No

“g thelr “anes to a listener or

expressi o”s, w hich your program w ill

I
; i
; i

Yes neans that users nay invoke connands by typing a single key on the keyboard. For

i i example typing Control-D w ould invoke a delete connand. This single key abbreviat ion

; j

i !

w ould be defined by specifying :ke ybo ard-ac c e le rato r #\c-I) in the definit ion of the

i ; delete connand.

Things to take care of:

-Add a listener or interactor pane, or disallow

typed connands and lisp expressions. (Re quire d)

pGiq

w ont nrea Palette

ttckz-pane

Implay-pane

m

I lillm.,pmrI

tnteractor-pane

+zG-G-j

menu-pane

Figure 1: FRAMER

In the situation shown in the figure, the designer makes a decision about what types of user input should be supported in the

interface. The system responds to this decision by displaying a critic message in the critic window entitled “ Things to take care

of.” The critic message identifies a discrepancy between the specification sheet (entitled “ What you can do”) and the work

area. The designer can either modify the window layout in the work area or change the specification sheet.

and the suggestion to take care of this is mandatory. Op-

tional suggestions recommend typical design choices, but

they can be ignored by the designer if desired. The

Explain button accesses prestored explanations of why the

system critiques and what the designer can do about it.

Designers can indicate their intent to disregard the sugges-

tion through the Reject operation. For some critic mes-

sages, a Remedy operation is available; that is, FRAMER
can provide a default solution for a problem it has

detected.

Critics provide heuristics to decide design questions and

point out interactions between different subproblems. The

critic knowledge base contains rules about naming the

program, arranging window panes, specific knowledge

about title panes, dialog panes, and menu panes, and

knowledge about invoking a program and selecting inter-

action modes. These rules are based on a study of existing

systems in our computing environment. We interviewed

the system designers and elicited the rules they were using.

Some of the rules represent system constraints, for ex-

ample, that a window frame must be complctcly divided

up into panes. Other rules concern the consistency among

different applications and functional grouping.

Figure 2 shows a typical critic rule. This rule contains

knowledge about the relationship of interaction mode and

configuration of window panes in the interface. If the

mouse-and-keyboard interaction mode is selected, then the

rule suggests adding a dialog pane. A Remedy action is

also defined. Invoking the Remedy operation associated

with this rule causes the system to add a listener pane at

the bottom of the window frame.

The critics in FRAMERS were passive, i.e., had to be

explicitly invoked by the designer. FRAMERS was tcstcd
in a video-taped thinking-aloud study, which showed that

the critics substantially improved the performance of user

interface designers when compared to a construction kit.

But the passive critics failed to be effective in some cases.

Subjects invoked the critics only after they thought they

LEMKE AND FISCHER 481

;; A critic rule named need-dialog-pane.

(define-critic-rule need-dialog-pane

* * I I Applicability condition. This rule is applicable if the

;: interaction mode is mouse-and-keyboard.

:applicability (equal Sinteraction-mode

mouse-and-keyboard)

:; The rule is violated if there is no pane of type dialog-pane

* l I I in the set on inferiors of a program framework.

:condition

(not (exists x (type x dialog-pane)))

* l I I The Remedy operation adds a listener-pane.

:remedy

(let ((pane(make-instance 'listener-pane

:x (+ x 20) :y (+ y 184)

:superior self)))

(add-inferior self pane)

(display-icon pane))

:: Text of the suggestion made to the user if critic is

:; applicable.

:suggestion

"Add a listener or interactor pane, or

set the interaction mode to mouse-only."

; ; Text for Praise command.

:praise

"There is a listener or interactor pane."

;; Text for Explain command.

:explanation "Since the interaction mode

is mouse-and-keyboard, a dialog pane is

required for typing in commands.")

Figure 2: An Example of a Critic Rule

This is a slightly paraphrased FRAMER critic rule that applies to

program frameworks. The rule suggests adding a listener or inter-

actor pane if the interaction mode mouse-and-keyboard was

specified.

had completed the design. Thus, the critics were not ac-

tivated early enough to prevent designers from going down

garden paths. In FRAMER& the system described here, an

active critiquing strategy has been chosen and has proved

to be much more effective.

Specification Sheets. The window layout of an interface

has a natural graphical representation as shown in the

work area. This is, however, not true of all characteristics

of an interface. Behavioral characteristics, for instance,

must be described in a different way. In the FRAMER

system, these other characteristics are described in a sym-

bolic way as fillers in the fields of a specification sheet

(see the “What you can do” window in Figure 1).

Through the sheet, the system brings design issues and

their possible answers to the user’s attention. Associated

texts explain the significance and consequences of the dif-

ferent design choices.

In the example of Figure 1, the designer makes a deci-

482 INTELLIGENTINTERFACES

sion about what types of user input should be supported in

the interface. The system responds to this decision by

displaying a critic message in the critic window enti tlcd

“Things to take care of.” The system can also respond by

modifying the construction situation in the work arca.

This is accomplished through procedural demons attached

to the fields of the specification sheet. The specification

sheet is dynamic in that the set of fields in the sheet is

dynamically determined based on information that the

designer has previously specified.

Catalog. The catalog is a collection of predesigncd ar-

tifacts illustrating the space of possible designs in the

domain. Rather than starting from scratch, the designer

starts the design process by invoking the catalog (Figure 3)

and selecting a suitable program framework in the catalog.

The selected framework is inserted into the work arca, and

the designer modifies and adapts it to fit the rcquiremcnts

of the problem. Our experiments have shown that USC of

the catalog can substantially reduce the difficulties in

using the design environment. The catalog provides

design knowledge in the form of concrete examples that

allow reuse and case-based design.

Select a Dronram framework to start out with.

:RRMER2 : This is the progran franew ork of the Framer system

itself. It supports typed command input, evaluat ion of lisp

rxpressi ons, and single key abbreviat ions for comnands.

Example 3 of 4.

Previous Next Select This Framework Abort

Figure 3: The FRAMER=! Catalog

Users of FQAMER~ tended to design frameworks from

scratch without using the catalog. In FRAMER& the use of

the catalog has been made mandatory, which climinatcd

many low-level tasks. Making the use of the catalog man-

datory is not really a restriction because designers can

choose very generic frameworks that are almost equivalent

to starting from scratch. However, subjects did use more

complex examples from the catalog.

Checklist. Another problem in FRAMERS was that dcsig-

ners who were not familiar with the program framework

abstraction were unable to decide what steps had to bc

done to create a complete functional program framework.

The checklist in FRAMER2 addresses this problem by

providing the designers with an explicit problem dccom-

position that is appropriate for the design of program

System System communicates to user (unin- System communicates to user (inter-

Component User communicates to system terpreted knowledge) preted knowledge)

checklist current focus of attention how to decompose design problem raise subproblems depending on infor-

mation from designer

palette What primitive components are used What are the primitive components? -

in the artifact?

specification User symbolically specifies answers to System brings design issues to the System raises design issues depending

sheets design issues. designer’s attention. on information from the designer.

System presents potential answers. System updates artifact according to

System explains significance and con-
specified information.

sequences of different design choices.

critics User may reject the system’s critique. - System points out suboptimal design

decisions.

System explains why it objects.

Critics provide heuristics for making

decisions.

catalog

code

generator

User selects an artifact to reuse and

modify.

System provides design knowledge in -

the form of examples, allows “ case-

based” design.

System generates an executable

representation of the designated ar-

tifact.

Table 1: Components of Cooperative Problem Solving Systems

frameworks.

The checklist serves as the main organizing tool for the

interaction with F'RAMER. With the checklist, the system

indicates to the user how to decompose the problem of

designing a program framework, and it helps to ensure that

designers attend to all necessary issues, even if they do not

know about them in advance. Each item in the checklist is

one subproblem of the total design process. By selecting a

checklist item, designers tell the system their current focus

of attention in the design process.

When the designer selects an subproblem in the check-

list, the system responds by displaying the corresponding

options in the specification sheet shown in the neighboring

“What you can do” window and, thus, provides further

detail about the subproblem. The critics are grouped ac-

cording to the checklist items. The critic pane always

displays exactly those critic messages that are related to

the currently selected checklist item.

When designers believe that the topic of one checklist

item has been completed, they indicate this fact to the

system by checking off the associated check box. This

causes the system to verify whether all constraints

represented in the active critics are satisfied. Only then

does the system insert a check mark into the check box.

By showing check marks for completed subproblems, the

checklist is also a tool for the designer to keep track of

which issues have or have not been resolved.

The exact set of checklist items displayed depends on

the designer’s previous design decisions. The system dis-

plays only those items that are currently relevant (i.e., it is

context-sensitive); for example, the prompt item is only

displayed if command-based interaction is specified.

Code Generator. The ultimate goal of user interface

design is the generation of an executable program code,

and the design activity supported by FRAMER can be

viewed as creating a specification for the code. The code

generator component of FRAMER is an formal knowledge

source that takes care of creating syntactically correct, ex-

ecutable code.

An Architecture for Cooperative Problem

Solving Systems

FRAMER cooperates with the user in a structured dialog

mediated through the following system components:

checklist, palette, specification sheets, critics, catalog, and

code generator. Table 1 shows how these diffcrcnt com-

ponents contribute to the cooperative problem solving

process.

The cooperative system architecture of FRAMER was

designed to cope with the ill-structured nature of the user

interface domain. Most cooperative design support sys-

tems operate in well-defined domains. For example,

PRIDE (Mittal, Araya, 1986) operates in the well-defined

domain of paper path design for copiers. In this domain,

the design problem can be complctcly specified and

decomposed in advance, and for each design question

there is a well-known set of possible answers. These

LEMKE AND FISCHER 483

premises are not true for the user interface domain. The

challenge for the FRAMER system was to define an ar-

chitecture that can support designers effectively even if the

system’s knowledge is incomplete.

Conclusions and Ongoing Research

The goal of this work is to build a cooperative support

system for user interface design. For cooperative systems,

not only internal representation and reasoning mechanisms

but, in particular, the external presentation and com-

munication of that knowledge to the user is of crucial im-

portance. The proposed architecture provides a migration

path from simple tool kits to sophisticated design environ-

ments. By incrementally adding relatively simple com-

ponents such as critics and checklists, the utility of a sup-

port system can be significantly improved.

Our approach was driven by the needs of designers, i.e.,

their needs for support in decomposing the problem, find-

ing applicable building blocks, and understanding the ef-

fects of design decisions. Knowledge-based design en-

vironments are unique in addressing these needs with a

rich set of semi-formal and formal knowledge sources.

The FRAMER system is an object of ongoing research in

several directions. The existence of the knowledge

sources in FRAMER does not guarantee that users find and

take advantage of them, and the control of the user’s atten-

tion to the great variety of available information becomes

a problem. We are investigating ways to control attention

using a cognitive modeling approach using the construc-

tion integration model of cognition (Kintsch, 1989).

Another active research area is the design of generaliza-

tions of the checklist and the specification sheets. These

two components taken together represent a two level

hierarchy of design issues. We are extending this to an

unlimited number of levels by using the concept of issue-

based information systems (IBIS) in the form of (McCall,

1987). Issue-based information systems represent ar-

gumentative design knowledge as hierarchies of issues,

answers, and arguments for or against choosing those

answers. To make an IBIS component more responsive,

we are adding active mechanisms similar to the ones found

in the checklist and the specification sheets.

References

B.G. Buchanan, E.H. Shortliffe (1984). Rule-Bused Expert

Systems: The MYCIN Experiments of the Stanford Heuristic

Programming Project. Reading, MA: Addison-Wesley

Publishing Company.

W.A.S. Buxton, M.R. Lamb, D. Sherman, KC. Smith (1983).

Towards a comprehensive user interface management system.

Computer Graphics, 17(3), 35-42.

C.M. Eastman (1969). Cognitive Processes and Ill-Defined

Problems: A Case Study from Design. Proceedings of the

International Joint Conference on Artificial Intelligence,

669-675. Los Altos, CA: Morgan Kaufmann Publishers.

G. Fischer (1988). Cooperative Problem Solving Systems.

Proceedings of the 1 st Simposium international de Inteligencia

Artificial (Monterrey, Mexico), 127- 132.

G. Fischer (1989). Human-Computer Interaction Software:

Lessons Learned, Challenges Ahead. IEEE Software, 6(1).

44-52.

G. Fischer, A.C. Lemke, T. Mastaglio, A. March (1990).

Using Critics to Empower Users. Human Factors in Computing

Systems, CHI’90 Conference Proceedings (Seattle, WA),

337-347. New York: ACM.

G. Fischer, A.C. Lernke (1988). Construction Kits and Design

Environments: Steps Toward Human Problem-Domain

Communication. Human-Computer Interaction, 3(3), 179-222.

J. Grudin (1989). The Case Against User Interface

Consistency. Communications of the ACM, 32(10), 1164-1173.

R. Jeffries, A.A. Turner, P.G. Polson, M. Atwood (198 1). The

Processes Involved in Designing Software: In J.R. Anderson

(Ed.), Cognitive Skills and their Acquisition (pp. 255283).

Hillsdale, NJ: Lawrence Erlbaum Associates.

W. Kintsch (1989). The Representation of Knowledge and the

Use of Knowledge in Discourse Comprehension: In R. Dietrich,

C.F. Graumann (Eds.), Language Processing in Social Context

(pp. 185-209). Amsterdam: North Holland.also published as

Technical Report No. 152, Institute of Cognitive Science,

University of Colorado, Boulder, CO.

R. McCall (1987). PHIBIS: Procedurally Hierarchical

Issue-Based Information Systems. Proceedings of the

Conference on Architecture at the International Congress on

Planning and Design Theory. New York: American Society of

Mechanical Engineers.

J. McDermott (1982). Rl: A Rule-Based Configurer of

Computer Systems. Artificial Intelligence.

S. Mittal, A. Araya (1986). A knowledge-based framework

for design. Proceedings of AAAI-86,856-865. Los Altos, CA:

Morgan Kaufmann.

G. Peper, C. MacIntyre, J. Keenan (1989). Hypertext: A New

Approach for Implementing an Expert System. Proceedings of

Expert Systems ITL Conference.

H.W.J. Rittel(1972). On the Planning Crisis: Systems

Analysis of the First and Second Generations.

Bedriftsokorwmen(8), 390-396.

H.A. Simon (1973). The Structure of Ill-Structured Problems.

Artificial intelligence(4).

G. Singh, M. Green (1989). A high-level user interface

management system. Human Factors in Computing Systems,

CHI’89 Conference Proceedings (Austin, TX), 133-138. New

York: ACM.

W.R. Swartout, R. Balzer (1982). On the Inevitable

Intertwining of Specification and Implementation.

Communications of the ACM, 25(7), 438-439.

484 WIELLIGENTINTJSFACES

