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Multiresolution motion analysis has gained considerable research interest as a uni-
fied framework to facilitate a variety of motion editing tasks. Within this framework,
motion data are represented as a collection of coefficients that form a coarse-to-fine
hierarchy. The coefficients at the coarsest level describe the global pattern of a motion
signal, while those at fine levels provide details at successively finer resolutions. Due
to the inherent nonlinearity of the orientation space, the challenge is to generalize
multiresolution representations for motion data that contain orientations as well as
positions. Our goal is to develop a multiresolution analysis method that guarantees
coordinate-invariancewithout singularity. To do so, we employ two novel ideas:
hierarchical displacement mapping and motion filtering. Hierarchical displacement
mapping provides an elegant formulation to describe positions and orientations in
a coherent manner. Motion filtering enables us to separate motion details level-by-
level to build a multiresolution representation in a coordinate-invariant way. Our
representation facilitates multiresolution motion editing through level-wise coeffi-
cient manipulation that uniformly addresses issues raised by motion modification,
blending, and stitching. c© 2001 Academic Press

Key Words:multiresolution analysis; coordinate-invariance; hierarchical techni-
ques; motion editing; motion signal processing.

1. INTRODUCTION

Motion capture systems offer a convenient means of acquiring realistic motion data, that
is, capturing live motion. Due to the success of those systems, realistic, highly detailed
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motion data are rapidly becoming popular in computer graphics. Archives of motion clips
are also commercially available. Such data sets are used widely in a variety of applications
including animation film production, interactive character animation for television, and
video games.

Although high quality motion clips are relatively easy to obtain by virtue of motion cap-
ture techniques, crafting various animations of arbitrary length with available motion clips
remains difficult and requires such specialized tools as interactive editing, blending, stitch-
ing, smoothing, enhancement/attenuation, up/down-sampling, and compression. Bruderlin
and Williams [1] demonstrated that multiresolution analysis can be a unified framework to
implement those tools. The basic idea is to represent motion data (or signals) as a collection
of coefficients that form a coarse-to-fine hierarchy. The coefficients at the coarsest level (or
resolution) describe the global pattern of a motion signal, while those at fine levels provide
details at successively finer resolutions. With the representation, existing motion data can be
edited interactively by amplifying/attenuating particular frequency bands and new motions
can also be generated by the band-wise blending of existing motions.

Although well-established methods exist for multiresolution analysis in vector spaces,
the majority of these methods do not easily generalize in a uniform way for manipulating
motion data that contain orientations as well as positions. For example, the vector space
methods could be adapted to handle orientation data represented by Euler angles; however,
Euler angle parameterization has a singularity that incurs serious artifacts for most signal
processing techniques as well as for multiresolution analysis. To avoid such problems, a
nonsingular orientation representation, such as rotation matrices or unit quaternions, can be
employed. Due to the inherent nonlinearity of the orientation space, however, the challenge is
to generalize the results of multiresolution analysis in vector spaces for the orientation space.

The major concern in developing a new multiresolution analysis method is to guarantee
such important properties ascoordinate-invariance. A multiresolution representation is
coordinate-invariant if its coefficients are not influenced by the choice of the coordinate
system in which the original motion signal is represented. We can also define the coordinate-
invariance for such motion editing operations as smoothing, blending, and stitching, to
yield consistent results independent of coordinate systems. Coordinate-invariance is of
significance not only in theoretical viewpoints but also in practical situations. Suppose, for
example, that two identical motion clips are placed at different positions in a reference
frame and that we apply the same operation to modify those motions. In this situation, a
common expectation is that the identical results will occur independently of the positions
of the motion clips. A coordinate-invariant operation guarantees this expectation.

In this paper, we present a new approach to multiresolution motion analysis that is non-
singular and guarantees coordinate-invariance. To do so, we employ two ideas, hierarchical
displacement mapping and motion filtering, that provide an elegant formulation to handle
positions and orientations in a coherent manner without yielding singularity. Our multires-
olution representation consists of a coarse base signal and detail coefficients that form a
hierarchy of motion displacement maps. Displacement mapping was originally invented for
warping a canned motion while preserving its fine details [1, 27]. In our context, displace-
ment maps are used for adding details level-by-level to the base signal to reproduce the
original motion encoded in a multiresolution representation. Our construction algorithm
relies on a novel scheme for designing time-domain filters for motion data [16]. With those
filters, we are able to construct a multiresolution representation by separating motion details
level-by-level in a coordinate-invariant way.
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The remainder of the paper is organized as follows. After reviewing the relevant previous
work, we describe a hierarchical structure for storing a motion signal and explain how to
construct it in Section 3. In Section 4, we provide a proof for the coordinate-invariance
of our multiresolution representation. In Section 5, experimental results are demonstrated.
Finally, we conclude the paper in Section 6.

2. RELATED WORK

The notion of multiresolution analysis was initiated by Burt and Adelson [2] who intro-
duced a multiresolution image representation, the Gauss–Laplacian pyramid, to facilitate
such operations as seamless merging of image mosaics and temporal dissolving between
images. Their underlying idea was to decompose an image into a set of band-pass filtered
component images, each representing a different band of spatial frequency. This idea was
further elaborated by Mallat [18] to establish a multiresolution analysis for continuous
functions in connection with wavelet transformation.

Multiresolution techniques have been extensively exercised in computer graphics for
curve and surface editing, polygonal mesh editing, image editing and querying, texture
analysis and synthesis, video editing and viewing, image and surface compression, global
illumination, and variational modeling [23]. These techniques have been used in motion
editing and synthesis as well. Liuet al. [17] reported that adaptive refinement with hierar-
chical wavelets provides a significant speed-up for spacetime optimization. Bruderlin and
Williams [1] adopted a digital filter-bank technique to address multiresolution analysis of
discrete motion data. Their hierarchical representation of a motion with frequency bands
allows level-by-level editing of motion characteristics.

LTI (linear time-invariant) filters play a central role in digital filter-bank techniques.
Recently, there have been increasing efforts to generalize LTI filters for motion data that
contain orientations as well as positions. While a great deal of research results are available
for position data, the research for orientation data has recently been emerging. Lee and
Shin [14] formulated rotation smoothing as a nonlinear optimization problem and derived
smoothing operators from a series of fairness functionals defined on orientation data. Hsieh
et al.[9, 10] presented a similar formulation for which the strain energy is minimized. They
modified the traditional gradient-descent method to retain the unitariness of quaternions
during optimization. Fanget al.[5] applied a low-pass filter to the estimated angular velocity
of an input signal to reconstruct a smooth angular motion by integrating the filter responses.
More recently, Lee and Shin [16] presented a general scheme for designing an orientation
filter which is computationally efficient and guarantees such important filter properties as
coordinate-invariance, time-invariance, andsymmetry.

One of the most important issues in motion editing is the development of tools that can
be used for manipulating highly detailed motion data. Witkin and Popovi´c [27] introduced
motion warping (also called displacement mapping) as a means of editing motion data
while preserving its fine details. Unumaet al. [25] used Fourier analysis techniques to
interpolate and extrapolate motion data in the frequency domain. Roseet al.[20] suggested
a semiautomatic scheme for stitching motion clips seamlessly. Wiley and Hahn [26] and
Guo and Roberg´e [8] investigated spatial domain approaches to interpolate linearly a set
of example motions. Roseet al. [19] adopted a multidimensional interpolation method
to blend multiple motions together. Gleicher [6, 7] adapted the spacetime optimization
formulation for editing motion with a set of kinematic spacetime constraints. Lee and Shin
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[15] introduced hierarchical displacement mapping for adaptively refining a motion to meet
spacetime constraints.

3. MULTIRESOLUTION REPRESENTATION

In this section, we present a multiresolution representation of motion. It consists of a
coarse base signal and detail coefficients that form a hierarchy of motion displacement maps.
The displacement map at each level includes a sequence of coefficients. The coefficients
at the base level determine the overall shape of the motion signal, and its details are added
successively with those at fine levels. In Section 3.1, we explain displacement mapping
and its mathematical backgrounds. In Section 3.2, motion filtering is briefly described.
In Section 3.3, we elaborate a general framework of multiresolution analysis based on
hierarchical displacement mapping and motion filtering.

3.1. Displacement Mapping

The pose of an articulated figure can be specified by its joint configurations in addition
to the position and orientation of the root segment. For uniformity, we assume that the
configuration of each joint is given by a 3-dimensional rigid transformation. Then, we can
describe the degrees of freedom at every body segment as a pair of a vector inR3 and a unit
quaternion inS3. Themotion datafor an articulated figure comprise a bundle ofmotion
signals. Every signal consists of a sequence of frames,{(pi , qi ) ∈ R3× S3}, each of which
corresponds to the position and orientation of a body segment. A frame (pi , qi ) specifies a
rigid transformationT(pi ,qi ) that maps a point inR3 to another inR3:

T(pi ,qi )(x) = qi xq−1
i + pi . (1)

Here,x = (x, y, z) ∈ R3 is considered a purely imaginary quaternion (0, x, y, z) ∈ R4.
Given two motion signalsm = {(pi , qi ) ∈ R3× S3} andm′ = {(p′i , q′i ) ∈ R3× S3}, we

define their motion displacementd = {(ui , vi ) ∈ R3× R3}measured in a local (body-fixed)
coordinate system such thatT(p′i ,q

′
i )
= T(pi ,qi ) ◦ T(ui ,exp(vi )). In a geometric viewpoint, the

motion framemi = (pi , qi ) at a specific time instance is transformed to a new framem′i =
(p′i , q

′
i ) through the rotation ofmi about the axis ofvi by the two times of its magnitude

followed by the translation alongui (Fig. 1). In a later discussion, we introduce two operators

FIG. 1. Motion displacements.
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⊕ andª such thatm′ = m⊕ d andd = m′ ªm. From Eq. (1), we have

(p′i , q
′
i ) = (pi , qi )⊕ (ui , vi ) =

(
qi ui q−1

i + pi , qi exp(vi )
)

(2)

or conversely

(ui , vi ) = (p′i , q
′
i )ª (pi , qi ) =

(
q−1

i (p′i − pi )qi , log
(
q−1

i q′i
))
, (3)

where exp(vi ) denotes a 3-dimensional rotation about the axisvi
‖vi ‖ ∈ R

3 by angle 2‖vi ‖ ∈ R.
The definition of a motion displacement map in the above equation has two advantages.
First, because both linear and angular displacement vectors are represented in the body-
fixed coordinate frame, the motion displacement map is not influenced by the choice of a
global reference frame in which motion signals are represented. Second, we do not need
to distinguish position and orientation data in the displacement map because both have an
identical form: Note that a motion frame consists a heterogeneous pair, a 3-dimensional
vector and a unit quaternion, while a motion displacement consists a homogeneous pair of
three-dimensional vectors.

3.2. Motion Filtering

Given a vector-valued signalpi ∈ R3 and a filter mask (a−k, . . . ,a0, . . . ,ak), the ba-
sic idea of LTI filtering is to sum the products between the mask coefficients and the
sample values under the mask at a specific position on the signal. Thei th filter response
is

F(pi ) = a−kpi−k + · · · + a0pi + · · · + akpi+k. (4)

A variety of methods have been investigated to apply a filter mask to orientation signals.
However, many of those methods suffer from the lack of such important filter properties as
coordinate-invariance, time-invariance, or symmetry.

Lee and Shin [16] presented a general scheme of constructing a time-domain filter for ori-
entation data that is a quaternion counterpart of Eq. (4). Given a filter mask (a−k, . . . ,a0, . . . ,

ak) of which coefficients are summed up to one, an orientation filter can be defined
as

H(qi ) = qi exp

(
k−1∑

m=−k

bm log
(
q−1

i+mqi+m+1
))

, (5)

where

bm =
{∑k

j=m+1 aj , if 0 ≤ m≤ k− 1,∑m
j=−k−aj , if −k ≤ m< 0.

Clearly, the unitariness of filter responses is guaranteed, because the unit quaternion space
is closed under the quaternion multiplication. Furthermore, the filterH for orientation
data inherits important properties from its vector counterpart given in Eq. (4). Here, we
summarize the properties ofHwithout proofs. Detailed discussion is found in Lee and Shin
[16]. First,H is invariant under both local and global coordinate transformations, that is,



92 LEE AND SHIN

aH(qi )b = H(aqi b) for anya andb ∈ S3. Due to this property,H yields identical results
independent of the coordinate system in which the orientation data are represented. Second,
H is time-invariant, that is, its filter response does not depend on the position in the signal.
Finally,H is symmetric, if its mask coefficients are symmetric.

Inherent ambiguity exists in a unit quaternion signal due to antipodal equivalence. Be-
cause any unit quaternion point and its antipode represent the same orientation, the signs of
quaternion points in a captured signal are often chosen arbitrarily. However, filter responses
are quite dependent on the signs and thus the signs of quaternion points must be corrected
consistently before filtering. We determine the sign of each point in the signal such that the
point is placed near its adjacent neighbors. To do so, we initially fix the sign of the first
pointq0 and then replaceqi with −qi sequentially for eachi > 0, if the geodesic distance
betweenqi−1 andqi is larger thanπ2 .

In general, the input signal is neither infinite nor periodic. The signal has boundary
points, and the left boundary seldom has anything to do with the right boundary. A pe-
riodic extension can be expected to have a discontinuity. The natural way to avoid this
discontinuity is to reflect the signal at its endpoints to seamlessly extend the signal. Let
(q0, . . . ,qn) be a unit quaternion signal andωi = log(q−1

i qi+1), 0≤ i < n, be the an-
gular displacements of the signal. Then, the extension of the signal at both boundaries
yields

ωi =
{
ω−i , if i < 0,
ω2n−i−2, if i ≥ n.

(6)

3.3. Construction

Our multiresolution representation for a motion signalm = m(N) is defined by a series of
successively refined signalsm(0),m(1), . . . ,m(N−1) together with a series of displacement
mapsd(0), d(1), . . . ,d(N−1). The construction of the multiresolution representation is based
on two basic operations: reduction and expansion (Fig. 2). The expansionE is achieved
by a subdivision operation that can be considered as up-sampling followed by smoothing.
The reductionR is a reverse operation, that is, smoothing followed by down-sampling.
Smoothing operations avoid aliasing caused by down-sampling and interpolating missing
information for up-sampling.

Our construction algorithm begins with the original motionm(N) to compute its simplified
versions and their corresponding displacement maps successively in fine-to-coarse order.
Suppose that we are now at thenth level for 0≤ n ≤ N − 1. Given a signalm(n+1), we can
compute a coarser signalm(n) by reduction. The expansion ofm(n) interpolates the missing
information to approximate the original signalm(n+1). Thus, the difference between them

FIG. 2. Wiring diagram of the multiresolution analysis.
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FIG. 3. (Upper) decomposition and (lower) reconstruction.

is expressed as a displacement mapd(n):

m(n) = Rm(n+1), (7)

d(n) = m(n+1)ª Em(n). (8)

Cascading these operations until there remains a sufficiently small number of frames in the
motion signal, we can construct a multiresolution representation that includes the coarse
base signalm(0) and a series of displacement maps as shown in Fig. 3 (upper). Conversely,
the original signalm(N) can be reconstructed from the multiresolution representation by
recursively adding the displacement map at each level to the expansion of the signal at the
same level, that is,

m(N) = Em(N−1)⊕ d(N−1) = E(Em(N−2)⊕ d(N−2))⊕ d(N−1)

(9)
= E(E . . . (Em(0)⊕ d(0)) . . .⊕ d(N−2))⊕ d(N−1),

as shown in Fig. 3 (lower).
Several alternative choices can be used to implement the reduction and expansion opera-

tions. In the original work of Gauss–Laplacian image pyramids [2], Gaussian filters (which
are approximated by binomial filter masks) are used for both operations to avoid aliasing
effects that are mainly incurred by discontinuity in the input image. Unlike digital images,
motion data haveC0 continuity and thus we adopt Laplacian smoothing and interpolatory
subdivision for designing reduction and expansion operations, respectively, which preserve
the original signal better than Gaussian filtering.

Reduction. Given a detailed signalm(n+1) , the reduction operatorR generates its sim-
plified versionm(n) at a coarser resolution by applying a smoothing filter tom(n+1) and then
removing every other frame to down-sample the signal. Hence,R can be regarded as the
composition of a down-sampling operatorD of factor two and a smoothing operatorHR,
that is,

m(n) = Rm(n+1) = (D ◦HR)m(n+1). (10)

A popular way to implement a smoothing operatorHR is to adopt a diffusion process that
leads to a local update rule

pi ← pi − λL j pi , (11)
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whereλ is a diffusion coefficient andL is a Laplacian operator [12, 24]. Filtering with
this rule disperses small perturbations rapidly while the original shape is degraded only
slightly. Here, Laplacian operators can be estimated for discrete signals by replacing
differential operators with forward divided difference operators such thatL j = 12 j ,
where

11pi = pi+1− pi

ti+1− ti
,

(12)

1 j pi = 1 j−1pi+1−1 j−1pi

ti+ j − ti
, for j > 1.

This update rule yields an affine-invariant filter mask that can be generalized for orien-
tation data by using Eq. (5). For example, by adopting the second Laplacian operator
L2 and lettingλ = 1, we have a filter mask124(−1, 4, 18, 4,−1) and its corresponding
filter,

(p′i , q
′
i ) = HR(pi , qi ). (13)

Here, lettingωi = log(q−1
i qi+1),

p′i =
1

24
(−pi−2+ 4pi−1+ 18pi + 4pi+1− pi+2),

q′i = qi exp

(
1

24
(ωi−2− 3ωi−1+ 3ωi − ωi+1)

)
.

Expansion. Given a coarse signalm(n), the expansion operatorE approximates a corre-
sponding signalm(n+1) at a higher resolution by interpolation followed by error compensa-
tion:

m(n+1) = Em(n) ⊕ d(n) = (HE ◦ U)m(n) ⊕ d(n), (14)

whered(n) represents an approximation error. To obtain a smoother signal of higher res-
olution, a cubic polynomial is a good choice for trading off smoothness for efficiency.
Thus, the operatorE can be achieved by afour-point interpolatory subdivisionscheme
that maps a sequence of motion framesm(n) = {(pn

i , q
n
i )} to a refined sequencem(n+1) =

{(pn+1
i , qn+1

i )}, where the even numbered frames (pn+1
2i , qn+1

2i ) at leveln+ 1 are the frames
(pn

i , q
n
i ) at leveln, and the odd numbered frames (pn+1

2i+1, q
n+1
2i+1) are newly inserted between

old frames.
To generalize the subdivision scheme to the orientation data, the scheme should be

considered in two separate phases, that is, up-samplingU followed by smoothingHE

(Fig. 4). At the up-sampling phase, the odd numbered frames (pn+1
2i+1, q

n+1
2i+1) are inserted

halfway between two successive old frames using (spherical) linear interpolation. Assuming
that the motion frames are sampled uniformly, we havepn+1

2i+1 = 1
2pn

i + 1
2pn

i+1 andqn+1
2i+1 =

slerp1
2
(qn

i , q
n
i+1). Here, slerpt (q1, q2) denotes a spherical linear interpolation between two

unit quaternion pointsq1 andq2 with interpolation parametert , that is, slerpt (q1, q2) =
q1 exp(t · log(q−1

1 q2)) [22]. At the smoothing phase, the smoothing operator is applied only
to the newly inserted points with a subdivision mask (− 1

16, 0,
9
16, 0,

9
16, 0,− 1

16) to yield the
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FIG. 4. Interpolatory subdivision.

refined data as

pn+1
2i = pn

i ,

pn+1
2i+1 =

1

16

(−pn+1
2i−2+ 9pn+1

2i + 9pn+1
2i+2− pn+1

2i+4

)
(15)

= 1

16

(−pn
i−1+ 9pn

i + 9pn
i+1− pn

i+2

)
.

The pointpn+1
2i+1 thus obtained locates halfway betweenpn

i andpn
i+1 on the cubic polynomial

curve interpolating four neighboring pointspn
i−1, pn

i , pn
i+1 andpn

i+2 [3, 4]. Similarly, we
can use the smoothing operator in Eq. (5) with the same subdivision mask to obtain the
orientation version of the subdivision scheme as

qn+1
2i = qn

i ,
(16)

qn+1
2i+1 = slerp1

2

(
qn

i , q
n
i+1

)
exp

(
ωn

i−1− ωn
i+1

16

)
,

whereωn
i = log((qn

i )−1qn
i+1).

If the smoothing filters for reduction and expansion are not induced from a bi-orthogonal
wavelet basis, then this construction scheme gives over-representations, as Gauss–Laplacian
image pyramids do, in the sense that the decomposition ofm(n) into a coarser signalm(n−1)

and its detail coefficients ind(n−1) yields extra data to store. For such memory-critical
applications as compression and progressive transmission, we can circumvent such extra
data by skipping the smoothing step of the reduction operation in a spirit of lazy wavelets
[18, 21]. Then,m(n−1) contains the even frames ofm(n) and thus we have nonzero detail
coefficients ind(n−1) only for odd frames to achieve an exact representation of the same
size.

3.4. Extension

Though most motion captured data are sampled at a sequence of time instances of uniform
interval, we often need to process nonuniform data to support such tasks as time warping,
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which aligns motion clips with respect to time [1]. To construct a multiresolution repre-
sentation for nonuniformly sampled motion data, we further generalize the reduction and
expansion operators for a nonuniform setting. For reduction, we can easily derive smoothing
masks by estimating discrete Laplacian operators for a nonuniform setting, since the divided
difference operator is well defined. For expansion, the coefficients of the subdivision mask
are derived from the cubic Lagrange polynomials [13]. The cubic polynomial that interpo-
lates four points (pn

i−1, p
n
i , p

n
i+1, p

n
i+2) defined over the knot sequence [tm

i−1, t
n
i , t

n
i+1, t

n
i+2]

can be written as

p(t) = l1000(t)pn
i−1+ l0100(t)pn

i + l0010(t)pn
i+1+ l0001(t)pn

i+2, (17)

where the cardinal functionlu0u1u2u3(t) is the unique cubic polynomial that interpolatesu j
at tn

i+ j−1 for 0≤ j ≤ 3 [11]. Note that Eq. (17) is a simple generalization of Eq. (15). There-
fore, we can obtain a subdivision mask (l1000(t

n+1
2i+1), 0, l0100(t

n+1
2i+1), 0, l0010(t

n+1
2i+1), 0,

l0001(t
n+1
2i+1)) to computepn+1

2i+1 andqn+1
2i+1.

Proper boundary handling is required for the subdivision scheme in either a uniform or
nonuniform setting. At the left boundary, for example, we determinepn+1

1 from the cubic
polynomial that interpolates the four left-most pointspn

0, pn
1, pn

2 and pn
3 of the original

sequencem(n). For orientation components,qn+1
1 can also be computed with the filter mask

induced from the interpolating polynomial.

4. COORDINATE INVARIANCE

In this section, we will show that our multiresolution representation is coordinate-
invariant. Coordinate-invariance can be explained in several ways. The first is that identical
motion clips placed at different positions in a reference frame give identical displacement
maps in their multiresolution representations. Coordinate-dependent information is retained
only in the base signal. To put it another way, we consider a coordinate transformation that
consists of three-dimensional rotation followed by translation. If we apply that coordinate
transformation to the base signal of a multiresolution representation and reconstruct the
motion signal from the transformed representation, then that signal will be identical to the
one obtained by applying the transformation to the original signal.

To prove the coordinate-invariance of our multiresolution representation, we need to
verify the invariance involved in motion displacement mapping and filtering. First, because
motion displacements are measured in a body-fixed coordinate frame, displacement maps
are independent of the choice of the global reference frame. LetT(t,r ) : R3× S3→ R3× S3

be a coordinate transformation such that

T(t,r )m = (rpr −1+ t,rq ) (18)

for a motion signalm = (p, q), wheret ∈ R3 andr ∈ S3. The right-hand side of this equa-
tion specifies a composite transform,T(t,r ) ◦ T(p,q). T(t,r ) yields a coordinate transformation
relative to the global reference frame. For notational simplicity, we will useT instead of
T(t,r ) when this use does not cause confusion. The following lemma proves the coordinate-
invariance of motion displacement mapping.

LEMMA 4.1. The displacement mapd between any two motionsm and m′ is invari-
ant under global coordinate transformation, that is, d = m′ ªm = T m′ ª T m for any
coordinate transformationT .
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Proof. From Eqs. (3) and (18),

T(t,r )m′ ª T(t,r )m = (rp ′r−1+ t, rq ′)ª (rpr −1+ t, rq )

= (q−1r−1(rp ′r−1+ t − rpr −1− t)rq , log(q−1r−1rq ′))

= (q−1(p′ − p)q, log(q−1q′))) = m′ ªm. j

Next, we need to verify the invariance of motion filtering. Due to the favorable properties
of our orientation filtering scheme, both reduction and expansion operations are invariant
under coordinate transformation as shown in the following lemma.

LEMMA 4.2. The reduction and expansion operations commute with coordinate trans-
formation, that is,RT = T R andET = T E for any coordinate transformationT .

Proof. LetM be a motion filter consisting of the position and orientation filters defined
in Eqs. (4) and (5), respectively. As shown in Eqs. (10) and (14), reduction and expansion
operations are combinations of motion filtering and resampling. Since resampling does not
affect the coordinate-invariance, the proof will be complete if we show thatM commutes
with T . Since

∑k
m=−k am = 1,

T(t,r ) ◦M(pi , qi ) = T(t,r )(F(pi ),H(qi ))

= T(t,r )

(
k∑

m=−k

ampi+m, qi exp

(
k−1∑

m=−k

bm log
(
q−1

i+mqi+m+1
)))

=
(

r

(
k∑

m=−k

ampi+m

)
r−1+ t, rq i exp

(
k−1∑

m=−k

bm log
(
q−1

i+mqi+m+1
)))

=
(

k∑
m=−k

am(rp i+mr−1+ t), rq i exp

(
k−1∑

m=−k

bm log
(
q−1

i+mr−1rq i+m+1
)))

=M ◦ T(t,r )(pi , qi ). j

Let m = m(N) be the motion signal at the finest levelN. Recursively applying Eqs. (7)
and (8), the displacement map at level 0≤ n < N is given:

d(n) = R(N−n−1)m(N) ª ER(N−n)m(N). (19)

The following theorem establishes that the displacement maps are independent of the choice
of the reference frame in which the original signalm(N) is represented.

THEOREM4.1. The displacement maps in a multiresolution representation are invariant
under global coordinate transformation, that is,

d(n) = R(N−n−1)m(N) ª ER(N−n)m(N) = R(N−n−1)T m(N) ª ER(N−n)T m(N)

for 0≤ n < N.

Proof. Applying Lemma 1 and Lemma 2, we have

d(n) = R(N−n−1)m(N) ª ER(N−n)m(N) = T R(N−n−1)m(N) ª T ER(N−n)m(N)

= R(N−n−1)T m(N) ª ER(N−n)T m(N). j

As an immediate consequence, we can easily prove the following corollary.



FIG. 5. Level-of-detail generation for a live-captured signal. The four curves represent the change ofw-, x-,
y-, andz-components, respectively, of a unit quaternion with respect to time. From left to right, original signal
and its approximations at successively coarser resolutions.

FIG. 6. Jump and kick: (left) attenuated, (center) original, (right) enhanced.
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FIG. 7. Face hit: (left) attenuated, (center) original, (right) enhanced.

COROLLARY 4.1. Let M(m) = (m(0), d(0), · · · , d(N−1)) be the multiresolution represen-
tation ofm. Then, M(T m) = (T m(0), d(0), · · · , d(N−1)).

Proof. Theorem 1 shows thatM(m) andM(T m) have the same sequence of displace-
ment maps. Therefore, the proof will be complete if we show that the base signal ofM(T m)
is T m(0). Recursively applying Eq. (7), we have

R(N)T m = T R(N)m = T m(0). j
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FIG. 8. Frequency-based motion blending: (upper left) Straight walking; (upper right) turning with a normal
walk; (lower left) walking with a limp; (lower right) turning with a limp.

FIG. 9. Stitching live-captured motion clips. The left and right columns visualize the motion signals corre-
sponding to the left elbow and right knee joints, respectively. Simple concatenation of the original signals yields
a visual seam at the boundary (upper row); Level-wise stitching at the boundary connects the motion signals
seamlessly (lower row).
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FIG. 10. The same motion clips placed at different orientations in the reference frame. The red, blue, and
yellow lines depict the trajectories of the left foot, right foot, and pelvis, respectively.

FIG. 11. Coordinate-dependence of Euler angles: (upper) the original trajectory of pelvis orientation (lower)
the frame-by-frame differences between the original and the reconstructed signals.
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In our experiments, we first construct the multiresolution representationM(m) = (m(0),

d(0), . . . ,d(N−1)) of the motion signal and then transform it to reconstruct the signal at a
different position in such a way thatM ′ = (T m(0), d(0), . . . ,d(N−1)). Then, we compare the
reconstructed signal withT m obtained by applying the same transformation directly to the
original signal. In our experiments, the motion signal corresponding to the pelvis trajectory
of “Jump and Kick” in Fig. 6 is used to generate nine samples by rotating the original signal
successively about the Y axis (vertical) by the incremental angle ofπ

12 (Fig. 10). Figure 11
shows the frame-by-frame difference between the transformed signalT m and the signals
reconstructed through multiresolution analysis. We measure the angular difference between
two orientations by geodesic distance:

d(q1, q2) = min
(∥∥ log

(
q−1

1 , q2
)∥∥, ∥∥ log

(
q−1

1 ,−q2
)∥∥). (22)

Here, since two antipodal points represent the same orientation, we must choose the mini-
mum between‖ log(q−1

1 , q2)‖ and‖ log(q−1
1 ,−q2)‖. As proved in the previous section, our

method yields identical signals independent of their positions and orientations to be recon-
structed. Unlike our method, our experiments show that the conventional method based on
Euler angles generates quite different results depending on the transformationT .

6. CONCLUSION

We have presented a new multiresolution approach to motion analysis and synthesis. Our
motion representation allows us to modify the coefficients at each level in the hierarchy
independently of those at the other levels through the level-wise manipulation of detail
coefficients. Exploiting this capability, we have developed a variety of motion editing tools
that can be used for modifying, blending, and stitching highly detailed motion data.

The success of our approach is mainly due to motion filtering and hierarchical dis-
placement mapping. Our filtering scheme can handle orientations as well as positions in
a coherent manner. The notion of hierarchical displacement mapping provides an elegant
formulation for multiresolution representations in which each individual detail coefficient
is represented as a pair of three-dimensional vectors measured at a local coordinate system.
This formulation leads to multiresolution motion synthesis through coordinate-independent
operations.
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