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Multiresolution motion analysis has gained considerable research interest as a uni-
fied framework to facilitate a variety of motion editing tasks. Within this framework,
motion data are represented as a collection of coefficients that form a coarse-to-fine
hierarchy. The coefficients at the coarsest level describe the global pattern of a motion
signal, while those at fine levels provide details at successively finer resolutions. Due
to the inherent nonlinearity of the orientation space, the challenge is to generalize
multiresolution representations for motion data that contain orientations as well as
positions. Our goal is to develop a multiresolution analysis method that guarantees
coordinate-invariancavithout singularity. To do so, we employ two novel ideas:
hierarchical displacement mapping and motion filtering. Hierarchical displacement
mapping provides an elegant formulation to describe positions and orientations in
a coherent manner. Motion filtering enables us to separate motion details level-by-
level to build a multiresolution representation in a coordinate-invariant way. Our
representation facilitates multiresolution motion editing through level-wise coeffi-
cient manipulation that uniformly addresses issues raised by motion modification,
blending, and stitching. © 2001 Academic Press

Key Words:multiresolution analysis; coordinate-invariance; hierarchical techni-
ques; motion editing; motion signal processing.

1. INTRODUCTION

Motion capture systems offer a convenient means of acquiring realistic motion data, 1
is, capturing live motion. Due to the success of those systems, realistic, highly deta
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motion data are rapidly becoming popular in computer graphics. Archives of motion cli
are also commercially available. Such data sets are used widely in a variety of applicati
including animation film production, interactive character animation for television, ar
video games.

Although high quality motion clips are relatively easy to obtain by virtue of motion cay
ture techniques, crafting various animations of arbitrary length with available motion cli
remains difficult and requires such specialized tools as interactive editing, blending, stit
ing, smoothing, enhancement/attenuation, up/down-sampling, and compression. Brud
and Williams [1] demonstrated that multiresolution analysis can be a unified framework
implement those tools. The basic idea is to represent motion data (or signals) as a collec
of coefficients that form a coarse-to-fine hierarchy. The coefficients at the coarsest level
resolution) describe the global pattern of a motion signal, while those at fine levels prov
details at successively finer resolutions. With the representation, existing motion data ca
edited interactively by amplifying/attenuating particular frequency bands and new motic
can also be generated by the band-wise blending of existing motions.

Although well-established methods exist for multiresolution analysis in vector spaci
the majority of these methods do not easily generalize in a uniform way for manipulati
motion data that contain orientations as well as positions. For example, the vector sy
methods could be adapted to handle orientation data represented by Euler angles; how
Euler angle parameterization has a singularity that incurs serious artifacts for most sic
processing techniques as well as for multiresolution analysis. To avoid such problem
nonsingular orientation representation, such as rotation matrices or unit quaternions, ce
employed. Due tothe inherent nonlinearity of the orientation space, however, the challenc
to generalize the results of multiresolution analysis in vector spaces for the orientation sp

The major concern in developing a new multiresolution analysis method is to guaran
such important properties amordinate-invariance A multiresolution representation is
coordinate-invariant if its coefficients are not influenced by the choice of the coordine
system in which the original motion signal is represented. We can also define the coordin
invariance for such motion editing operations as smoothing, blending, and stitching,
yield consistent results independent of coordinate systems. Coordinate-invariance i
significance not only in theoretical viewpoints but also in practical situations. Suppose,
example, that two identical motion clips are placed at different positions in a referer
frame and that we apply the same operation to modify those motions. In this situatior
common expectation is that the identical results will occur independently of the positic
of the motion clips. A coordinate-invariant operation guarantees this expectation.

In this paper, we present a new approach to multiresolution motion analysis that is n
singular and guarantees coordinate-invariance. To do so, we employ two ideas, hierarcl
displacement mapping and motion filtering, that provide an elegant formulation to han
positions and orientations in a coherent manner without yielding singularity. Our multire
olution representation consists of a coarse base signal and detail coefficients that fo
hierarchy of motion displacement maps. Displacement mapping was originally invented
warping a canned motion while preserving its fine details [1, 27]. In our context, displac
ment maps are used for adding details level-by-level to the base signal to reproduce
original motion encoded in a multiresolution representation. Our construction algoritt
relies on a novel scheme for designing time-domain filters for motion data [16]. With tho
filters, we are able to construct a multiresolution representation by separating motion de
level-by-level in a coordinate-invariant way.
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The remainder of the paper is organized as follows. After reviewing the relevant previc
work, we describe a hierarchical structure for storing a motion signal and explain how
construct it in Section 3. In Section 4, we provide a proof for the coordinate-invarian
of our multiresolution representation. In Section 5, experimental results are demonstre
Finally, we conclude the paper in Section 6.

2. RELATED WORK

The notion of multiresolution analysis was initiated by Burt and Adelson [2] who intrc
duced a multiresolution image representation, the Gauss—Laplacian pyramid, to facili
such operations as seamless merging of image mosaics and temporal dissolving bet
images. Their underlying idea was to decompose an image into a set of band-pass filt
component images, each representing a different band of spatial frequency. This idea
further elaborated by Mallat [18] to establish a multiresolution analysis for continuo
functions in connection with wavelet transformation.

Multiresolution techniques have been extensively exercised in computer graphics
curve and surface editing, polygonal mesh editing, image editing and querying, text
analysis and synthesis, video editing and viewing, image and surface compression, gl
illumination, and variational modeling [23]. These techniques have been used in mot
editing and synthesis as well. Let al. [17] reported that adaptive refinement with hierar-
chical wavelets provides a significant speed-up for spacetime optimization. Bruderlin :
Williams [1] adopted a digital filter-bank technique to address multiresolution analysis
discrete motion data. Their hierarchical representation of a motion with frequency ba
allows level-by-level editing of motion characteristics.

LTI (linear time-invariant) filters play a central role in digital filter-bank techniques
Recently, there have been increasing efforts to generalize LTI filters for motion data t
contain orientations as well as positions. While a great deal of research results are avai
for position data, the research for orientation data has recently been emerging. Lee
Shin [14] formulated rotation smoothing as a nonlinear optimization problem and deriv
smoothing operators from a series of fairness functionals defined on orientation data. H
etal.[9, 10] presented a similar formulation for which the strain energy is minimized. The
modified the traditional gradient-descent method to retain the unitariness of quaterni
during optimization. Fangt al.[5] applied a low-pass filter to the estimated angular velocity
of an input signal to reconstruct a smooth angular motion by integrating the filter respon:
More recently, Lee and Shin [16] presented a general scheme for designing an oriente
filter which is computationally efficient and guarantees such important filter properties
coordinate-invariancgtime-invariance andsymmetry

One of the most important issues in motion editing is the development of tools that «
be used for manipulating highly detailed motion data. Witkin and Pap@#] introduced
motion warping (also called displacement mapping) as a means of editing motion ¢
while preserving its fine details. Unun® al. [25] used Fourier analysis techniques to
interpolate and extrapolate motion data in the frequency domain.eRas¢20] suggested
a semiautomatic scheme for stitching motion clips seamlessly. Wiley and Hahn [26]
Guo and Robem[8] investigated spatial domain approaches to interpolate linearly a
of example motions. Roset al. [19] adopted a multidimensional interpolation method
to blend multiple motions together. Gleicher [6, 7] adapted the spacetime optimizat
formulation for editing motion with a set of kinematic spacetime constraints. Lee and S
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[15]introduced hierarchical displacement mapping for adaptively refining a motion to me
spacetime constraints.

3. MULTIRESOLUTION REPRESENTATION

In this section, we present a multiresolution representation of motion. It consists o
coarse base signal and detail coefficients that form a hierarchy of motion displacement m
The displacement map at each level includes a sequence of coefficients. The coeffici
at the base level determine the overall shape of the motion signal, and its details are a
successively with those at fine levels. In Section 3.1, we explain displacement mapy
and its mathematical backgrounds. In Section 3.2, motion filtering is briefly describe
In Section 3.3, we elaborate a general framework of multiresolution analysis based
hierarchical displacement mapping and motion filtering.

3.1. Displacement Mapping

The pose of an articulated figure can be specified by its joint configurations in additi
to the position and orientation of the root segment. For uniformity, we assume that
configuration of each joint is given by a 3-dimensional rigid transformation. Then, we ¢
describe the degrees of freedom at every body segment as a pair of a véttaid a unit
quaternion inS®. The motion datafor an articulated figure comprise a bundlerobtion
signals Every signal consists of a sequence of franf@s, q;) € R® x S*}, each of which
corresponds to the position and orientation of a body segment. A fiame ) specifies a
rigid transformationT, 4 that maps a point iiR® to another irR®:

Tio.a) () = aixg ™ + pi. 1)

Here,x = (x, y, z) € R%is considered a purely imaginary quaternionx0y, z) € R*.

Given two motion signalsn = {(p;, gi) € R? x S andm’ = {(p, q)) € R® x S°}, we
define their motion displacemetht= {(u;, vi) € R® x R3} measured in alocal (body-fixed)
coordinate system such th@gy o) = Tp.q) © Tu.expwi))- IN @ geometric viewpoint, the
motion framem; = (p;, g;) at a specific time instance is transformed to a new framhe-

(pi, qi) through the rotation ofn; about the axis o¥; by the two times of its magnitude
followed by the translation along (Fig. 1). In alater discussion, we introduce two operator:

m = (p, q)

/" reference frame

FIG.1. Motion displacements.
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@ ando such tham’ = m @ d andd = m’ © m. From Eg. (1), we have
®f. a) = (pi. ai) @ (Ui, vi) = (Ui + pi. g expii)) 2)
or conversely
(Ui vi) = (pf. o) © (i, ai) = (g (P — pi)ai. log (g *a)). @)

where expy; ) denotes a 3-dimensional rotation about the ;ﬁ'»éﬁ‘se R3byangle 2vi|| € R.
The definition of a motion displacement map in the above equation has two advanta
First, because both linear and angular displacement vectors are represented in the |
fixed coordinate frame, the motion displacement map is not influenced by the choice «
global reference frame in which motion signals are represented. Second, we do not
to distinguish position and orientation data in the displacement map because both hav
identical form: Note that a motion frame consists a heterogeneous pair, a 3-dimensi
vector and a unit quaternion, while a motion displacement consists a homogeneous pe
three-dimensional vectors.

3.2. Motion Filtering

Given a vector-valued signagh € R3 and a filter maskd g, ..., ap, ..., &), the ba-
sic idea of LTI filtering is to sum the products between the mask coefficients and 1
sample values under the mask at a specific position on the signaltfTFiker response
is

F(pi) =akPi—k + -+ aPi + - - + aPitk- 4)

A variety of methods have been investigated to apply a filter mask to orientation sign:
However, many of those methods suffer from the lack of such important filter properties
coordinate-invariancgtime-invariance or symmetry

Lee and Shin [16] presented a general scheme of constructing a time-domain filter for
entation datathatis a quaternion counterpartof Eq. (4). Given afilter magk (. , ap, . . .,
ax) of which coefficients are summed up to one, an orientation filter can be defin
as

k—1
H(ai) = ai exp( > bmlog(qy, +1mqi+m+1)> : ®)

m=—k

where

) S ma, fO=m<k—1,
TS ey, if—k=m <0,

Clearly, the unitariness of filter responses is guaranteed, because the unit quaternion :
is closed under the quaternion multiplication. Furthermore, the fiifefior orientation

data inherits important properties from its vector counterpart given in Eq. (4). Here,
summarize the properties &f without proofs. Detailed discussion is found in Lee and Shir
[16]. First, H is invariant under both local and global coordinate transformations, that |
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aH(qgi)b = H(ag b) for anya andb e S*. Due to this propertyH yields identical results
independent of the coordinate system in which the orientation data are represented. Se
‘H is time-invariant, that is, its filter response does not depend on the position in the sig|
Finally, H is symmetric, if its mask coefficients are symmetric.

Inherent ambiguity exists in a unit quaternion signal due to antipodal equivalence. |
cause any unit quaternion point and its antipode represent the same orientation, the sig
guaternion points in a captured signal are often chosen arbitrarily. However, filter respor
are quite dependent on the signs and thus the signs of quaternion points must be corr
consistently before filtering. We determine the sign of each point in the signal such that
point is placed near its adjacent neighbors. To do so, we initially fix the sign of the fil
pointgo and then replacg; with —q; sequentially for each > 0, if the geodesic distance
betweerg; _; andq; is larger thary.

In general, the input signal is neither infinite nor periodic. The signal has bounde
points, and the left boundary seldom has anything to do with the right boundary. A
riodic extension can be expected to have a discontinuity. The natural way to avoid t
discontinuity is to reflect the signal at its endpoints to seamlessly extend the signal.
(%0, - .., 0n) be a unit quaternion signal ang = Iog(qi‘lqi+1), 0<i < n, be the an-
gular displacements of the signal. Then, the extension of the signal at both bounda
yields

(o,  ifi<o,
“= {wzn_i_z, if i >n. ©)

3.3. Construction

Our multiresolution representation for a motion sigma= m(") is defined by a series of
successively refined signais®, m®, ..., m(N-D together with a series of displacement
mapsd©, d®, ... dN-1. The construction of the multiresolution representation is base
on two basic operations: reduction and expansion (Fig. 2). The expafis®achieved
by a subdivision operation that can be considered as up-sampling followed by smooth
The reductionR is a reverse operation, that is, smoothing followed by down-samplin
Smoothing operations avoid aliasing caused by down-sampling and interpolating miss
information for up-sampling.

Our construction algorithm begins with the original motiof) to compute its simplified
versions and their corresponding displacement maps successively in fine-to-coarse ©
Suppose that we are now at thiga level for 0< n < N — 1. Given a signan®*1, we can
compute a coarser signal™ by reduction. The expansion of" interpolates the missing
information to approximate the original sigmaf™%). Thus, the difference between them

= m("—1)

!

| Reduction | | Expansionl

m™ ! ~ d(n-1)

FIG. 2. Wiring diagram of the multiresolution analysis.
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— e g(N-1) . —»d(1) —»d(0)
m®) —L e mV-1) - =m(l) —L s m}(0)
— d(V-1) — - —d® — d(0)
m®) mV-1) « - m() -l — m©

FIG. 3. (Upper) decomposition and (lower) reconstruction.

is expressed as a displacement rd&h

m® = Rm™+D, )
d® = mD g em®, (8)

Cascading these operations until there remains a sufficiently small number of frames ir
motion signal, we can construct a multiresolution representation that includes the co
base signain© and a series of displacement maps as shown in Fig. 3 (upper). Convers
the original signam™) can be reconstructed from the multiresolution representation |
recursively adding the displacement map at each level to the expansion of the signal a
same level, that is,

mN = emN-D @ dN-1 = g(gmN-2) g d(N-2) @ gN-D
9
=&E&...(Em%29d9) .. odN-2)gdN-D, ©)

as shown in Fig. 3 (lower).

Several alternative choices can be used to implement the reduction and expansion o
tions. In the original work of Gauss—Laplacian image pyramids [2], Gaussian filters (whi
are approximated by binomial filter masks) are used for both operations to avoid alias
effects that are mainly incurred by discontinuity in the input image. Unlike digital image
motion data hav€® continuity and thus we adopt Laplacian smoothing and interpolatol
subdivision for designing reduction and expansion operations, respectively, which pres
the original signal better than Gaussian filtering.

Reduction. Given a detailed signah™+1 | the reduction operatd® generates its sim-
plified versionm(™ at a coarser resolution by applying a smoothing filtentt"? and then
removing every other frame to down-sample the signal. HeRcean be regarded as the
composition of a down-sampling operatrof factor two and a smoothing operataf®,
that is,

m(n) — Rm(n+l) — (D o HR)m(n+l). (10)

A popular way to implement a smoothing operattf is to adopt a diffusion process that
leads to a local update rule

pi < pi —ALlp;, (11)
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wherea is a diffusion coefficient and. is a Laplacian operator [12, 24]. Filtering with
this rule disperses small perturbations rapidly while the original shape is degraded c
slightly. Here, Laplacian operators can be estimated for discrete signals by replac
differential operators with forward divided difference operators such tha& A%,
where

1 —t
Aj_l . Ai—l . (12)
Alp, = Pi+1 P for j>1
liyj =14

This update rule yields an affine-invariant filter mask that can be generalized for orie
tation data by using Eq. (5). For example, by adopting the second Laplacian oper:
L? and lettings = 1, we have a filter maslﬁ(—l, 4,18 4, —1) and its corresponding
filter,

. a) = H*(pi. a0). (13)
Here, lettings; = log(q;di11),

/

1
pi = ﬁ(_pi—z + 4pi_1+ 18p; + 4pi 11 — Pi+2),

, 1
g =G exp<2_4(wi2 — 3wi—1+ 3w — wi+1)>-

Expansion. Given a coarse signai(™, the expansion operatérapproximates a corre-
sponding signain®™+1 at a higher resolution by interpolation followed by error compensa
tion:

mD = em™ @ d™ = (HE o )M™ @ d™, (14)

whered™ represents an approximation error. To obtain a smoother signal of higher r
olution, a cubic polynomial is a good choice for trading off smoothness for efficienc
Thus, the operatof can be achieved by four-point interpolatory subdivisioscheme
that maps a sequence of motion frame® = {(pl", g")} to a refined sequenca™?b =
{(PM, ™)}, where the even numbered framp§'t, g5™) at leveln + 1 are the frames
(p{', g at leveln, and the odd numbered framqn‘;iﬁ , qgﬁ;ll) are newly inserted between
old frames.

To generalize the subdivision scheme to the orientation data, the scheme shoulc
considered in two separate phases, that is, up-sampfifigllowed by smoothingH&
(Fig. 4). At the up-sampling phase, the odd numbered frarp%*;él( qgifl) are inserted
halfway between two successive old frames using (spherical) linear interpolation. Assurr
that the motion frames are sampled uniformly, we hal/e; = 2pP + 1p",, andqgjt}, =
slerp% (a, a.,). Here, slerg(qz, g2) denotes a spherical linear interpolation between tw
unit quaternion pointg|; andq, with interpolation parametdr, that is, slerp(gi, g2) =
a1 expt - log(g; *a2)) [22]. At the smoothing phase, the smoothing operator is applied on

to the newly inserted points with a subdivision mask}, 0, &, 0, =, 0, — ) to yield the
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Up—sampling% ﬁmoothing % f

FIG. 4. Interpolatory subdivision.

refined data as

p5t = p,
1
Py = 15 (—Pa's + 905 + 9057, — P (15)
1
= E(_pin—l +9p!' + 901 — Pya)-

The poimpgitll thus obtained locates halfway betweggrandp', ; on the cubic polynomial
curve interpolating four neighboring poingé_,, p', p,; andpf',, [3, 4]. Similarly, we
can use the smoothing operator in Eq. (5) with the same subdivision mask to obtain
orientation version of the subdivision scheme as

g5 =,
2 i (16)
n+1

(1)-“_ — a).n
21 = Slerp%(qi”, qinJrl) exp<M>’

16

whereof = log((@)*af'; ).

If the smoothing filters for reduction and expansion are not induced from a bi-orthogol
wavelet basis, then this construction scheme gives over-representations, as Gauss—Lap
image pyramids do, in the sense that the decompositioff®into a coarser signah-2
and its detail coefficients id™ Y yields extra data to store. For such memory-critical
applications as compression and progressive transmission, we can circumvent such
data by skipping the smoothing step of the reduction operation in a spirit of lazy wavel
[18, 21]. Thenm®-1 contains the even frames of™ and thus we have nonzero detail
coefficients ind™-1 only for odd frames to achieve an exact representation of the sar
size.

3.4. Extension

Though most motion captured data are sampled at a sequence of time instances of uni
interval, we often need to process nonuniform data to support such tasks as time wary
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which aligns motion clips with respect to time [1]. To construct a multiresolution repre
sentation for nonuniformly sampled motion data, we further generalize the reduction
expansion operators for a nonuniform setting. For reduction, we can easily derive smoott
masks by estimating discrete Laplacian operators for a nonuniform setting, since the divi
difference operator is well defined. For expansion, the coefficients of the subdivision m:
are derived from the cubic Lagrange polynomials [13]. The cubic polynomial that interp
lates four points ,, pi", pi’.1, P',,) defined over the knot sequendg'[, t", t" ,, t", )]
can be written as

p(t) = l100ot)P_1 + los0ot)P + loo1a(t)P}, 1 + looor(t)P}, 2, (17)

where the cardinal functioky,u,u,u,(t) is the unique cubic polynomial that interpolatgs
att,;_, for0 < j <3[11]. Note that Eq. (17) is a simple generalization of Eq. (15). There

fore, We can obtain a subd|V|S|on maskofo(ts +l) 0, |0100(t2“,111) 0, looi(ts +1) o,

I0001(t2| +1)) to computqaz,H andq2|+l
Proper boundary handling is required for the subdivision scheme in either a uniform

nonuniform setting. At the left boundary, for example, we deterrpm“é from the cubic
polynomial that interpolates the four left-most poips pf, p5 and p§ of the original
sequencen™, For orientation componemrﬂ+1 can also be computed with the filter mask
induced from the interpolating polynomial.

4. COORDINATE INVARIANCE

In this section, we will show that our multiresolution representation is coordinat
invariant. Coordinate-invariance can be explained in several ways. The first is that ident
motion clips placed at different positions in a reference frame give identical displacem
maps in their multiresolution representations. Coordinate-dependentinformation is retai
only in the base signal. To put it another way, we consider a coordinate transformation |
consists of three-dimensional rotation followed by translation. If we apply that coordine
transformation to the base signal of a multiresolution representation and reconstruct
motion signal from the transformed representation, then that signal will be identical to 1
one obtained by applying the transformation to the original signal.

To prove the coordinate-invariance of our multiresolution representation, we need
verify the invariance involved in motion displacement mapping and filtering. First, becau
motion displacements are measured in a body-fixed coordinate frame, displacement r
are independent of the choice of the global reference fram&Lgt R® x S* — R3 x §3
be a coordinate transformation such that

Tinm = (rpr * +t,rq) (18)

for a motion signai = (p, q), wheret € R® andr e S®. The right-hand side of this equa-
tion specifies a composite transforii,) o T, g)- Zt.r) Yields a coordinate transformation
relative to the global reference frame. For notational simplicity, we willTisastead of
7t,ry when this use does not cause confusion. The following lemma proves the coordin:
invariance of motion displacement mapping.

LEMMA 4.1. The displacement magh between any two motioma and m’ is invari-
ant under global coordinate transformation, that 5= m'©em =7m’ & 7m for any
coordinate transformatioff .
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Proof. From Egs. (3) and (18),

Tenm' © Tenm = ('t +t,1q") © (rpr ~* + t,1q)
= (@' (rprt+t—rpr t —t)rq, log@*rrq"))
=@ (P —pa,log@ g =mom. m
Next, we need to verify the invariance of motion filtering. Due to the favorable properti

of our orientation filtering scheme, both reduction and expansion operations are invar
under coordinate transformation as shown in the following lemma.

LEMMA 4.2. The reduction and expansion operations commute with coordinate trar
formation that is R7 = 7R and&7 = 7 £ for any coordinate transformatioff .

Proof. Let M be a motion filter consisting of the position and orientation filters define
in Egs. (4) and (5), respectively. As shown in Egs. (10) and (14), reduction and expans
operations are combinations of motion filtering and resampling. Since resampling does
affect the coordinate-invariance, the proof will be complete if we showAHatommutes
with 7. Since>"¥__, am =1,

Ti.ry o M(pi, Gi) = Ty (F(Pi), H(Gi))

k k—1
= Zt.r) ( Z AamPi+m, Qi eXp( Z bm |Og(qr+lin+m+1)>)

m=—k m=—k
k k—1
= (r ( > ampi+m> r+1,1q; exp( > bm log(qrfmqi+m+1)>>
m=—k m=—k
k k—1
= ( Z am(rPi+ml Tt + 1), 1q; exp( Z bm |09(Qi+1mr_lr(1i+m+1)>)
m=—k m=—k

=MoTen(pi.q). =

Letm = mN) be the motion signal at the finest lewél Recursively applying Egs. (7)
and (8), the displacement map at levek(h < N is given:

d® = RN="DmN) g eRMN=MmMMN), (19)

The following theorem establishes that the displacement maps are independent of the cl
of the reference frame in which the original signal) is represented.

THEOREM4.1. The displacement maps in a multiresolution representation are invarial
under global coordinate transformatipthat is

d® = RIN--Di(N) o eRIN=-MmQ(N) — RIN-N-D 7 (N) o eRN=N) 7 (N)
forO<n < N.

Proof. Applying Lemma 1 and Lemma 2, we have
d® — RIN-=D(N) 5 eRIN-MH(N) — 7RIN-N-Dy(N) 5 7gRN-y(N)
= RN DTMN g eRNNTMN), m

As an immediate consequence, we can easily prove the following corollary.
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FIG.5. Level-of-detail generation for a live-captured signal. The four curves represent the change-of
y-, andz-components, respectively, of a unit quaternion with respect to time. From left to right, original sign
and its approximations at successively coarser resolutions.

FIG. 6. Jump and kick: (left) attenuated, (center) original, (right) enhanced.
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FIG. 7. Face hit: (left) attenuated, (center) original, (right) enhanced.

COROLLARY 4.1. Let M(m) = (m©@, d©, ... d(N-1) pe the multiresolution represen-
tation ofm. Then, M7 m) = (7 m©, dO@, ... dN-1y,

Proof. Theorem 1 shows tha#l(m) and M (7 m) have the same sequence of displace
ment maps. Therefore, the proof will be complete if we show that the base sigi#&lan)
is 7Tm©. Recursively applying Eq. (7), we have

RMNTM=TRNMNm =7TmO. =m
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FIG. 8. Frequency-based motion blending: (upper left) Straight walking; (upper right) turning with a norm
walk; (lower left) walking with a limp; (lower right) turning with a limp.
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FIG. 9. Stitching live-captured motion clips. The left and right columns visualize the motion signals corr:
sponding to the left elbow and right knee joints, respectively. Simple concatenation of the original signals yie
a visual seam at the boundary (upper row); Level-wise stitching at the boundary connects the motion sig
seamlessly (lower row).
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—T/6 —T/8 /12 —m/24

w24 w12

FIG. 10. The same motion clips placed at different orientations in the reference frame. The red, blue, -
yellow lines depict the trajectories of the left foot, right foot, and pelvis, respectively.
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FIG.11. Coordinate-dependence of Euler angles: (upper) the original trajectory of pelvis orientation (low
the frame-by-frame differences between the original and the reconstructed signals.
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In our experiments, we first construct the multiresolution representhtion) = (m©,
d©@, ..., dN-Dy of the motion signal and then transform it to reconstruct the signal at
different position in such away that’ = (7m©, d©, ... dN-1). Then, we compare the
reconstructed signal withim obtained by applying the same transformation directly to the
original signal. In our experiments, the motion signal corresponding to the pelvis traject
of “Jump and Kick” in Fig. 6 is used to generate nine samples by rotating the original sigr
successively about the Y axis (vertical) by the incremental angfe (fig. 10). Figure 11
shows the frame-by-frame difference between the transformed signadnd the signals
reconstructed through multiresolution analysis. We measure the angular difference betw
two orientations by geodesic distance:

)

log(a;*, —az2) ])- (22)

Here, since two antipodal points represent the same orientation, we must choose the r
mum betweer Iog(qu, gz2)|l and|| Iog(qu, —02)|l- As proved in the previous section, our
method yields identical signals independent of their positions and orientations to be rec
structed. Unlike our method, our experiments show that the conventional method base
Euler angles generates quite different results depending on the transforfhation

d(qs, d2) = min (|| log(a;™. g2)

6. CONCLUSION

We have presented a new multiresolution approach to motion analysis and synthesis.
motion representation allows us to modify the coefficients at each level in the hierarc
independently of those at the other levels through the level-wise manipulation of de
coefficients. Exploiting this capability, we have developed a variety of motion editing toc
that can be used for modifying, blending, and stitching highly detailed motion data.

The success of our approach is mainly due to motion filtering and hierarchical d
placement mapping. Our filtering scheme can handle orientations as well as position
a coherent manner. The notion of hierarchical displacement mapping provides an ele
formulation for multiresolution representations in which each individual detail coefficie
is represented as a pair of three-dimensional vectors measured at a local coordinate sy
This formulation leads to multiresolution motion synthesis through coordinate-independ
operations.
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