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Abstract In today’s manufacturing outlook, coordinated

scheduling of delivery and inventory represents a leading

leverage to enhance the competitiveness of firms which

aims to address the new challenge coming from scheduling

problems. Though in the last decades this kind of issue has

been extensively approached in the literature, a set of

constraints and compulsory dispositions strongly increases

the complexity of the considered problem. Actors of the

pharmaceutical supply chain have to meet various global

regulatory requirements while handling, storing and dis-

tributing environmentally sensitive products. The studied

problem in this paper focuses on a real-case scheduling

problem in a multi-location hospital supplied with a central

pharmacy. The objective of this work is to find a coordi-

nated production and delivery schedule such that the sum

of delivery and inventory costs is minimized. A mixed-

integer programming formulation is first detailed to con-

sider the problem under study. Then, a branch-and-bound

algorithm is proposed as an exact method and a dedicated

heuristic algorithm is highlighted to solve the problem. At

last, the experimental results show the efficiency of the

proposed solving methods, based on the two following

criteria: solution quality and processing time.

Keywords Case study � Coordinated scheduling �
Production and transportation � Mixed-integer

programming � Branch and bound � Heuristic algorithm

1 Introduction and related literature

Today, the expansion of suppliers to accommodate the

maximum number of customers is considered as a key

factor in the evolution of companies, in order to increase

their profits. Industrial companies are continuously

assessing their operations with the objective of increasing

the overall effectiveness of manufacturing systems. Mar-

kets, where these organizations operate, tend to become

more complex over time, forcing companies to increase

their responsiveness, both in terms of time and cost. The

case of the pharmaceutical industry is a good example of

how market is driving the change on product development

cycles and manufacturing activities. Delivery and inven-

tory scheduling stages are systematically considered to be

very difficult functions. They are intended to produce

operational plans dealing with several potential conflicting

objectives, namely minimizing costs, completion times,

and delays or maximizing profit. One important benefit of

this coordination is a more efficient management of

inventories across the entire supply chain. In traditional

inventory management, the optimal production and ship-

ment policies for vendors and customers in a two-echelon

supply chain are managed independently. Additionally,

these functions are closely related to other areas such as

sales, procurement, production execution and control;
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hence, they may interface with decisions at the strategic

and operational levels. For this reason, the integrated

vendor–customer model is developed where the total rel-

evant costs for the customers as well as the vendors have to

be minimized. Consequently, determining the production

and shipment policies based on an integrated total cost

function, rather than several customer’s or vendor’s indi-

vidual cost functions, results in the reduction of the

inventory costs of the system.

The system under study in this paper is composed of a

central pharmacy from which sterilized medical devices

have to be delivered before given due dates, to different

hospitals located around the central pharmacy. This supply

chain process incurs both delivery costs and earliness

penalty costs in case the devices are delivered too early.

Therefore, the considered problem is an integrated

delivery and inventory problem with due dates constraints,

for which we have to minimize the total delivery and

holding costs. Therefore, the problem can be formulated

from a batch scheduling point of view with a cost objective

function or from a lot sizing problem point of view with a

time horizon. These two classes of problem have been

proven to be equivalent under given conditions [19]. In our

case, a batch scheduling approach seems to be more

appropriate in the context of the study of the healthcare

system with specific constraints for the due dates.

The delivery-inventory problem is denoted as Vendor-

Managed Inventory (VMI) problem. The VMI problem is a

widely used collaborative inventory management policy in

which manufacturers manage the inventory of retailer and

take responsibility for making decisions related to the timing

and extent of inventory replenishment [7]. VMI partnerships

help organizations to reduce demand variability, inventory

holding and distribution costs. A pioneering paper is due to

Bertazzi et al. [6], where a given set of shipping frequencies is

allowed and different products may be shipped at different

frequencies. Herer and Levy [14] have considered a system of

a central warehouse, a fleet of trucks with a finite capacity,

and a set of customers, for each of whom there is an estimated

consumption rate, and a known storage capacity. The

objective is to determine when to service each customer, as

well as the way to be performed by each truck, in order to

minimize the total discounted costs. To solve the problem,

they have proposed a rolling horizon approach that takes into

consideration holding, transportation, fixed ordering and

stock out costs. Viswanathan and Mathur [31] have studied a

distribution systems with a central warehouse and many

retailers that stock a number of different products, where the

products are delivered from the warehouse to the retailers by

vehicles that combine the deliveries to several retailers into

efficient vehicle routes. They have proposed a heuristic that

develops a stationary nested joint replenishment policy.

These results showed that the proposed heuristic is capable of

solving problems involving distribution systems with multi-

ple products. Sindhuchao et al. [29] have considered a system

that consists of a set of geographically dispersed suppliers

that manufacture one or more non-identical items, and a

central warehouse that stocks these items. The warehouse

faces a constant and deterministic demand for the items from

outside retailers. The items are collected by a fleet of vehicles

that are dispatched from the central warehouse. The vehicles

are capacitated and must also satisfy a frequency constraint.

They studied the case where each vehicle always collects the

same set of items. They have formulated and solved the

problem by using a branch-and-price algorithm, and then

they have proposed a greedy constructive heuristic and a very

large-scale neighborhood search algorithm. These results

indicate that the constructive heuristic used in conjunction

with one of the proposed very large-scale neighborhood

algorithms can find near-optimal solutions very efficient.

Recently, Archetti et al. [2] have studied a distribution

problem in which a product has to be shipped from a supplier

to several retailers over a given time horizon. Each retailer

defines a maximum inventory level. The supplier monitors

the inventory of each retailer and determines its replenish-

ment policy, guaranteeing that no stock out occurs at the

retailer (supplier-managed inventory policy). Every time a

retailer is visited, the quantity delivered by the supplier is

such that the maximum inventory level is reached (deter-

ministic order-up-to level policy). Shipments from the sup-

plier to the retailers are performed by a vehicle of given

capacity. They presented a mixed-integer linear program-

ming model, and they derived new additional valid inequal-

ities used to strengthen the linear relaxation of the model.

They implemented a branch-and-cut algorithm to solve the

model optimally. Then, they have studied two different types

of replenishment policies in [3]. The first one is the well-

known order-up-to level (OU) policy, where the quantity

Table 1 A numerical example

Jobs 1 2 3.5 4

Hospital’s 1 2 1 2

Due date Thursday 8:00 am Thursday 8:00 am Thursday 8:00 am Thursday 8:00 am

Departure time Wednesday 06:00 am Wednesday 06:00 pm Thursday 2:00 am Wednesday 06:00 pm

Arrival time Wednesday 12:00 pm Wednesday 10:00 pm Thursday 8:00 am Wednesday 10:00 pm

Inventory cost 600 200 0 200
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shipped to each retailer is such that the level of its inventory

reaches the maximum level. The second one is the maximum

level (ML) policy, where the quantity shipped to each retailer

is such that the inventory is not greater than the maximum

level. In this study, Archetti et al. [3] have focused on the ML

policy and the design of a hybrid heuristic, and they imple-

mented an exact algorithm for the solution of the problem

with one vehicle and designed a hybrid heuristic for the

multi-vehicle case. Most recently, Archetti et al. [4], have

studied the previous problem with a single vehicle which has

a given capacity. The transportation cost is proportional to the

distance traveled, whereas the inventory holding cost is

proportional to the level of the inventory at the customers and

at the supplier. They have proposed a heuristic that combines

a tabu search scheme with ad hoc designed mixed-integer

programming models. The effectiveness of the heuristic was

proved over a set of benchmark instances for which the

optimal solution was known.

There are numerous researches on batch scheduling of

delivery-inventory problem. Scheduling problems arise in

almost any type of industrial production facilities (Pulp and

Paper, Metals, Oil and gas, Chemicals, Food and Beverages,

Pharmaceuticals, Transportation, Service, Military, etc.)

where given operations need to be processed on specified

resources. The corresponding scheduling problems are

already very difficult to solve [20]. Much research has

focused on the same area under various assumptions and

objective measures that differ from the considered problem in

this paper. Potts [12], Hall[ 26] and Zhang et al. [35] have

studied scheduling problems with non-identical job release

times and delivery times, under the assumption that a suffi-

cient number of vehicles is available to deliver the jobs.

Kimms [21] has examined the problem of single-machine and

proposed two heuristic approaches: randomized regrets based

and tabu search approaches. Each production plan is gener-

ated without using any information obtained from previous

plans. This work has been extended by Kimms [22] with a

proposition of a genetic algorithm that dominates the tabu

search procedure, both in terms of run-time performance and

the ability to find feasible solutions. Pinedo and Michael [24]

reviewed different models and solution approaches, and then

they explained the complexity of scheduling problems.

Multi-echelon inventory models have attracted much

attention, and the integrated approach has been extensively

studied. In this way, Grunder [11] considered a single-product

batch scheduling problem with the objective of minimizing

the sum of production, transportation and inventory cost.

Particularly, he assumed that the delivery time depends on the

batch sizes and proposes a dynamic programming approach

based on a dominance relation property. Wang et al. [33]

extended this study with an integrated scheduling problem for

single-item supply chain involving due date considerations

and an objective of minimizing the total logistics cost. Fu

et al. [10] studied the problem of coordinated scheduling of

production and delivery subject to the production window

constraints and delivery capacity constraints. They consid-

ered both a single delivery time case and multiple delivery

time case. Chen [8] reviewed the production and distribution

scheduling models and classified these problems in five

groups. Problems addressing an objective function that

combines machine scheduling with the delivery costs are

rather complex. However, they are more practical than those

involving just one of the two factors, since these combined-

optimization problems are often encountered when real-world

supply chain management is considered.

The number of customers and products has been a topic

of intense investigation for decades in the integrated supply

chain. Although researchers have given a considerable

attention on the synchronization of the single-vendor single-

customer integrated inventory system, the single-vendor

multi-customer integrated inventory case has gotten little

attention in regard. Lu [23] developed a one-vendor multi-

customer integrated inventory model, while Parija and Sar-

ker [25] extended their published work on single-vendor,

single-customer, integrated production-inventory problems

with lumpy delivery systems under perfect and imperfect

production cycle situations [27]. Lu [23] argued that all the

previous studies assumed that the vendor must know the

customer’s holding and ordering costs, which are quite dif-

ficult to estimate unless the customer is willing to reveal the

true values. Therefore, he considered another circumstance,

in which the objective is to minimize the vendor’s total cost

per year, subject to the maximum cost that the customer may

be prepared to incur. Parija and Sarker [25] introduced the

problem of determining the production start time and pro-

posed a method that determines the cycle length and raw

material ordering frequency for a long-range planning

horizon. The cycle length is restricted to be an integer-

multiple of all shipment intervals to the customers as an

ideal situation, the solution to which may be sub-optimal.

Viswanathan and Piplani [32] proposed a model to study and

analyze the benefit of coordinating supply chain inventories

by means of common replenishment epochs or time periods.

A one-vendor multi-customer supply chain is considered for

a single product. Under their strategies, the vendor specifies

common replenishment periods and requires all customers to

replenish only at pre-determined time periods. However, the

authors did not include any inventory cost of the vendor in

the model. In most papers dealing with integrated inventory

models, the transportation cost is considered only as a part of

fixed setup or replenishment cost. Ertogral et al. [9] studied

how the results of incorporating transportation cost into the

model influence the decision-making process under equal

size shipment policies. A fundamental advance in the two-

side cost structure is in recognizing how delivery-trans-

portation costs apply to both sides.
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Hoque [15] proposed three models for supplying a single-

item from a single-vendor to multiple customers under

deterministic demand by synchronizing the production flow

with equal-sized batch transfer in the first two and unequal-

sized batches transfer in the third. In the first two models, all

batches forwarded are of exactly the same size but the

timing of their shipment is different. In the first of these, the

manufacturer transfers a batch to a customer as soon as its

processing is finished, whereas in the second a batch is

transferred to a customer as soon as the previously sent

batch to the customer is finished. In the third model, the

subsequent shipment lot sizes increase by the ratio of pro-

duction rate and sum of demand rates on all the customers.

Zavanella and Zanoni [34] proposed a model for a single-

vendor multi-customer system, integrated in a shared man-

agement of the customers’ inventory, so as to pursue a

reduction or the stability of the holding costs while

descending the chain. Hoque [16] transferred the lot from a

vendor to multiple customers with l number of unequal-

sized batches first; where the next one is a multiple of the

previous one by the ratio ðk[ 1Þ of the production and the

total demand rates, followed by ðn� lÞ number of equal-

sized batches. The equal-sized batches are restricted to be

less than or equal to the lth batch (the largest unequal-sized

batch) multiplied by k. The models developed were solved

by applying Lagrangian Multiplier method. However, in

cases of single-vendor single-customer or single-vendor

multi-customer or multi-stage production, synchronization

of the production flow by transferring the lot with equal and/

or unequal-sized batches was found to lead to the least total

cost for some numerical problems. Although Hoque [16]

served that purpose, he did not cope with the relaxation of

the discussed impractical assumptions. Following this trend

of synchronization, Hoque [17] developed two generalized

single-vendor multi-customer integrated inventory models

by accumulating the inventory at the vendor’s and cus-

tomer’s independently, but with the traditional trend of

ignoring the cost of benefit sharing. Transportation of each

of the batches incurs a transportation cost. In order to

implement the models by taking into account the industry

reality, he also incorporates them with the relaxation of the

discussed impractical assumptions. Battini [5] developed a

single-vendor and multi-customer consignment stock

inventory model in which many clients can establish a

consignment stock inventory policy with the same vendor.

Recently, Jha and Shanker [18] studied an integrated

production-inventory model in a single-vendor multi-cus-

tomer supply chain with lead time reduction under inde-

pendent normally distributed demand on the customers.

They assume a non-identical lead time for the customers

and that customers’ inventory is reviewed using continuous

review policy. Hariga et al. [13] analyzed Hoque’s models

I and II studied in Hoque [16], and then they modified some

of Hoque’s models. Hariga et al. [13] compared the cost

between the results of the models in Hoque [16] and

Zavanella and Zanoni [34], and then they concluded that

both models are not appropriate as they are using different

functional forms of the total setup and ordering costs.

Moreover, it is shown that Hoque’s model yields imprac-

tical solutions for zero transportation costs. When the total

setup and ordering cost was adjusted to be similar to the

one in Zavanella and Zanoni’s model, Hoque’s model

resulted in a larger total cost.

Existing inventory models for multi-customers are not

applicable to pharmaceutical products for several reasons.

Pharmaceutical products can be more expensive than other

products to purchase and distribute, and shortages and

improper use of essential medicines can have a high cost in

terms of wasted resources and preventable diseases and

death. Therefore, special care should be taken in pharma-

ceutical inventory decisions to ensure 100% product

availability at the right time, at the right cost, and in good

condition to the right customers. The quality of health care

industries strongly depends on the availability of pharma-

ceuticals on time. If a shortage occurs at a hospital, an

emergency delivery is necessary, which is very costly and

can affect the patient health. Inventory management

strategies that are unsuitable for health care industries may

lead to large financial losses and a significant impact on

patients. Hence, inventory strategies for pharmaceutical

products are more critical than those for other products.

Thus, a specific inventory model is necessary to control

pharmaceutical products, to save patient lives and reduce

unnecessary inventory costs.

Here we investigate a delivery-inventory supply chain

composed of a central pharmacy which has to deliver

pharmaceutical supplies to distant hospitals with a single

transporter at given due dates. The objective is to reduce

the overall cost which includes the delivery costs and an

earliness penalty cost.

The contributions of this paper are twofolds. First, we

propose a MIP model to minimize the total delivery and

inventory costs for the considered supply chain under the

constraints of healthcare systems. Second, we propose an

efficient solving algorithm which is compared with two

exact methods.

The outline of the remainder of the paper is organized in

seven sections. In Sect. 2, the problem definition and for-

mulation is introduced. In Sect. 3, the problem is formu-

lated as a mixed-integer programming (MIP) model. Then,

we describe the proposed branch-and-bound algorithm

(B&B) as an exact method of resolution in Sect. 4. We

develop a heuristic algorithm in Sect. 5 for solving the

problem. In Sects. 6 and 7, we eventually provide the

experimental results and draw some conclusions and sug-

gest the future research directions.
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2 Problem definition and formulation

We consider a supply chain scheduling problem where

there is one central pharmacy which has to deliver medical

supplies, or jobs, to m hospital sites, which are the final

customers (Fig. 1). Each hospital h orders a finite number

of jobs from the central pharmacy.

The following assumptions are considered for this study.

First, we will consider a single transporter to deliver the

sterilized medical devices as the number of distant hospi-

tals is reduced in practice (less than 4) and the distances

with the central pharmacy are quite short. Second, we will

only consider direct shipping (i.e., commuter tours), with-

out considering routing considerations between customers

[8]. This assumption is explained by the fact that the

pharmacy is located in the center of the distant hospitals.

Moreover, the road network is centralized on the main

town of the central pharmacy; hence, travel times are

longer between distant hospitals.

Each round trip between the pharmacy and a hospital h

requires a delivery cost gh as well as a delivery time sh.
The batches delivered from the central pharmacy to the

hospitals can be of different sizes.

The total number of jobs belonging to the same batch

cannot exceed the capacity c of the transporter. Each job j

has a due date dj specified by the hospitals and each job has

to arrive to the hospital site before its due date. If job j of

hospital h arrives before its due date dj, it will incur as an

earliness penalty bh. Batching and sending several jobs in

the batches will reduce the transportation costs.

The objective is to determine the sequence of batches

that has to be processed, so that the expected total cost of

both central pharmacy and hospitals sites is minimized.

2.1 Notations

The following notations are used in developing the math-

ematical model:

Parameters

• J ¼ 1; 2; . . .; n: set of all jobs, where n is the total

number of jobs,

• H ¼ 1; 2; . . .;m: set of all hospitals,

• j: index for jobs, j 2 J,

• k: index for batches,

• h: index for hospitals, h 2 H,

• dj: due date of job j,

• clj: destination of job j, clj 2 H,

• c : capacity of the transporter,

• sh: time for the vehicle to deliver a batch to hospital

h and to return to the central pharmacy location,

• gh: delivery cost to deliver a batch to hospital h and to

return to the central pharmacy location,

• bh : hospital earliness penalty function for hospital h.

Primary variables

• d1
jk ¼ 1 if the job j belongs to the kth batch, 0 otherwise,

• d2
kh ¼ 1 if the batch k belongs to the customer h, 0

otherwise.

Secondary variables

• yk ¼ 1 if the batch k exists and is not empty, 0

otherwise,

• Cj : the arrival time of the job j at the hospital,

• Bk: the arrival time of the batch k at the hospital,

• uh: number of delivered batches for hospital h.

2.2 Numerical example

To clarify the problem, we consider a simple numerical

example in Table (1) as follows. Two hospitals ordered five

jobs at the same time (Monday at 8:00 am) and they would

receive their products at the same time (Thursday at 8:00

am), that means all the products have the same due date

equal to 72 h. The central pharmacy and its hospital cus-

tomers open 24 h/day. Three jobs (j ¼ 1; 3and5) for hos-

pital 1 and two jobs (j ¼ 2 and 4) for hospital 2. The

vehicle capacity is c ¼ 2. The transporter delivery cost and

time depend on the hospitals’ positions with (g1 ¼ 1000

Euro, s1 ¼ 6 h, and g2 ¼ 750 Euro, s2 ¼ 4 h) belongs to

hospital 1 and 2, respectively, (b1 ¼ b3 ¼ b5 ¼ 30 Euro/h

and b2 ¼ b4 ¼ 20 Euro/h) belongs to hospital 1 and 2,

respectively.

The solution is shown in Table (1) for this problem. As

it is shown, the vehicle makes three round trips among

them two to hospital 1 and one to hospital 2. Three batches

Fig. 1 Central pharmacy and multi-location hospital model
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k1 ¼ 1; k2 ¼ 2 and k3 ¼ 2 are denoted. The products arrive

at the customers in the batch to which they belong to in the

completion time cited in Table (1). The total delivery cost

equals g1 � 2 þ g2 � 1 ¼ 2750 Euro and the total storage

cost at the hospitals equals b1 � ½ðd1 � C1Þ þ ðd3 � C3Þ þ
ðd5 � C5Þ� þ b2 � ½ðd2 � C2Þ þ ðd4 � C4Þ� ¼ 30 � ½20 þ
0 þ 0�þ 20 � ½10 þ 10� ¼ 1000 Euro. The amount of the

objective function is 3750 Euro.

3 The mixed-integer programming model

The pharmaceutical supply chain has many aspects that

need to be considered in a supply chain model. However,

by taking all concerned factors into account, the model

would be of so high complexity that it would be extremely

hard for analysis. In this section, the mathematical pro-

gramming model of the above-mentioned problem is pre-

sented. Using the structural properties, we develop a MIP

model for the mentioned problem as follows:

Min Z ¼
Xm

h¼1

ghuh þ
Xn

j¼1

bcljðdj � CjÞ ð1Þ

Subject to :

Xn

k¼1

d1
jk ¼ 1; j ¼ 1; . . .; n ð2Þ

Xm

h¼1

d2
kh � 1; k ¼ 1; . . .; n ð3Þ

d2
k;clj

� d1
jk; j; k ¼ 1; . . .; n and k� j ð4Þ

uh ¼
Xn

k¼1

d2
kh; h ¼ 1; . . .;m ð5Þ

yk � ykþ1; k ¼ 1; . . .; n� 1 ð6Þ
Xn

j¼k

d1
jk � c; k ¼ 1; . . .; n ð7Þ

Cj � dj; j ¼ 1; . . .; n ð8Þ

Bkþ1 �Bk; k ¼ 1; . . .; n� 1 ð9Þ

Bkþ1 � Bk �
Xm

h¼1

shðd2
kþ1;h þ d2

khÞ;

k ¼ 1; . . .; n� 1 and h 2 H

ð10Þ

Cj ¼
Xn

k¼1

Bk � d1
jk; j ¼ 1; . . .; n ð11Þ

Cj � 0; j ¼ 1; 2; . . .; n ð12Þ

d1
jk; d

2
kh 2 f0; 1g; j; k ¼ 1; . . .; n and h ¼ 1; . . .;m ð13Þ

The objective function (1) minimizes the sum of the

delivery costs, through the ghuh term, and the customers

earliness penalty, through bcljðdj � CjÞ. Constraint (2)

guarantees that each job must be scheduled exactly in one

batch. In this constraint, the jobs will be batched only in the

batch which it belongs to. Constraints (3 and 4) force each

batch to be delivered to the customer it belongs to. Con-

straint (5) calculates the number of batches delivered to

each customer. Constraint (6) guarantees that no empty

batch is allowed. Constraint (7) prevents the number of

jobs scheduled in one delivery batch to exceed the capacity

of the vehicle. Constraint (8) indicates that arrival time of

each job is at least equal to the contracted due date for each

customer. Constraint (9) orders the batches in the

increasing order of their arrival times. Constraint (10)

expresses the minimum interval duration between the

arrivals of two consecutive batches has to be greater than

the delivery time of the transporter. Constraint (11) rep-

resents the relation between the completion time of the jobs

and the arrival time of the batch they belong to. This

constraint is represented in a nonlinear way in this math-

ematical representation to facilitate the understanding of

the problem. Constraints (12) and (13) define the range of

the variables.

For ease of reference, we denote this problem: Multiple

Customers Batching Delivery Scheduling Problem

(MCBDSP).

The complexity of the MCBDSP is still an open ques-

tion. To the best of our knowledge, no polynomial algo-

rithm can solve this problem. However, from simulation

experiments, we observe that the problem is still

intractable on an empirical basis. In the next section, a

B&B with a lower bound is described to solve the problem

as an exact method.

4 Branch-and-bound algorithm

In this section, we describe the B&B algorithm that we

have developed to solve the MCBDSP. The objective of

this B&B is to solve small to medium-sized instances, and

to be a reference for validating the efficiency of the pro-

posed heuristic algorithm. This B&B algorithm maintains a

list of subproblems (nodes) whose union of feasible solu-

tions contains all feasible solutions of the original problem.

The list is initialized with the original problem itself. In

each major iteration, the algorithm selects a current sub-

problem from the list of unevaluated nodes. This branching

seems to be natural; however, the number of branches will

be very large for large problems. Consequently, if this

method is used in the B&B algorithm, it may take too much

time to find optimal solutions, as redundant schedules
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would be checked repeatedly. Yet, several of the sub-

problems would already have been eliminated upon the

generation of nodes, since the search tree includes redun-

dant solutions.

At each node of the search tree, the number of products

that still need to be delivered to each customer has to be

updated. Iterations are performed until the list of sub-

problems to be processed is empty. The crucial part of a

successful B&B algorithm is the computation of the lower

bounds. Therefore, we have developed a lower bound

described in the next part.

Efficient lower bound would significantly reduce the

time and efforts needed for the B&B method. Based on the

main feature of the problem, the lower bound value for the

problem is the summation of lower bounds on the total

earliness cost and the transportation cost. We assume that

w is a partial batch sequence solution, z(w) is the evaluation

of w, and rhðwÞ is the number of products remaining at the

customer’s h for partial solution w. This notation will be

used throughout this part.

In each node, the solutions are built from the last batch

to the first one and the evaluation of the partial or complete

solution is processed with backward equations. The

research of a solution starts by constructing a partial

solution w. Then, the remainder of products is added in

order to get a complete solution, with the objective of

achieving a minimum delivery cost. Therefore, more the

transporter will be loaded, more this lower bound will be

efficient.

Proposition 1 For a partial solution w, a lower bound for

the delivery cost of the remaining products is given by:

Xm

h¼1

rh

c

l m
� gh ð14Þ

Proof For each customer h, if rhðwÞ is the number of

products remaining to be delivered, the number of round

trips will be equal to rh
c

� �
, and the delivery cost of the

remaining products is as denoted in Eq. (14). h

We add the partial solution w to the solution found in

equation (14) to get the lower bound of the current node

under study.

Corollary 1 The lower bound LB(w) of the partial solu-

tion w is given as follows:

LBðwÞ ¼ zðwÞ þ
Xm

h¼1

rh

c

l m
� gh ð15Þ

Proof Straightforward. h

The mathematical model and the B&B algorithm

developed in the previous sections could solve small to

medium-sized instances; however, the time of resolution to

solve large-sized instances grows exponentially in the

experimental results. Therefore, developing fast heuristic

algorithm to yield near-optimal solutions in a reasonable

running time is still of great importance. In the next sec-

tion, a solving method is proposed to solve the problem.

5 Heuristic algorithm

In this section, a heuristic algorithm, which is denoted

Batching and Scheduling algorithm (B&S), is proposed.

This algorithm is composed of two steps, the first one

consists in defining the size of the batches and the second

one will schedule them according to the different con-

straints of the problem.

The B&S algorithm starts by generating an initial

solution through the means of a progressive constructive

procedure. Then, the above-mentioned two-steps process is

applied until a predefined stop condition is satisfied. At

first, some elements of the current solution are constructed.

Then, a local improvement phase based on a swap operator

is applied to the reconstructed solution in order to improve

its quality. Finally, B&S chooses the optimum solution

between the current solution and the solution obtained from

the improvement procedure.

Let us denote that ðqk; clk;BkÞ is the notation which will

be used for a solution of a batch k, where the first term qk
describes the number of jobs in this batch, the second term

clk describes the customers destination of batch k and the

third term Bk is the arrival time of this batch. For example,

a solution of three batches, which contains 2, 3 and 2 jobs,

respectively, belongs to customers 2, 3 and 1, respectively,

and arrives at due dates 1000, 1015 and 1020, respectively,

will be written as follows:

½ð21; cl2; 1000Þ; ð32; cl3; 1015Þ; ð23; cl1; 1020Þ�

Based on the prune rule, the following heuristic algorithm

is proposed as follows: for level 0, there is no job. For the

first level, which includes only last job n, there is only one

possible joint solution which is ð1; cln;BnÞ. For level k

(includes q jobs), all ‘‘good’’ solutions for a number of k

jobs will be kept. The process to build ‘‘good’’ solutions for

level k is described as follows: (1) build solutions of level k

by considering all the solutions in the retained ‘‘good’’

solutions of all the previous levels from 1 to ðk � 1Þ. For

each retained solution of level k0 � k, a new solution of

level k is built by simply adding a batch of (k � k0Þ jobs, if

this is possible. Then, this procedure is repeated until the

level n is reached.

The details of the algorithm (1) are presented as follows:

The generation of the initial solution and the construction

procedure is represented from line 1 to 4. Then, the batch

sizing procedure is represented from line 5 to 17 according
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to a scattering/gathering procedure. The improvement

procedure is called in line 14, and then it is described in

Algorithm 2.

The batch sizing procedure, performed in an iterative

way, extends a partial solution by adding one job from a set

J of all jobs. The construction of the good solution

advances progressively and in a hierarchical manner. The

process starts from the last job and arrives recursively to

the first one. The jobs are distributed to the customers to

whom they belong, and the batches sizes are defined

according to a scattering/gathering procedure described in

Algorithm 1.

In this algorithm, the number of delivered jobs j

varies from 0 to n (line 1). For each level of j delivered

jobs, the different partial solutions are built from the

solution of previous levels (\j). Moreover, the neces-

sary number of batches to these solutions is added, to

complete the partial solution of level j. After every

product addition to level j, the partial solution of this

level is completed by adding the necessary delivery

scheme to the considered solution in the list of all kept

solutions from 0 to (j� 1), to obtain the new list of

solutions of level j. A test of verification of the capacity

of the transporter used is done directly after each

advancement in level (See line 6 in Algorithm 1).

The final step of each level j is denoted in line 15, which

is mentioned in Algorithm 1. In this phase, the good

solution is memorized and inscribed to level j. After that, a

new level ðjþ 1; jþ 2. . .Þ is started till reaching level n.

In the improvement phase, all consecutive batches are

swapped, by starting from the last batch recursively to the

first one, while the index of the batch is positive (See line 5

in Algorithm 2). After every swap operation, the new

solution is kept if it is better than the current solution. If

not, a new swap operation is generated. The improvement

operation stops when the index of batches equals 0.

Let’s take an example to explain the application of the

B&S in Algorithm 1, to illustrate the MCBDSP. We con-

sider a problem of three jobs and two customers. The due

dates associated with these jobs equal 1000; 1100; 1150,

where jobs 1 and 3 have due dates 1000 and 1150 and

belong to customer 1 and job 2 has due date 1100 and

belongs to customer 2. The transport delivery cost and time

depend upon the customer’s location with

(g1 ¼ 20; s1 ¼ 60 u:t and g2 ¼ 15; s2 ¼ 40 u:t) belonging

to customer 1 and 2, respectively. The customers’ holding

costs are defined as follows: (bcl1 ¼ bcl3 ¼ 30 and bcl2 ¼
15 ), belonging to customer 1 and 2, respectively. The B&S

process is described in detail as follows: the process starts

by the last job recursively to arrive to the first one.

1. For j ¼ 1; currentJob = 3, there is only one possible

joint solution which is ð1; cl1; 1150Þ.
2. For j ¼ 2; currentJob j ¼ 3 or 2, there are different

possible solutions. Firstly, a complementary solution is

built by simply adding a batch of (2 � 1) job to the

previous delivery solution. The potential delivery

scheme is equal to 2 batches:

½ð1; cl1; 1150Þ; ð1; cl2; 1100Þ�

Due to the improvement phase, two solutions could be

obtained according to the swap operation which are:

½ð1; cl2; 1100Þ; ð1; cl1; 1150Þ� and

½ð1; cl1; 1150Þ; ð1; cl2; 1100Þ�

Then the two potential joint solutions are compared

and the good solution is kept, which is:

½ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

3. For j ¼ 3. currentJob j ¼ 3; 2 or 1, based on the

delivery scheme of the first step, the new delivery

schemes are:

½ð1; cl1; 1150Þ; ð1; cl2; 1100Þ; ð1; cl1; 1000Þ� and

½ð1; cl1; 1150Þ; ð1; cl1; 1000Þ; ð1; cl2; 1100Þ�:
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Due to the improvement phase, two solutions could be

obtained according to the swap operation which are:

½ð1; cl2; 1100Þ; ð1; cl1; 1000Þ; ð1; cl1; 1150Þ� and

½ð1; cl1; 1000Þ; ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

Then the four potential joint solutions are compared

and the good solution is kept, which is:

½ð1; cl1; 1000Þ; ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

After that, based on the delivery scheme of the second

step, the delivery scheme on this step is:

½ð1; cl2; 1100Þ; ð1; cl1; 1150Þ; ð1; cl1; 1000Þ�

In the improvement phase, a new solution could be

obtained which is:

½ð1; cl1; 1000Þ; ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

The two potential joint solutions are compared and the

good solution is kept, which is:

½ð1; cl1; 1000Þ; ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

Finally, the two potential joint solutions kept in each

level are compared and the best final solution is

recovered, which is:

½ð1; cl1; 1000Þ; ð1; cl2; 1100Þ; ð1; cl1; 1150Þ�

6 Experimental results

In this section, a set of problems taken from the central

pharmacy data with different sizes are used for this study.

The computational experiments are carried out to test the

performance of the three techniques of resolution used to

solve the problem under study: the MIP model solved by

CPLEX, the proposed B&B algorithm and the developed

B&S heuristic algorithm.

The performance of B&S was measured by the

average error gap compared to the fast exact method

(which is the developed B&B algorithm in this study)

and was defined as ER(B&S/B&B)=(EB&S-EB&B)/EB&B

where EB&S denotes the best evaluation found by the

heuristic algorithm and EB&B the best evaluation of the

branch-and-bound algorithm. The performance of the

proposed B&B procedure was measured by its Central

processing unit (Cpu) time needed to find the optimal

solutions and was compared with the CPLEX solver that

solves the MIP model directly. Both the B&B procedure

and the B&S were programmed in JAVA language and

implemented through a desktop Intel core 2 processor

operating at 2.67 GHz clock speed and 4 GB RAM. The

MIP model was solved by CPLEX on the same machine.

The maximum solving time allowed for these instances

is 1 h. The reference of time limit of resolution is based

on the real time of the preparation of a schedule in the

actual case. As a comparison, CPLEX solver is used to

exactly solve the model with small scale random

instances. Some adjustments are done on the parameters

of research in CPLEX order to accelerate the research of

solutions.

According to the confidentiality of the data base of the

central pharmacy under study, several cases of problem

were considered for which several instances were gener-

ated randomly.

6.1 Test cases

The characteristics of orders to schedule differ by cus-

tomers, transporter capacity, quantity delivered, due date,

transporter time, transporter cost and the storage cost at

each customer. Three cases are considered to test the

proposed methods. The characteristics of the case are listed

in Table 2. For each case {A, B and C}, the number of

products n, the number of customers h, the transporter time

sh, the transporter cost (gh), and the storage cost at each

customer (bh) are displayed.

In the first case, gh is higher than bh, where gh and bh
are randomly generated from the uniform distribution

with ranges [1000, 1500] and [1, 5], respectively. In the

second case, gh is generated in the same way and with

the same distribution with ranges [1000, 1500] and bh of

the first case is multiplied by 10, where bh is randomly

generated from the uniform distribution with ranges

[10, 50]. In the third case, bh is calculated by multi-

plying the ranges of the first case by 100, where bh is

randomly generated from the uniform distribution with

ranges [100, 500].

Table 2 Main characteristics of the test cases

Case n h bh(Euro) gh(Euro) sh(Hours)

A 10 2, 3, 4 [1; 5] [1000; 1500] [3; 5]

20 2, 3, 4

30 2, 3, 4

40 2, 3, 4

B 10 2, 3, 4 [10; 50] [1000; 1500] [3; 5]

20 2, 3, 4

30 2, 3, 4

40 2, 3, 4

C 10 2, 3, 4 [100; 500] [1000; 1500] [3; 5]

20 2, 3, 4

30 2, 3, 4

40 2, 3, 4
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6.2 Comparison of the performance of the B&B

algorithm and the MIP model

Both methods of resolution, B&B algorithm and MIP

model solved by CPLEX, find optimal solutions. Their

performances are measured by their Cpu time, then the fast

method will be compared to the developed heuristic algo-

rithm B&S .

The CPLEX solver, which is used to solve the MIP

model, finds the optimal solution. However, its computa-

tional time grows exponentially as the instance size

increases, regardless of the parameters of the studied

problem. In contrast, the proposed B&B algorithm is

influenced by the value of the parameters used and the

increase of the complexity of the problem. With small to

medium-sized instances, the computational time of the

proposed B&B algorithm will never exceed one hour. The

results show that the B&B algorithm runs much faster than

the CPLEX solver.

For the problem of the class A in Table 3, we notice that

B&B which is supported by the lower bound runs faster

than the CPLEX solver. The CPLEX solver finds the

optimal solution but its computational time grows rapidly

as the size of the instance and the number of customers

increase. Conversely, the computational time of the B&B

algorithm is very short, which explains the efficiency of the

lower bound used in the B&B method to give the optimal

solution from small to medium-sized instances. In this

case, the two methods solve the problem rapidly. In these

experiments, the optimal solution corresponds to fully

loaded batches. In this case, the total holding cost is less

than the total transporter cost. Consequently, this configu-

ration is the least complex to solve, because the batches

have to be fully loaded in order to minimize the delivery

cost.

In the second class of the problem B in Table 4, the

problem becomes harder to solve with CPLEX onset from

30 products regardless of the number of transporters. The

B&B algorithm runs faster than the CPLEX solver, but the

gap between the two methods becomes significantly

prominent as the number of products and transporters

increases. In this case, the time of resolution of the CPLEX

solver starts to increase rapidly according to the variation

of b in ½10; 50�. In the optimal solution we noticed that the

number of batches is increased and the number of products

by batch is decreased gradually.

In the third class of the problem C in Table 5, we

observe that the B&B algorithm runs much faster than the

CPLEX solver when the number of products is more than

10 products. Interestingly, the efficiency of CPLEX

decreases drastically, where the MIP model solves only the

instances of ten products with 2, 3 and 4 customers. In this

case, the computational time of the two methods becomes

very large so that the variation of b equals ½100; 500�,
where in the optimal solution the batches are very lightly

loaded, but the proposed B&B algorithm is still more

efficient than the results of the MIP model.

These results show the efficiency of the proposed B&B

method to give the optimal solution from small to medium-

sized instances. In the next section, the performance of the

B&B algorithm will be compared to the proposed heuristic

algorithm B&S.

6.3 Comparison of the quality of solutions

In this section, the performance of the proposed B&S

heuristic algorithm is analyzed thoroughly by comparing

these results with the performance of the proposed exact

methods.

The three considered cases are found in Table 6. For

each case, three scenarios are considered beginning with

three hospitals in use, then four and five. Moreover, for

each case, the number of products sets as 10, 20, 30 and 40,

respectively. In each case, the customer storage cost bh is

generated from a discrete uniform distribution in the

interval ½1; 5�; ½10; 50�; and ½100; 500� Euro for the three

cases, respectively.

In the computational study, the following parameters are

used: the vehicle’s capacity is randomly generated from the

uniform distribution with range [n/5, 2n/5]; further, its

round-trip delivery time for each customer is randomly

generated from the uniform distribution with range ½3; 5� h.

The due dates ðdjÞj¼1...n are uniformly separated with val-

ues randomly generated.

Considering the different parameters, 36 situations of

the problem are tested. For each situation, 25 problem

instances are generated to study the performance of the

B&S. Based on the results of the exact methods, the error

Table 3 Computational results

of instances with b ¼ ½1; 5� Class of problem# Size(n)! 10 20 30

CPLEX B&B CPLEX B&B CPLEX B&B

CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s)(h)#

2 0.64 0.006 53.67 0.046 144.842 0.221

Case A 3 0.505 0.005 45.31 0.385 197.274 1.749

4 1.660 0.019 43.25 0.891 288.585 308.997
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ratio is defined as ER(B&S/B&B) = (EB&S - EB&B)/EB&B,

where EB&S denotes the mean evaluation of the solution

generated by the proposed B&S, and EB&B denotes the

mean evaluation of the solution generated by exact meth-

ods. The results are displayed in Table 6.

Table 6 shows clearly that the overall average equals

5:82% which demonstrates that the proposed B&S is

capable of generating near-optimal solutions within a rea-

sonable amount of Cpu time. One of the reasons may be the

improvement phase which is presented in the heuristic

algorithm (Sect. 5). In each case, we observe that the

average error ratio appears in an increasing trend as the

value of n increases.

6.4 Comparison of the computational time

of solving methods

Tables (7, 8, 9) show the solution time obtained for each

method. In the computational study, the following param-

eters are used: the vehicle’s capacity is randomly generated

from the uniform distribution with range [n/5, 2n / 5];

further, its round-trip delivery time for each hospital is

randomly generated from the uniform distribution with

range ½3; 5� h. The due dates ðdjÞj¼1...n are uniformly sep-

arated with values randomly generated.

Moreover, for each case, the number of jobs set as

10; 20; 30 and 40, and the number of hospitals as 2; 3 and

4 for each case.

The parameters are generated with a magnitude order

which is consistent with those of the central pharmacy. For

each combination, 25 problem instances are randomly

generated and the average Cpu time for each resolution

method is collected.

The results show that the heuristic algorithm runs much

faster than the B&B algorithm. In this class, the resolution

of the B&B algorithm is acceptable, which explains the

efficiency of the lower bound used in the B&B algorithm to

give the optimal solution for small to medium-sized

instances. The computational time of the proposed B&S

will never exceed 0.3 s; moreover, the B&S can give

optimal or near-optimal solutions for all of the situations.

In Table 7, the results show that it was possible to solve

all the instances with the three proposed methods. In this

case, the total storage cost at the customer’sPn
j¼1 bcljðdj � CjÞ, which constitutes the second part of the

objective function (1), will be less than those of the total

transporter cost
Pm

h¼1 ghuh, which constitutes the first part

of the objective function (1). This configuration is the least

complex to solve, because the vehicle is fully loaded

Table 4 Computational results

of instances with b ¼ ½10; 50� Class of problem# Size(n)! 10 20 30

(h)# CPLEX B&B CPLEX B&B CPLEX B&B

CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s)

2 3.439 0.006 462.669 0.149 [3600 1.471

Case B 3 2.106 0.006 515.522 1.133 [3600 63.433

4 4.753 0.023 474.654 6.161 [3600 [3600

Table 5 Computational results

of instances with b ¼ ½100; 500� Class of problem# Size(n)! 10 20 30

(h)# CPLEX B&B CPLEX B&B CPLEX B&B

CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s) CpuT (s)

2 15.208 0.008 [3600 0.301 [3600 6.602

Case C 3 18.749 0.008 [3600 2.882 [3600 241.455

4 29.442 0.020 [3600 32.497 [3600 [3600

Table 6 The error ratio results for gh 2 ½1000; 1500� Euro and bh 2
½1; 5�; ½10; 50�; ½100; 500� Euro for three cases, respectively

Class of problem# The error ratio

ER = (EB&S-EB&B)/EB&B

(h)! 3 4 5

(n)#

Case A 10 9.11 % 2.17 % 0.21 %

20 7.13 % 7.67 % 0.35 %

30 9.52 % 2.32 % 0.83 %

40 8.80 % 5.27 % 7.99 %

Case B 10 0.00 % 1.15 % 0.04 %

20 8.62 % 3.68 % 0.14 %

30 8.19 % 4.03 % 0.35 %

40 12.43 % 12.28 % 4.60 %

Case C 10 5.90 % 2.18 % 0.98 %

20 5.10 % 2.89 % 1.59 %

30 9.00 % 12.19 % 2.95 %

40 12.12 % 10.19 % 7.58 %

Overall average = 5.82 %
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according to the cheapness of the storage cost at the

hospital.

In Table 8, the problem becomes harder to solve for the

proposed B&B algorithm. In this case, the time of resolu-

tion of the B&B algorithm exceeds the proposed time limit

onset from four hospitals if the number of products equals

30, and onset from three hospitals when the number of

products equals 40. Here, the number of batches is

increased and the number of products by batch is

decreased.

In the third class of problem, in Table 9, the B&B

algorithm solves instances until 30 products with four

hospitals. Its processing time grows progressively when the

number of hospitals and products increase. In this case, the

vehicle is very lightly loaded.

These results show that the proposed B&B algorithm is

efficient for small to medium-sized instances and finds

optimal solutions, and the B&S proposed algorithm gives

an optimal or a near-optimal solutions for small to large-

sized instances.

7 Conclusion

In this paper a real-life delivery and inventory problem

from the pharmaceutical industry is addressed. A central

pharmacy delivers products to multiple heterogeneous

hospitals sites with a single transporter. The transporter

serves every hospital separately. It is supposed that each

job that arrives in the hospital before its due date will incur

an earliness penalty cost. The objective is to minimize the

total cost defined by the weighted sum of the delivery cost

and the earliness cost.

Firstly, we focused on the development of a complete

deterministic model formulated as a mixed-integer pro-

gramming model. Then, in a subsequent step, a branch and

bound based on a lower bound is developed. Secondly, we

described an effective heuristic algorithm based on the

determination of the batch sizing and the batch scheduling

of the problem. The efficiency of the proposed heuristic

algorithm guarantees the determination of a feasible

schedule for any given set of requests of the central

pharmacy.

The proposed heuristic algorithm is compared with the

proposed exact methods. The results illustrate the inter-

esting potential of the proposed approach. The branch and

bound proved to be very efficient. Indeed, it proved to be

far more efficient than the existing MIP model for solving

the problem. The efficiency of the branch-and-bound

algorithm is attributable to the tightness of the lower

bounds derived. Moreover, efficiency of branch and bound

increases for problem instances with a medium number of

products. A very effective heuristic algorithm procedure is

developed. The results show clearly that the proposed

heuristic algorithm is capable of generating near-optimal

solutions within a reasonable Cpu time.

There are several directions for future research. Firstly,

the model could be advanced by allowing the vehicle

routing with integrated delivery and storage cost. Secondly,

Table 7 Computational results for gh 2 ½1000; 1500� Euro and bh 2
½1; 5� Euro

Class of problem! Class A

(h)! 2 3 4

(n)# CpuT (s) CpuT (s) CpuT (s)

B&B 10 0.006 0.005 0.019

B&S 0.015 0.013 0.012

B&B 20 0.046 0.385 0.891

B&S 0.026 0.031 0.041

B&B 30 0.221 1.749 20.934

B&S 0.044 0.064 0.103

B&B 40 1.785 40.361 308.997

B&S 0.069 0.121 0.193

Table 8 Computational results for gh 2 ½1000; 1500� Euro and bh 2
½10; 50� Euro

Class of problem! Class B

(h)! 2 3 4

(n)# CpuT (s) CpuT (s) CpuT (s)

B&B 10 0.006 0.006 0.023

B&S 0.015 0.013 0.012

B&B 20 0.149 1.133 6.161

B&S 0.025 0.031 0.042

B&B 30 1.471 63.433 [3600

B&S 0.045 0.061 0.101

B&B 40 24.229 [3600 [3600

B&S 0.068 0.110 0.186

Table 9 Computational results for gh 2 ½1000; 1500� Euro and bh 2
½100; 500� Euro

Class of problem! Class C

(h)! 2 3 4

(n)# CpuT (s) CpuT (s) CpuT (s)

B&B 10 0.008 0.008 0.020

B&S 0.014 0.013 0.013

B&B 20 0.301 2.882 32.497

B&S 0.026 0.031 0.036

B&B 30 6.602 241.455 [3600

B&S 0.046 0.069 0.110

B&B 40 78.240 [3600 [3600

B&S 0.074 0.135 0.213
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the setup time and cost could be integrated into the pro-

duction stage, and the volume of products into the delivery

stage. Finally, we aim to extend the considered model to

the multi-transporters case, where each transporter could be

assigned to one customer.
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