
A Copyright- and Privacy-Protected Diabetic Retinopathy Diagnosis Network 111

A Copyright- and Privacy-Protected Diabetic
Retinopathy Diagnosis Network

Wannida Sae-Tang1 , Non-member

ABSTRACT

This paper proposes a copyright- and privacy-
protected diabetic retinopathy (DR) diagnosis net-
work. In the network, DR lesions are automati-
cally detected from a fundus image by firstly esti-
mating non-uniform illumination of the image, and
then the lesions are detected from the balanced image
by using level-set evolution without re-initialization.
The lesions are subsequently marked by using con-
tours. The lesion-marked fundus image is subse-
quently shared for intra or inter hospital network di-
agnosis with copyright and privacy protection. Wa-
termarking technique is used for image copyright
protection, and visual encryption is used for pri-
vacy protection. Sign scrambling of two dimensional
(2D) discrete cosine transform (DCT) and one di-
mensional (1D) DCT is proposed for lesion-marked
fundus image encryption. The proposed encryption
methods are compared with other transform-based
encryption methods, i.e., discrete Fourier transform
(DFT) amplitude-only images (AOIs), DCT AOIs,
and JPEG 2000-based discrete wavelet transform
(DWT) sign scrambling which were proposed for im-
age trading system. Since the encryption is done af-
ter DR diagnosis, contours used for DR marking must
also be visually encrypted. The proposed encryption
methods are effective for strong-edge images that are
suitable for lesion-marked fundus images, while ran-
dom sign-based JPEG 2000, DFT AOIs, and DCT
AOIs encrypt the images imperfectly. Moreover, the
proposed methods are better in terms of image qual-
ity. In addition, watermarking performance and com-
pression performance are confirmed by experiments.

Keywords: Diabetic Retinopathy, Fundus Image,
Copyright Protection, Privacy Protection, Network
Diagnosis

1. INTRODUCTION

DR is a major cause of vision loss. Early detection
of DR helps reduce the risk of blindness [1]. How-
ever, it is not an easy task to detect the DR pre-
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cisely. The earliest sign of DR is broken blood ves-
sels. Exudates, a sign of DR, is lipids leaked form
broken blood vessels. The characteristics of exudates
are bright and yellowish with arbitrary shapes and
sizes. For hard exudates, the boundaries are well-
defined. On contrary, for soft exudates or cotton
wool spots, boundaries are not clear. In some cases,
intra or inter hospital network diagnosis is required
for diabetic retinopathy diagnosis. In those networks,
diagnosis results are needed to be confirmed, or coop-
erated diagnosis is required. Security of retinal image
storage and transmission is then a task of this paper.
Reversible watermarking for fundus images was pro-
posed for image copyright protection in [2]. In [3],
watermark is encrypted before embedding to medical
images for reliable and robust transmission. Anyway,
image visual encryption was not considered for fun-
dus images and lesion-marked fundus images.

In copyright-and privacy-protected image trading
system [4], the AOI which is the inversely trans-
formed spectra of an image was used as image vi-
sual encryption. In the system, an image is trans-
formed using DFT. Then, amplitude components are
extracted. Finally, inverse transform is applied to am-
plitude components to obtain the AOI. This method
is quite complex, since intensity range (IR) reduction
of the AOI was required [4, 5]. In [6], JPEG 2000-
based DWT sign scrambling was proposed in order
to encrypt-then-compress the image. However, JPEG
2000 is still not widely used, and the visual encryp-
tion performance of the method is not good enough
for strong edge-images especially for lesion-marked
fundus images.

This paper proposes a copyright- and privacy-
protected DR diagnosis network. In the network, DR
lesions are automatically detected from a fundus im-
age. Then, the lesion-marked image is shared for in-
tra or inter hospital network diagnosis with copyright
and privacy protection. Watermarking technique is
used for image copyright protection, and sign scram-
bling of 2D DCT and 1D DCT is proposed for lesion-
marked fundus image encryption for privacy protec-
tion. The proposed encryption methods are com-
pared with other transform-based encryption meth-
ods, i.e., DFT AOIs, DCT AOIs, and JPEG 2000-
based DWT sign scrambling. Visual encryption per-
formance, encrypted image quality, security, complex-
ity, watermarked image quality, watermark extract-
ing performance, and image compression performance
are considered in this paper.
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The rest of this paper is organized as follows. Sec-
tion 2 introduces DR, fundus images, and require-
ments for copyright- and privacy-protected DR diag-
nosis network. Section 3 describes the proposed net-
work and the proposed encryption methods. Experi-
mental results and discussions are given in Section 4.
Finally, Section 5 concludes this paper.

2. PRELIMINARIES

This section gives basic knowledge of DR and fun-
dus images. In addition, requirements for copyright-
and privacy-protected DR diagnosis network is de-
scribed.

2.1 Diabetic Retinopathy and Fundus Images

The number of diabetic patients has grown rapidly
in the last few years and is expected to raise in the fu-
ture, since people have the longevity up. The longer a
person has diabetes, the more likely they will develop
DR. If left untreated, DR may cause human vision
loss [7]. Therefore, the early detection of DR is very
important. Signs of the early stage of DR are cap-
illary aneurysms, micro-aneurysms, exudates, hem-
orrhages, and cotton wool spots. In the next stage,
abnormal blood vessels are found.

Figure 1 shows anatomical parts of human eye [8].
Retina which captures scenes and sends the images to
the brain is located at the back of the eyeball. Fun-
dus images which are human retinal images are gener-
ally used for DR diagnosis. A fundus image normally
contains optic disk, fovea, and blood vessels. In dia-
betic eyes, abnormal things such as abnormal blood
vessels, cotton wool spot, and exudates appear. Fig-
ure 2 shows an example of diabetic fundus images
containing exudates.

There is much research on DR diagnosis from reti-
nal images. In [9], early detection of diabetic eyes
using fundus images was proposed. Moreover, fun-
dus images were registered for long-term DR analysis
in [10, 11].

Anyway, fundus images normally have non-
uniform illumination due to the retina response, im-
age acquisitions, instrumental limitations, and envi-
ronments. This problem makes the diagnosis of DR
difficult. Exudate detection from non-dilated reti-
nal images was proposed in [12]. In addition, non-
uniform illumination of retinal images was considered
in [13, 14]. It was estimated/corrected before DR di-
agnosis.

2.2 Requirements for Copyright- and Privacy-

Protected Diabetic Retinopathy Diagno-

sis Network

The following are requirements for copyright- and
privacy-protected DR diagnosis network.
(A) DR Diagnosis Performance: DR lesions are de-
tected, and the results are evaluated by sensitivity,

specificity, positive predictive value (PPV), accuracy,
and misclassified proportion (MP) as described in
Section 3.1.
(B) Visual encryption performance: It is expected
that the image in transmission process is visually
encrypted instead of using only secure transmission
channels for privacy protection of the diagnosed im-
age. Only the person who has a decryption key,
for example, the ophthalmologist can view the image
while other staffs cannot. Therefore, the encryption
method used in the network should be robust against
attacks.
(C) Image quality: The quality of the image which
the receiver obtains is expected to be identical with
the original diagnosed image. The processes that may
degrade the image quality, i.e., watermarking and en-
cryption, should be considered.
(D) Watermarking performance: Watermarking per-
formance is evaluated by watermarked image quality
and correct watermark extracting rate. It is expected
that both are high, however, there is a trade off be-
tween both things.
(E) Compression performance: Compression perfor-
mance could be evaluated by the compression ratio
with the quality of the compressed image.
(F) Complexity: Complexity is desired to be as low
as possible. However, it is not the most important
requirement, if the task is an offline task.

3. PROPOSED COPYRIGHT- AND PRIVA-

CY-PROTECTED DIABETIC RETINOPA-

THY DIAGNOSIS NETWORK

Figure 3 shows the proposed network on an as-
sumption of two hospital network diagnosis. In prac-
tical, there may be more than two hospitals in the
network. In addition, it can also be applied to intra
hospital network diagnosis. The result of DR is sent
from one user to another/other user (s) for checking
(by computer or human) or helping diagnose since
there are many types of DR signs. In this paper, ex-
udates detection is performed by the first user. Before
sending the diagnosed results to another user, the im-
age is encrypted, watermarked, and compressed, re-
spectively. DR diagnosis is presented in Section 3.1
. The proposed encryption method is described in
Section 3.2. Security analysis and complexity analysis
are also provided.

3.1 Diabetic Retinopathy Diagnosis

In this paper, exudate detection method proposed
in [15] is used. However, the DR diagnosis method
is flexible for the proposed network. Figure 4 illus-
trates the illumination estimation method for color
RGB fundus images proposed in [15]. The illumi-
nation is estimated from R, G, and B components
independently on the assumption that the significant
details of retinal structures and lesions may be on any
color band of images. Weighted surface fitting is used
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Fig.1: Anatomical parts of human eye [8].

Fig.2: Diabetic fundus image.

for illumination estimation. On the assumption that
the illumination is smooth, the polynomial surface is
applied as described by Eq. 1 and Eq. 2.

E⃗ = SP⃗ , (1)

where E⃗ is the estimated background vector, S is
the surface matrix, and P⃗ is the parametric surface
vector.
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where A is the order of the polynomial, N is the
number of terms, X × Y is the image size, and (x, y)

is the pixel coordinate. P⃗ can be calculated by Eq. 3.

P⃗ = (STDS)−1(STD)I⃗ , (3)

where I⃗ is the intensity vector generated by trans-
forming the original image to a vector, and D is the
diagonal weight matrix defined as

D =







D(1, 1) 0 0

0
. . . 0

0 0 D(X,Y )






(4)

This matrix defines whether a pixel will be used in
surface fitting process or not. The elements in the di-
agonal of the matrix correspond to pixels in the orig-
inal image by order. The elements that correspond
to the wanted pixels are set to 1, while the elements
that correspond to the unwanted pixels are set to 0.

Unwanted pixels for surface fitting include optic
disk, fovea, blood vessles, and lesions. To determine
the unwanted pixels, upper bound and lower bound
are calculated. Each single band image is smoothed
by low pass filtering. Then, a low frequency image is
subtracted from the original image to obtain a high
frequency image. The upper bound is then calcu-
lated by adding the low frequency image, IL(x, y), by
the standard deviation of the high frequency image,
IH(x, y), as described by Eq. 5.

UB(x, y) = IL(x, y) +

√

√

√

√

1

mn

∑

∀(x,y)
(IH(x, y)− ĪH)2,

(5)

where UB(x, y) denotes the upper bound at pixel
(x, y). IH denotes the statistic mean of IH(x, y). In
the same way, the lower bound is calculated by sub-
tracting the low frequency image by the standard de-
viation of the high frequency image as described by
Eq. 6.

LB(x, y) = IL(x, y)−

√

√

√

√

1

mn

∑

∀(x,y)
(IH(x, y)− ĪH)2,

(6)

where LB(x, y) denotes the lower bound. The up-
per bound and the lower bound are used to determine
the diagonal weight matrix as Eq. 7.
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Fig.3: Proposed copyright- and privacy-protected diabetic retinopathy diagnosis network (DCT: discrete
cosine transform, PRNG: pseudo random number generator, IDCT: inverse discrete cosine transform, Q:
quantization, Q−1: inverse quantization).

D(x, y) =











0, UB(x, y) < I(x, y)

0, I(x, y) < LB(x, y)

1, LB(x, y) ≤ I(x, y) ≤ UB(x, y)

.

(7)
Figure 5 shows an example of unwanted pixels de-
tected by using upper/lower bounds. Figure 6 shows
the result of illumination estimation. By using this
method, there are two parameters needed to be con-
trolled: filter mask and order of polynomial [15].

After illumination estimation process, exudates
and other lesions are detected using level-set evo-
lution without re-initialization [16]. Sensitivity,
specificity, PPV, accuracy, and MP described by
Eqs. (8), (9), (10), (11), and (12), respectively, are
used to evaluate the effectiveness of the DR diagnosis
method.

Sensitivity = TP/(TP + FN); (8)

Specificity = TN/(TN + FP ); (9)

PPV = TP/(TP + FP ); (10)

Accuracy=(TP+TN)/(TP+TN+FP+FN); (11)

MP = FP/(TP + TN + FP + FN), (12)

where true positive (TP) is the number of lesion pixels
correctly detected, true negative (TN) is the number
of non-lesion pixels correctly identified as non-lesion
pixels, false positive (FP) is the number of non-lesion
pixels wrongly detected as lesion pixels, and false neg-
ative (FN) is the number of lesion pixels that cannot
be detected. Sensitivity is the probability that the
proposed method can classify the pixels of lesions as
lesions. Specificity is the probability that the pro-
posed method can classify the pixels of non-lesions as
non-lesions. PPV is the probability that the pixels
classified as lesions are really lesions. Specificity and
accuracy are not very meaningful because the true
negative value is always very high. Specificity and
accuracy are always close to 100% regardless of the
detection method.

3.2 Proposed Encryption Method

Each component of the color fundus image is pro-
cessed independently. From now, only one color band
of the image is considered for easy explanation. The
algorithm for image encryption is as follows:
(1) Transform the image f(x, y) by using DCT.
(2) Generate a random sign matrix R which consists

of +1 and −1 randomly with the same size as the
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Fig.4: Block diagram for illumination estimation [15] (DR: diabetic retinopathy, LF: low frequency, HF:
high frequency, UB: upper bound, LB: lower bound).

Fig.5: Unwanted pixels detected by using up-
per/lower bounds

image f(x, y). A seed σ for pseudo random num-
ber generator (PRNG) is input for image encryp-
tion and is sent to another user as the decryption
key.

(3) Multiply DCT coefficients F (u, v) of image
f(x, y) with the random matrix R pixel-wise.

(4) Apply inverse discrete cosine transform (IDCT)
to the sign-scrambled coefficients F ′(u, v).

Fig.6: Estimated illumination

In this framework, 2D DCT and 1D DCT sign
scrambling are proposed for image encryption.

For 2D DCT, the diagnosed fundus image is trans-
formed to a frequency domain by using 2D DCT.
Let F (u, v) be the X × Y -sized discrete cosine trans-
formed (DCTed) coefficients of X×Y -sized diagnosed
fundus image f(x, y), where x = 0, 1, . . . , X − 1,
y = 0, 1, . . . , Y − 1, u = 0, 1, . . . , X − 1, and v =
0, 1, . . . , Y − 1;
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Fig.7: Diagnosed fundus image and encrypted diag-
nosed fundus image using 2D DCT sign scrambling.

F (u, v) =

X−1
∑

x=0

Y−1
∑

y=0

f(x, y) cos

(

π

X

(

x+
1

2

)

u

)

. . .

cos

(

π

Y

(

y +
1

2

)

v

)

. (13)

DCTed coefficients F (u, v) can also be expressed
in the polar form as

F (u, v) = |F (u, v)|SDCT (u, v), (14)

where |F (u, v)| and SDCT (u, v) denote the ampli-
tude and sign components of F (u, v), respectively.

By applying sign scrambling encryption, the en-
crypted coefficients can be formulated as

F ′(u, v) = |F (u, v)|SDCT (u, v)R(u, v), (15)

where R(u, v) denotes a random sign matrix withX×
Y in size which consists of +1 and −1. Apply IDCT
to F ′(u, v) to obtain:

f ′(x, y) =
X−1
∑

u=0

Y−1
∑

v=0

α(u)α(v)F ′(u, v) . . .

cos

(

π

X

(

x+
1

2

)

u

)

cos

(

π

Y

(

y +
1

2

)

v

)

, (16)

where

α(u) =







1√
X
, u = 0

√

2
X
, u = 1, 2, . . . , X − 1,

(17)

α(v) =







1√
Y
, v = 0

√

2
Y
, v = 1, 2, . . . , Y − 1,

(18)

and f ′(x, y) denotes the visually encrypted diag-
nosed fundus image. Figures 7 (a) and (b) show a
diagnosed fundus image and the related encrypted
image, respectively.

It is necessary to check the IR of the encrypted
image. Eq. (19) defines the IR.

IR = max (f ′(x, y))−min (f ′(x, y)) . (19)

To store the images into 8 bits per pixel (bpp) images,
a simple linear quantization (LQ) is used to quantize
the image f ′(x, y) by taking into account the entire
IR. f ′(x, y) is quantized as

f ′
id(x, y) =

(

f ′(x, y)−min(f ′(x, y))

s

)

, (20)

s =
max(f ′(x, y))−min(f ′(x, y))

2n − 1
. (21)

f ′
id(x, y) is the index image which ranges in [0, 2n−1],
i.e., the number of quantization levels is equal to
2n. To obtain quantized image f ′

LQ(x, y), the inverse
quantization with constant step size s and bias con-
stant min(f ′(x, y)) are applied to f ′

id(x, y) as

f ′
LQ(x, y) = sf ′

id(x, y) + min(f ′(x, y)). (22)

For image decryption, firstly the quantized image
f ′
LQ(x, y) is transformed using 2D DCT as shown in
Eq. (23).

F ′
LQ(u, v)=

X−1
∑

x=0

Y−1
∑

y=0

f ′
LQ(x, y) cos

(

π

X

(

x+
1

2

)

u

)

. . .

cos

(

π

Y

(

y +
1

2

)

v

)

, (23)

where F ′
LQ(u, v) denotes the encrypted coefficients

with quantization effects. Then, the random sign ma-
trix R is multiplied pixel-wise with the coefficients
F ′
LQ(u, v) as

FLQ(u, v) = F ′
LQ(u, v)R(u, v), (24)

where FLQ(u, v) denotes the decrypted coefficients
with quantization effects. Finally, 2D IDCT is ap-
plied to the coefficients FLQ(u, v) as

fLQ(x, y) =

X−1
∑

u=0

Y−1
∑

v=0

α(u)α(v)FLQ(u, v) . . .

cos

(

π

X

(

x+
1

2

)

u

)

cos

(

π

Y

(

y +
1

2

)

v

)

, (25)

where fLQ(x, y) denotes the decrypted diagnosed fun-
dus image with quantization effects. It is noted that
if the quantization is not applied, fLQ(x, y) = f(x, y).
Anyway, other quantization methods can be used in
order to minimize quantization errors.

For the last method using 1D DCT, Let Fc(x, v)
be the X × Y -sized column-wise 1D discrete cosine
transformed (DCTed) coefficients of the diagnosed
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Fig.8: Diagnosed fundus image and encrypted diag-
nosed fundus image using 1D DCT sign scrambling.

fundus image f(x, y), where x = 0, 1, . . . , X − 1, y =
0, 1, . . . , Y − 1, and v = 0, 1, . . . , Y − 1;

Fc(x, v) =
Y−1
∑

y=0

f(x, y) cos

(

π

Y

(

y +
1

2

)

v

)

. (26)

DCT coefficients Fc(x, v) can also be expressed in the
polar form as

Fc(x, v) = |Fc(x, v)|Sc(x, v), (27)

where |Fc(x, v)| and Sc(x, v) denote the amplitude
and sign components of Fc(x, v), respectively.

To encrypt the image f(x, y), the coefficients,
|Fc(x, v)| is multiplied with R(x, v) as

F ′
c(x, v) = |Fc(x, v)|Sc(x, v)R(x, v), (28)

Apply 1D IDCT to F ′
c(x, v) to obtain

f ′
c(x, y)

=
Y−1
∑

v=0

α(v)F ′
c(x, v) cos

(

π

Y

(

y +
1

2

)

v

)

, (29)

where f ′
c(x, y) denotes the visually encrypted diag-

nosed fundus image, and

α(v) =







√

1
Y
, v = 0

√

2
Y
, v = 1, 2, . . . , Y − 1.

(30)

Figures 8 (a) and (b) show a diagnosed fundus im-
age and the related encrypted image, respectively. It
is seen that the visual encryption performance of 1D
DCT-based method is as good as that of 2D DCT-
based method.

It is noted that for 1D DCT, quantization and the
similar decryption method are also applied.

3.3 Security Analysis

Comparing security of encryption algorithms is not
an easy task. It depends on skills and levels of at-
tackers. One important aspect of security analysis of

encryption is key space size. For both 2D DCT and
1D DCT sign scrambling, assume that the attacker
applies brute-force attack. To guess the random sign
matrix R, the number of possible ways in generating
the matrix called encryption key space size, Sk, is:

Sk = 2XY . (31)

It is clearly seen that the key space size depends on
the image size. Since medical images normally have
quite big sizes, this key space size is big enough to
this kind of attack. For example, suppose that the
fundus image size XY = 1024×1024 pixels. In this
case, the key space Sk = 21024×1024 which is much
bigger than that of an AES-like cipher with a 256-bit
key (Sk = 2256).

From an experiment (see Figs. 9 and 10), 1%,
5%, and 10% wrong bits for the decryption make
decrypted images have lower quality with respect to
original images. In security aspect, with these num-
bers, it seems that the proposed encryption methods
are still sensitive. However, for 30% and 40% wrong
bits for the decryption, the results show that the de-
crypted images are unrecognizable. It would need
about 60% to 70% correct decryption bits to obtain
recognizable images. For an 1024×1024-pixel image
with the key space 21024×1024, to get 60% to 70% cor-
rect decryption bits from guessing, it is still not an
easy task.

3.4 Complexity Analysis

Even though low complexity is not a major require-
ment of the proposed network, this section compares
the complexity of both encryption methods. The dif-
ference between methods is the dimension of image
transformation. The complexity of 2D DCT for an
X×Y sized image is O((XY )2) or O((XY log2 (XY ))
with fast algorithm, whereas that of 1D DCT is
O((X2)Y ) or O((X log2 X)Y ) with fast algorithm. It
is clearly seen that 1D DCT outperforms 2D DCT in
terms of complexity.

4. EXPERIMENTAL RESULTS

The experiment is divided into two parts: DR di-
agnosis performance and copyright and privacy pro-
tection performance. Eight 32-bit color fundus im-
ages from REVIEW databases [17] and eighty nine
24-bit color fundus images with 1500×1152 pixels in
size from DIARETDB1 database [18] are used in the
experiments.

4.1 DR Diagnosis Performance

In this part, eighty nine 24-bit color fundus im-
ages with 1500×1152 pixels in size from DIARETDB1
database are used to evaluate the exudate detection
performance. Forty seven images contain exudates,
but the rest images do not. The database includes



118 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.10, NO.2 November 2016

Table 1: Exudate detection results from forty seven
images that contain hard exudates.

Method

Average
sensi-
tivity
(%)

Average
speci-
ficity
(%)

Average
PPV
(%)

Average
MP (%)

Sopharak et
al. [19]

43.48 99.31 25.48 0.68

Ravishankar et
al. [9]

58.21 98.09 13.37 1.90

Welter et al. [20] 66.00 98.64 19.45 1.34
Welfer et al. [21] 70.48 98.84 21.32 1.10
Kande et al. [22] 86.00 98.00 - -
Sae-Tang et
al. [15]

89.38 99.08 80.74 0.81

Table 2: Exudate detection results from forty two
images that do not contain hard exudates.

Method
Average speci-
ficity (%)

Average MP
(%)

Sopharak et al. [19] 99.28 0.71
Ravishankar et al. [9] 97.53 2.47
Welter et al. [20] 99.22 0.77
Welfer et al. [21] 98.74 1.20
Kande et al. [22] - -
Sae-Tang et al. [15] 99.48 0.52

manually labeled images that are used as a ground
truth in the experiment. Table 1 and 2 show the ex-
perimental results. The method used in this paper
is compared with the methods proposed by Soparak
et al. [19], Ravishankar et al. [9], Walter et al. [20],
Welfer et al. [21], and Kande et al. [22]. All compared
methods are based on mathematical morphology and
were validated using DIARETDB1 database. Welfer
et al. [21] used the contrast enhancement before de-
tecting exudates. The method improved the sensi-
tivity of exudate detection, but it also increases FP
causing low PPV. Kande et al. [22] used local contrast
enhancement, but it introduces noises to images. For
images containing hard exudates, the method used in
this paper achieves higher average PPV than those of
other methods. For images without hard exudates,
the method achieves the highest average specificity
and the lowest average MP compared to other meth-
ods. It shows that the method significantly reduces
FP in detecting exudates and simultaneously keeps
high sensitivity in detecting exudates. This is be-
cause of the effective illumination estimation.

4.2 Copyright and Privacy Protection Perfor-

mance

The proposed encryption methods are compared
with JPEG 2000-based DWT sign scrambling [6], 2D
DFT AOI [4], 1D DFT AOI [5], 2D DCT AOI [5], and
1D DCT AOI [5] which were proposed for copyright-
and privacy-protected image trading systems in which
a trusted third party (TTP) can process images using
visual scrambled images. Even though the applica-
tion is different from the proposed application, these
encryption methods could also be applied to the pro-
posed network. Figures 11, 12, and 13 show the pro-

posed copyright- and privacy-protected DR diagnosis
network using the compared encryption methods.

4.2...1 Visual Encryption Performance

The original fundus images and the lesion-marked
fundus images are encrypted by several methods as
shown in Figs. 14, 15, 16, and 17. The results
show that the proposed 1D DCT sign scrambling
and 2D DCT sign scrambling methods perfectly vi-
sually encrypt the original fundus images and the
lesion-marked fundus images, while other methods
encrypt the images imperfectly especially for the
lesion-marked fundus images. Among several meth-
ods, JPEG 2000-based DWT sign scrambling [6] is
the worst encryption method. 2D DFT AOI and 2D
DCT AOI are better than 1D DFT AOI and 1D DCT
AOI.

4.2...2 Image Quality

Tables 3 and 4 compare IRs of encrypted diagnosed
fundus images “HRIS001” and “HRIS003,” respec-
tively. Between two proposed methods, 2D DCT sign
scrambling gives narrower IRs than those of 1D DCT
sign scrambling for every color band of images. From
this fact, by applying LQ to the encrypted images,
2D DCT sign scrambling method has a possibility to
achieve better image quality. For JPEG 2000-based
DWT sign scrambling method, the IRs are not de-
fined, because the scrambled DWT coefficients are
encoded, and by using the proprietary JPEG 2000
decoder, the original images are recovered for loss-
less compression, viz., quantization is not required.
Therefore, infinite PSNRs are obtained. However,
this method will not be considered anymore in the
rest experiments because of its bad visual encryption
performance. For AOI methods, 2D DFT AOI and
2D DCT AOI methods give wide IRs, while 1D DFT
AOI and 1D DCT AOI methods give much lower IRs
than those of 2D transform methods. However, they
are worse than the proposed methods. Besides IRs of
images, the distribution of pixel intensities are also an
important factor of image quality. Consequently, the
image quality is evaluated by peak signal-to-noise ra-
tio (PSNR). The PSNRs of decrypted images with re-
spect to the original diagnosed fundus images are cal-
culated. From Tables 5 and 6, the proposed methods
give the highest PSNRs than the conventional meth-
ods. 2D DCT sign scrambling method gives higher
PSNRs than those of 1D DCT sign scrambling. 1D
DFT AOI method and 1D DCT AOI method give
higher PSNRs than those of 2D DFT AOI method
and 2D DCT AOI method. Figures 18 and 19 show
the decrypted images. Even though 2D DCT sign
scrambling gives higher PSNRs than those of 1D DCT
sign scrambling, the image visual quality for 1D DCT
sign scrambling method is also good. Therefore, 1D
DCT sign scrambling method can be considered in
case that the complexity of the system is concerned.
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Table 3: Intensity range of encrypted diagnosed fundus image “HRIS001.”
Red Green Blue

2D DCT sign scrambling [49.4, 351.2] [−2.5, 219.3] [−55.4, 110.2]
1D DCT sign scrambling [−414.1, 420.3] [−245.6, 264.2] [−176.0, 160.7]

JPEG 2000-based
N/A N/A N/A

DWT sign scrambling [6]
2D DFT AOI [4] [130.9, 7688.7] [53.4, 5068.4] [4.4, 3651.8]
1D DFT AOI [5] [82.9, 1203.7] [22.1, 746.7] [−13.7, 538.9]
2D DCT AOI [5] [95.0, 8434.1] [31.7, 5725.7] [−6.1, 4046.6]
1D DCT AOI [5] [75.8, 1186.5] [15.3, 740.4] [−25, 532.4]

Table 4: Intensity range of encrypted diagnosed fundus image “HRIS003.”
Red Green Blue

2D DCT sign scrambling [−112.5, 369.3] [−75.0, 174.3] [−147.6, 160.0]
1D DCT sign scrambling [−407.1, 449.6] [−215.8, 217.6] [−260.6, 237.5]

JPEG 2000-based
N/A N/A N/A

DWT sign scrambling [6]
2D DFT AOI [4] [24.1, 1242.2] [0.4, 6070.3] [−7.3, 8260.3]
1D DFT AOI [5] [−66.5, 1387.8] [−11.0, 715.2] [−62.0, 896.5]
2D DCT AOI [5] [−45.3, 1325.3] [−38.3, 6621.9] [−70.7, 8890.2]
1D DCT AOI [5] [−66.7, 1386.7] [−41.8, 739.1] [−70.1, 913.6]

Table 5: Peak signal-to-noise ratio of decrypted di-
agnosed fundus image “HRIS001” [dB].

Red Green Blue
2D DCT sign scrambling 62.2152 64.9031 67.4253
1D DCT sign scrambling 53.3933 57.6723 61.2826

JPEG 2000-based
Inf Inf Inf

DWT sign scrambling [6]
2D DFT AOI [4] 34.1981 37.8061 40.5690
1D DFT AOI [5] 50.6424 54.1384 56.1575
2D DCT AOI [5] 33.3508 36.6959 39.6654
1D DCT AOI [5] 50.9035 54.6350 56.8893

Table 6: Peak signal-to-noise ratio of decrypted di-
agnosed fundus image “HRIS003” [dB].

Red Green Blue
2D DCT sign scrambling 58.1709 63.9040 62.0651
1D DCT sign scrambling 53.1801 59.0853 57.8542

JPEG 2000-based
Inf Inf Inf

DWT sign scrambling [6]
2D DFT AOI [4] 30.3778 36.2587 34.1194
1D DFT AOI [5] 48.7052 54.3634 51.9720
2D DCT AOI [5] 29.3981 35.2937 32.7385
1D DCT AOI [5] 48.6078 53.9613 51.9457

4.2...3 Watermarking Performance

Almost any arbitrary digital watermarking tech-
nique can be applied. This paper uses a simple
non-blind additive digital watermarking technique in
the discrete wavelet transformed (DWTed) domain,
which is based on the essence of [23].

(A) Watermarking: The process of watermarking is
as follows:
(1) X × Y -sized DWTed coefficients are divided

into XB × YB-sized coefficient blocks where
XB = YB = 8 in the experiments. That
is, the DWTed coefficients are divided into
K = XY/XBYB blocks.

(2) A binary watermark sequence, b =
[b1b2b3...bK ], is provided, where bk ∈ {0, 1},
and k = 1, 2, 3, ...,K.

(3) Each single bit of the watermark sequence,
bk, is represented by an M-sequence with
the length L, and the length of M-sequences
used in the experiments is the smallest, i.e.,

L = 3, where L = BP − 1, B = 2, and
P = 2, even longer sequences serve better
correct watermark extracting rate. The M-
sequences differ from each other for differ-
ent single bits of the watermark. Therefore,
two different M-sequences are prepared for
bk ∈ {0, 1}.

(4) Each M-sequence is subsequently embedded
to a divided block of DWTed coefficients
by linearly scaling and adding it to three
bottom-right coefficients of the block as

C ′
k,l = sgn (Ck,l) (|Ck,l|+ δWbk,l) , (32)

where C ′
k,l denotes the l-th watermarked

DWTed coefficient in the k-th block, Ck,l

denotes the l-th original DWTed coefficient
in the k-th block, δ is a scaling factor, and
Wbk,l ∈ {0, 1} denotes the l-th element of the
M-sequence for bit bk, where l = 1, 2, . . . , L.
It is noted that all variables in Eq. (32) are
integers.

(B) Watermark Extraction: The watermark is ex-
tracted from the DWTed coefficients by using a
correlation-based detector as

b′k = arg max
bk∈{0,1}

L
∑

l=1

(Wbk,l − 0.5) ...
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∣
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where b′k is an extracted watermark bit, and
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JPEG 2000 decoding.
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Table 7 shows PSNRs of watermarked diagnosed
fundus images averaged by 97 images without com-
pression effects, when δ is varied from 1 to 8 with
stepping by 1. All methods are comparable in terms
of watermarked image quality. However, these slight
differences in PSNRs of watermarked images between
methods are not significant, because the final im-
age quality significantly depends on the encryption
method, and from Table 5 and 6, it is clearly seen that
the proposed methods give much higher PSNRs than
those of other methods. For watermark extracting
performance, all methods have achieved 100% correct
watermark extracting rates using a correlation-based
detector. It is noted that if the compression is loss-
less, the images can be recovered, because the water-
mark is extracted 100% correctly. It means that this
watermarking method is very effective as reversible
watermarking. Due to the fact that watermarking
performance depends on the watermarking technique,
optimization or other watermarking techniques such
as [23–26] could be applied.

4.2...4 Compression Performance

Kakadu [27], a software to encode and decode
JPEG 2000 images, is used in the experiments. It
is noted that any image compression standard could
be used in the proposed network instead of JPEG
2000.

Usually, compression and encryption are combined
by firstly compressing the content and encrypting
it subsequently. However, the encryption is per-
formed independently from the compression process
in the proposed network for flexibility in choosing
the encryption method and the compression method.
Therefore, it is necessary to confirm the compression
performance when the encryption is done first. In this
part, the compression performance is compared with
and without the proposed encryption method and
other encryption methods without considering water-
marking process, where the diagnosed fundus image
“HRIS001” with 446 kbytes is used in the experi-
ment. The encrypted diagnosed fundus images are
linearly quantized and then compressed using JPEG
2000. The compression bit rate is varied by 0.25,
0.5, 1, 2, 3, 4, and 5 bpp for lossy compression. Ta-
ble 8 compares the compressed file sizes of the quan-
tized encrypted diagnosed fundus images, while the
file sizes of the quantized encrypted diagnosed fun-
dus images are 446 kbytes. PSNRs of the compressed
images are calculated with respect to the quantized
images as shown in Table 9.

From the results, all encryption methods degrade
the compression performance. Comparing the pro-
posed methods to other methods, 1D DFT AOI and
1D DCT AOI are better than the proposed methods
in terms of compression performance. However, these
methods are worse in terms of visual encryption per-
formance (see Section 4.2...1) which is more important

for privacy protected network. 2D DFT AOI and 2D
DCT AOI are better than the proposed methods in
terms of compression performance, when the com-
pression is lossy. However, they are worse than the
proposed methods in terms of visual encryption per-
formance (see Section 4.2...1) and much worse in terms
of image quality (see Section 4.2...2). In addition, for
lossless compression, the proposed methods are com-
parable with them. It is expected that the compres-
sion is lossless in practical terms, since high quality
images are required for DR diagnosis. Therefore, the
proposed methods are the better choices.

Table 10 concludes the effectiveness of the pro-
posed encryption methods and the conventional en-
cryption methods. Symbols “×,” “∆,” “⃝,” and “⊚”
mean “bad,” “fair,” “good,” and “excellent,” respec-
tively.

5. CONCLUSIONS

The paper has proposed a copyright- and privacy-
protected DR diagnosis network. In the network, DR
lesions are automatically detected from a fundus im-
age by firstly estimating the non-uniform illumination
of the image, and then the lesions are detected from
the balanced image by using level-set evolution with-
out re-initialization. The lesions are subsequently
marked by using contours. The lesion-marked fun-
dus image is subsequently shared for intra or inter
hospital network diagnosis with copyright and pri-
vacy protection. Watermarking technique is used for
image copyright protection, and visual encryption is
used for privacy protection. 2D DCT sign scrambling
and 1D DCT sign scrambling have been proposed for
privacy protection. The proposed encryption meth-
ods are effective for strong-edge images that is suit-
able for lesion-marked fundus images, while random
sign-based JPEG 2000, DFT AOIs, and DCT AOIs
encrypt the images imperfectly. Moreover, the pro-
posed methods are better in terms of image quality.
Eventhough 2D DCT sign scrambling method is the
best in terms of image quality, the proposed 1D DCT
sign scrambling could be used instead of 2D DCT sign
scrambling in cases that the complexity is concerned.
In addition, the proposed encryption methods could
be applied for general images and other applications,
and other encryption methods that encrypt images
containing strong edges perfectly could be applied
to the proposed network. All methods are compa-
rable in terms of watermarked image quality. For
watermark extracting performance, all methods have
achieved 100% correct watermark extracting rates us-
ing a correlation-based detector.
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Fig.9: Decrypted images of “HRIS001” for several percentages of error decryption bits. The upper row is
for the proposed 2D DCT sign scrambling, and the lower row is for the proposed 1D DCT sign scrambling.

Fig.10: Decrypted images of “HRIS003” for several percentages of error decryption bits. The upper row is
for the proposed 2D DCT sign scrambling, and the lower row is for the proposed 1D DCT sign scrambling.
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Fig.11: Copyright- and privacy-protected diabetic retinopathy diagnosis network using JPEG 2000-based
DWT sign scrambling (DWT: discrete wavelet transform, Q: quantization, PRNG: pseudo random number
generator, Q−1: inverse quantization, IDWT: inverse discrete wavelet transform) [6].

Fig.12: Copyright- and privacy-protected diabetic retinopathy diagnosis network using DFT AOI (DFT:
discrete Fourier transform, IDFT: inverse discrete Fourier transform, Q: quantization, Q−1: inverse quanti-
zation) [4, 5].
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Fig.13: Copyright- and privacy-protected diabetic retinopathy diagnosis network using DCT AOI (DCT:
discrete cosine transform, IDCT: inverse discrete cosine transform, Q: quantization, Q−1: inverse quantiza-
tion) [5].
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Fig 14. Visually encrypted fundus image “HRIS001.” Fig 15. Visually encrypted diagnosed fundus image

“HRIS001.”
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Fig 16. Visually encrypted fundus image “HRIS003.” Fig 17. Visually encrypted diagnosed fundus image

“HRIS003.”
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Fig 18. Decrypted diagnosed fundus image

“HRIS001.”

Fig 19. Decrypted diagnosed fundus image

“HRIS003.”


