
A CORDIC LIKE PROCESSOR FOR COMPUTATION OF ARCTANGENT AND
ABSOLUTE MAGNITUDE OF A VECTOR

Koushik Maharatna*, Alfonso Troya**, Miloš Krsti **, Eckhard Grass** and Ulrich Jagdhold**

* Dept. of EE, University of Bristol, UK (Koushik.Maharatna@bristol.ac.uk)
** IHP, Frankfurt (Oder), Germany {troya, krstic, grass, jagdhold}@ihp-microelectronics.com

ABSTRACT

In this paper, we propose a CoOrdinate Rotation DIgital
Computer (CORDIC) like processor for computing
absolute magnitude of a vector and its corresponding
phase angle. It does not require the scale factor
compensation step and addition/subtraction operation
along the z datapath, has a convergence range over the
entire coordinate space and shows similar error
characteristics as that of the conventional CORDIC. The
synthesis result shows that the proposed processor is
hardware economic and suitable for low power
applications.

1. INTRODUCTION

CORDIC algorithm is used for elegant computation of
several transcendental functions [1]. Two such functions
are the absolute magnitude of a vector and the
corresponding phase angle (arctangent computation).
These functions can be evaluated using the CORDIC in its
angle accumulation or vectoring mode. In this case, the y
component of the vector is forced to zero using iterative
vector rotation in a to and fro manner through a set of
elementary rotation angles. At the end, the magnitude
value and the accumulated angle (the phase angle) are
available as the x and z component of the output
respectively. However, the main drawback of the
traditional CORDIC algorithm is that it generates a scale
factor that needs to be compensated using extra circuitry
that incurs a computation complexity of the same order as
that of the CORDIC itself. On top of that, several not
actually needed iterations are performed while forcing the
y component to zero.

In this paper we propose a similar type of algorithm
and the corresponding VLSI architecture which eliminates
the requirement of scale factor compensation, simplifies
the angle accumulation operation along the z datapath and
reduces the hardware cost significantly compared to that of
the conventional CORDIC. The algorithm has a
convergence range over the entire coordinate space. In
essence, this algorithm is based on a scaling free CORDIC

algorithm having a limited range of convergence proposed
earlier [2, 3]. However, this algorithm is not as versatile as
the CORDIC and is only comparable with its vectoring
operation in the circular coordinate system. This work is
resulted from a larger project that targets at a single chip
implementation of IEEE 802.11a compatible modem. This
new algorithm has been used for the synchronizer section
of the targeted modem [4]. The rest of the paper is
structured as follows: Section 2 describes the theory of the
proposed algorithm, and Section 3 describes the VLSI
implementation of the algorithm. The performance
evaluation of the proposed scheme is done in Section 4
and conclusions are drawn in Section 5.

2. THEORETICAL BACKGROUND

In developing the algorithm, we will proceed in two steps:
First we will show that a CORDIC with a convergence
range of [0, π/8] is absolutely sufficient to cover the entire
coordinate space using a novel scheme called domain
folding and second, we will use the scaling free CORDIC
formulation described in the reference [2] in combination
with first step to formulate the new algorithm.

2.1. Domain folding

We start with the assumption that the CORDIC has a
convergence range [0, π/8] and the initial vector lies in the
first quadrant of the coordinate space. We divide the first
quadrant into four domains namely, A∈[0, π/8), B∈[π/8,
π/4), C∈[π/4, 3π/8) and D∈[3π/8, π/2]. To check the
appropriate domain in which the vector lies, we also
consider two signals namely xAB = √2+1 and xCD = √2−1.

The vector to be actually processed i.e. [x’ y’]T, is
obtained after applying the pseudo-code shown in Figure 1
to the original input vector [x y]T. This is done to keep the
final accumulated angle in the range [0, π/8]. For vectors
belonging to domain B, the final accumulated angle is
subtracted from π/4 in order to get the actual phase angle.
Similarly, for domain C, the final accumulated angle is
added to π/4 in order to get the actual phase angle

II - 7130-7803-8251-X/04/$17.00 ©2004 IEEE ISCAS 2004

➠ ➡

whereas, for domain D the accumulated angle is subtracted
from π/2.

Figure 1. Pseudo-code used in domain folding

One thing to be noted is that in this formulation, the range
of convergence needed is always [0, π/8]. Thus, in
essence, all the domains are “folded back” into domain A
and hence the name domain folding.

It is straightforward to see that the same procedure is
also applicable for the vectors lying in other quadrants. In
this case, the input vector is first pre-rotated in the
clockwise direction by appropriate angle, viz., by π/2 when
in 2nd quadrant, by π when in 3rd quadrant and by 3π/2
when in 4th quadrant. Then the operation proceeds as
shown in Figure 1. This pre-rotation essentially means
only changing of sign and swapping of the x and y
components. At the output, the pre-rotated angle is added
to the accumulated angle to get the final result. Thus, a
CORDIC having a convergence range of [0, π/8] is
sufficient to cover the entire coordinate space.

2.2. The scaling free CORDIC

The details of the scaling free CORDIC algorithm are
provided in the reference [2, 3]. The working equation of
the scaling free CORDIC can be given as

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−−
−

=
�

�

�

�

�

� ∏
−

=
+−−

−+−

i

i
b

pi
ii

ii

y

x

y

x 1

)12(

)12(

212

221

1

1
, (1)

i
ii zz −

+ += 21 , (2)

where [x1 y1]T is the final vector, [xi yi]
T is the

intermediate vector at the beginning of ith iteration step, b
is the wordlength, p = �(b − 2.585) / 3� and zi+1 is the angle
accumulation variable at the end of ith iteration step (z0 =
0). The block diagram of an elementary rotational section

Figure 2. Elementary rotational stage of the scaling free
CORDIC

resulting from Equation 1 is shown in Figure 2 by the
dotted boundary.

Each of the elementary rotational stages of the scaling
free CORDIC costs two adders and two shifters more
compared to that of the conventional CORDIC. For
pipeline implementation the shifters essentially reduce to
wire connections only and thus the resulting overhead is
just two adders. However, for the iteration index
(elementary rotational section) i ≥ (b/2)−1, the hardware
cost of the rotational stages will be the same as that of the
conventional one since a right shift by (2i+1)-bit results in
machine zero or retention of sign bit only. Furthermore,
since this formulation completely eliminates the
requirement of scale factor compensation circuit, the
overall hardware complexity of the scaling free CORDIC
is less than the conventional one.

2.3. The new algorithm

The new CORDIC like algorithm for computing the
absolute magnitude and phase angle of a vector can be
constructed by utilizing the scaling free CORDIC
algorithm in conjunction with the domain folding
technique. The complete algorithm can be summarized as
follows:

1. Detect the quadrant in which the vector lies: This
can be easily detected by checking the MSB of
the input parameters x and y.

2. Modify the input vector: This step should be done
by following the domain folding technique
described in Figure 1. The aim of this operation
is to bring the actual angle to be accumulated
within the range [0, π/8].

3. Use scaling free CORDIC in vectoring mode:
This step corresponds to the actual angle
accumulation operation and can be carried out as
in the conventional CORDIC.

4. Output generation: The correct output can be
generated by following the rules described in
subsection 2.1.

II - 714

➡ ➡

Under an implementation point of view, further
optimization can be done by only considering one-sided
vector rotation instead of to and fro motion of the vector.
Rotating the vector in one single direction essentially
means that the accumulated angle can be described as a
pure summation of powers of two. In this process, the not
actually needed iteration steps are to be skipped. The final
accumulated angle can be described by a bit pattern that
contains logic ‘1’ corresponding to the allowed iteration
steps and logic ‘0’ corresponding to the not allowed
iteration steps. In essence, this technique eliminates all the
required addition/subtraction operation along the z
datapath and reduces the hardware cost drastically. This
process can be summarized as follows:

1. Compute the intermediate vector at ith iteration
step.

2. If yi+1 < 0 then assign xi+1 = xi and yi+1 = yi and
enter a logic ‘0’ (di in Figure 2) in the appropriate
position of the z datapath register. This operation
essentially means that the ith iteration is ignored.

3. If yi+1 > 0 then assign xi+1 = xi+1 and yi+1 = yi+1 and
enter a logic ‘1’ (di in Figure 2) in the appropriate
position of the z datapath register. This operation
essentially means that the ith iteration is accepted.

4. Take the binary value of the z datapath register
when yi+1 = 0 (this is the final accumulated angle)
and process it to generate the final output value
following the rules described in subsection 2.1.

Considering these modifications, the final structure of an
elementary rotational stage is as shown in Figure 2.

3. ARCHITECTURE AND IMPLEMENTATION

The complete architecture of the proposed processor
consists of three modules viz. the Domain Detection
Circuit, Basic CORDIC Pipeline and Output Unit. For
convenience, we describe a 16-bit fixed-point pipeline
implementation of the proposed Processor. Two’s
complement arithmetic is used throughout the
implementation.

The Domain Detection Circuit is responsible for
detecting the appropriate quadrant and the corresponding
domain in which the vector lays. It consists of three
comparators, two adders and a scaling circuit of √2. The
scaling circuit is realized using shift-and-add technique
and thus, it is more economical compared to a full
multiplier. It generates two 2-bit signals namely quad and
domain. While the quad signal indicates the initial
quadrant in which the vector lays, the domain signal
indicates the domain in the first quadrant where it is folded
back.

The Basic CORDIC Pipeline has a convergence range
of [0, π/8]. For a 16-bit implementation, the value of p is 4
(see subsection 2.2). Thus, the largest right shift allowed
in this formulation is by 4 bits. In order to cover the

convergence range of [0, π/8], we have used the i = 4 stage
six times and i = 5, 6, …, 14 stages once each. The stage i
=15 is omitted since the right shift of a number by 15-bit
position essentially results in the retention of the sign bit
only.

The architecture of the basic CORDIC pipeline is
shown in Figure 3. Each of the pipeline stages
corresponding to i = 4, 5 and 6 requires four adders. On
the other hand, stages i = 7, 8, …, 14 require two adders
each. In order to balance the pipeline, the stages i = (7, 8),
(9, 10), (11, 12) and (13, 14) have been merged as shown
by the dotted boundary in Figure 3, hence reducing the
total length of the pipeline to 12 stages (index j in Figure
3). An array of registers is associated with different
pipeline stages to keep the intermediate binary values of
the accumulated angle. Depending on the decision of a
particular stage, i. e., whether a rotation operation is
accepted or rejected, logic ‘1’ or ‘0’ is entered at the LSB
position of the register array and the value is passed to the
next stage as shown in Figure 3. However, a simple
combinatorial circuit is necessary to interpret the decisions
made by the six i = 4 stages. The decisions made in these
sections give the 3 MSB of the final representation of the
accumulated angle. At the end, the basic CORDIC
pipeline generates a 13-bit unsigned value for the
accumulated angle ϕ, which can be further processed by
the output unit according to the principle stated in
subsection 2.1. The absolute magnitude of the vector is
available at x output.

Figure 3. Architecture of the basic CORDIC pipeline.

The domain and quad signals generated by the
Domain Detection Circuit flow through the pipeline along
with the data (not shown in Figure 3). Thus, it can be
viewed as if each of the data has a token attributed to it
that essentially carries the information about its initial
quadrant and domain which can be processed by the
output unit to generate the final result.

II - 715

➡ ➡

The main hardware of the Output Unit consists of an
adder and some registers. Depending on the domain and
quad signals, it generates the final phase angle by
following the procedure described in subsection 2.1.

The synthesized cell area of the complete processor in
IHP 0.25 µm BiCMOS technology library is 0.5 mm2 (16
k inverter gates). The Domain Detection Circuit, the Basic
CORDIC Pipeline and the Output Unit occupy 0.088mm2,
0.411mm2 and 0.009mm2, respectively. The power
consumption of the processor is 6 mW.

4. PERFORMANCE EVALUATION

4.1. Error analysis

The error performance of the algorithm is shown in
Figures 4 and 5. The algorithm is modeled in Matlab and
then the value of x and y inputs are varied in the range [0,
1]. Figures 4 and 5 show that the proposed algorithm
shows similar error characteristic than that of the
conventional CORDIC algorithm. For the values of x and
y > 1 or << 1, the angle computation error is too high to be
acceptable.

Figure 4. Error in magnitude calculation.

Figure 5. Error in angle calculation.

4.2. Hardware complexity

A comparison of the hardware complexity of the proposed
design with some other CORDIC processors operating in
the vectoring mode is provided in Table 1. It shows that
when the scaling circuitry is considered, the proposed

design requires less hardware compared to the other
designs.

CORDIC type # full adders # registers scaling
[5] 1,280 3,114 YES
[6] 512 1,280 YES
Conventional 768 768 YES
Proposed 816 553 NO

Table 1. Comparison of the proposed design with some other
existing designs (16-bit implementation).

5. CONCLUSIONS

In this paper, we propose a CORDIC like algorithm for
computing the magnitude and phase of a vector. A 16-bit
VLSI implementation is also addressed. The proposed
algorithm does not need the scale factor compensation
step. Its hardware cost is less than that of the conventional
CORDIC when the scale factor compensation circuitry is
taken into account. The complete elimination of the
arithmetic processing for the z datapath makes it an
attractive one from the hardware cost and low power
application point of view. The algorithm proposed here
shows similar error characteristic to that of the
conventional CORDIC. The synthesis results show that the
proposed design occupies a very small area and consumes
very low power.

6. REFERENCES

[1] J. S. Walther, “A Unified Algorithm for Elementary
Functions”, Proc. Joint Spring Comput. Conf., vol. 38, pp.
379 – 385, Jul. 1971.
[2] E. Grass, B. Sarker and K. Maharatna, “A Dual Mode
Synchronous/Asynchronous CORDIC Processor”, Proc.
8th IEEE International Symposium on Asynchronous
Circuits and Systems, pp. 76 – 83, Manchester, U. K.,
April 2002.
[3] K. Maharatna, A. S. Dhar and Swapna Banerjee, “A
VLSI Array Architecture for Realization of DFT, DHT,
DCT and DST”, J. Signal Processing, vol. 81, pp. 1813 –
1822, 2001.
[4] M. Krstic, A. Troya, K. Maharatna and E. Grass,
“Optimized Low-Power Synchronizer Design for the IEEE
802.11a Standard”, Proc. ICASSP03, vol. II, pp. 321 –
324.
[5] H. Dawid and H. Meyr, “The Differential CORDIC
Algorithms: Constant Scale Factor Redundant
Implementation without Correcting Iterations”, IEEE
Trans. Comput., vol. 45, no. 3, pp. 307 – 318, 1996.
[6] D. Timmermann and S. Dolling, “Unfolded Redundant
CORDIC VLSI Architecture with Reduced Area and
Power Consumption”, http://www-md.e-technik.uni-
rostock.de/ma/dtim/vlsi97.pdf

II - 716

➡ ➠

