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Abstract

Notions of program dependency arise in many settings: security,
partial evaluation, program slicing, and call-tracking. We argue
that there is a central notion of dependency common to these set-
tings that can be captured within a single calculus, the Dependency
Core Calculus (DCC), a small extension of Moggi’s computational
lambda calculus. To establish this thesis, we translate typed cal-
culi for secure information flow, binding-time analysis, slicing, and
call-tracking into DCC. The translations help clarify aspects of the
source calculi. We also define a semantic model for DCC and use
it to give simple proofs of noninterference results for each case.

1 Introduction

Systems that incorporate aspects of program dependency arise in
many different contexts. For example, type systems for secure in-
formation flow trace dependencies between outputs and inputs of a
computation. These type systems are meant to guarantee secrecy
and integrity. In the Secure Lambda (SLam) Calculus [13] and
the while-program languages of Volpano et al. [31, 38], data may
be labelled as “high security” or “low security”, and the type sys-
tem ensures that all computations that depend on high-security in-
puts yield high-security outputs, and conversely, that low-security
outputs do not depend on high-security inputs. This independence
property is often called the noninterference property [8, 9, 17] in
the security literature: high-security data does not “interfere” with
the calculation of low-security outputs. Fragments of the trust cal-
culus [27] and JFlow [22, 23] also appear to satisfy the noninterfer-
ence property (although this is not proved).

Program analyses such as slicing, call-tracking, and binding-
time analysis are also based on dependency: the goal of these analy-
ses is to compute a conservative approximation of the parts of a pro-
gram that may contribute to the program’s final result (and, more
generally, its intermediate results). Correctness of these analyses is
often expressed using properties analogous to noninterference. For
instance, in slicing [36, 40], the aim is to determine those parts of
a program that may contribute to the output; those parts that do not

contribute can be replaced by any expression of the same type. In
call-tracking [33, 34], we wish to determine the functions that may
be called during evaluation; functions that are not called can be re-
placed by any function of the same type without affecting the final
value. In binding-time analysis [5, 25], we wish to separate static
from dynamic computations; dynamic values can be replaced by
any expression of the same type without affecting the static results.

The similarity between secure information flow and other pro-
gram analyses is striking, and raises a question: do these analyses
share some common substrate? This paper provides one answer by
constructing a general framework for type-based dependency anal-
yses in higher-order programs. The framework is a calculus called
the Dependency Core Calculus (DCC). We give a denotational se-
mantics for DCC that formalizes the notion of noninterference. We
then show how to translate a variety of calculi for security, slicing,
binding-time analysis, and call-tracking into DCC in such a way
that the noninterference results for the respective calculi are imme-
diate corollaries of the generic results for DCC.

There are three advantages to this foundational approach. First,
DCC gives us a way to compare dependency analyses. This idea
relates back to Strachey’s conception of denotational semantics
as a tool for comparing languages [32]. Second, the translations
themselves yield a check on type systems for dependency analysis.
They help confirm some seemingly ad hoc decisions in some cal-
culi and have uncovered some problems and incompletenesses in
others. Third, general results about DCC yield simple noninterfer-
ence proofs for the individual dependency analyses.

DCC is a simple extension of Moggi’s computational lambda
calculus [20]. Typically the computational lambda calculus has
a single type constructor that is semantically associated with a
monad. In DCC, this notion is extended to incorporate multiple
monads, one for every level of a predetermined information lattice.

The use of the computational lambda calculus in describing
dependency is somewhat surprising. Usually, the computational
lambda calculus describes languages with side effects [20], or
forms the basis of adding side effects like I/O to pure functional
languages [15]. Dependency analyses, in contrast, do not funda-
mentally change the values being computed. Nevertheless, there
is one common idea underlying both uses of the computational
lambda calculus. In the case of Haskell, there is no way to com-
pute a value using the I/O type constructor and pass that value to an
expression of non-I/O type. Similarly, in information-flow systems,
the test of a high-security boolean in an “if-then-else” requires that
the branches of the conditional return high-security values. In both
cases, the type rules of the computational lambda calculus enforce
the necessary restriction.



The rest of the paper describes DCC, a semantic model of
DCC, and six translations from type-based dependency analyses
into DCC. Certain aspects of dependency analysis cannot be mod-
elled in DCC; we discuss this further in the concluding discussion.

2 Commonality among Dependency Analyses

Before presenting the syntax and semantics of the core language
DCC, we give two examples of dependency analyses: the SLam
calculus and a slicing calculus.

2.1 Why the SLam Calculus is a Dependency Analysis

The SLam calculus [13] is a typed lambda calculus extended with
security annotations for access control and information flow. To
simplify the setting, we consider only the functional facet of the
calculus with information flow, which corresponds to a fragment of
the trust calculus of Ørbæk and Palsberg [27].

A type s is a pair consisting of a structural part, t, and a security
annotation, κ, denoting information flow and ranging over elements
in a security lattice L , with least element L and greatest element H.
For example, the type

�
bool � L � denotes low-security booleans;

similarly,
�
bool � H � denotes high-security booleans. The type���

bool � H ��� �
bool � L ��� L � denotes a low-security function that

accepts a high-security integer and returns a low-security result.
The terms and type rules of the language are given in Section 4.1. A
simple example of a well-typed SLam term of type

���
bool � H ����

bool � L ��� L � is the constant function
�
λx :

�
bool � H ��	 trueL � L.

Note that all constructors in SLam are labelled with security anno-
tations.

Since low-security computations should not depend on high-
security data, the evaluation of an expression such as

if trueH then trueL else falseL

must not produce the low-security boolean trueL, since otherwise
information about the high-security boolean is leaked to the low-
security world.

The remedy is simple: whenever a constructor is destructed,
we make the security annotation of the constructor flow to the an-
notation of the result. Specifically, the annotation of the result is the
least upper bound of its original annotation and that of the construc-
tor. This propagation of annotations is captured by the following
dependency-calculus principle:

At every elimination rule, properties (e.g., security level,
binding-time information, dependency annotation) of
the destructed constructor are transferred to the result
type of the expression.

This principle is fundamental to the design of the dependency cal-
culus and to the rest of the paper. In the example, then, the result
of if trueH then trueL else falseL is the high-security
boolean, trueH . The noninterference property is vacuously sat-
isfied, since the result is a high-security boolean. More generally,
if in the context

�
x :

�
t � H ��� expression e has type

�
bool � L � , then

noninterference says that e must not depend on the high-security
variable x, and hence must be constant with respect to x.

2.2 Why the Slicing Calculus is a Dependency Analysis

In program slicing [36, 40], we seek the dependencies of a
program—i.e., those subterms of the program that may contribute

to its output. For example, the slice of the application
���

λx 	 3 � 2 �
should contain only the function λx 	 3 and the constant 3, since the
argument 2 does not contribute to the final result. To identify such
subterms, we follow Abadi et al. [2] and use a labelled lambda
calculus. We give a conservative approximation of the labelled op-
erational semantics using a type system, whereas previous work by
Biswas [3] employs set-based analysis.

The type system for slicing is similar to that of the SLam cal-
culus. A type s is a pair consisting of a structural part, t, and a set
of labels, κ, denoting slicing information. Note that the powerset
of labels forms a complete lattice with empty set as least element
and the set of all labels as greatest element. We give the complete
type system in Section 4.2. A typing judgement Γ 
 e :

�
t � κ � means

that, under the assumptions Γ, the expression e has type t and possi-
ble dependency κ. For instance, consider the example from above,
where the constructors are all labelled:

�
λx :

�
int ��� n2  ��	 3n1 � n0

�
2n2 �

It is easy to see that the type of the function part of the applica-
tion is

���
int ��� n2  ��� �

int ��� n1  ����� n0  � , so that the type of the
whole term is

�
int ��� n0 � n1  � . Thus the result of evaluating the

term cannot depend on n2.
Noninterference also holds in the slicing calculus: if under the

assumption
�
x :

�
t � κ1 ��� , the expression e has type

�
int � κ2 � , where

κ1 �� κ2 in the powerset lattice, then e must not depend on x.

3 Dependency Core Calculus

DCC is a minor extension of Moggi’s computational lambda cal-
culus [20]. Three features distinguish it from the computational
lambda calculus. First, the calculus contains sum types and lifted
types, as well as term recursion. Lifting allows us to model call-
by-value calculi. Second, instead of having one type constructor
T semantically associated with a monad, the calculus incorporates
multiple type constructors T� , one for every element ��� L of a pre-
determined lattice L . This idea was also considered by Wadler [39].
The lattice represents different grades of information. In the secu-
rity setting, the least element usually stands for low security. Type
constructors T� change the level of a type. For instance TH

�
bool �

describes high-security booleans. Third, the monad “bind” opera-
tion has a special typing rule that is explained later.

3.1 Syntax

The types of DCC are given by the grammar:

s :: � unit � � s � s ��� � s � s ��� � s � s ��� s ��� T� � s �
where � ranges over elements of a predetermined lattice L . The lift-
ing operation on types, denoted s � in the syntax of types, induces
a subset of types called the pointed types:

� s � is a pointed type;

� if s and t are pointed types, then
�
s � t � and T� � s � are pointed

types; and

� if t is a pointed type, then
�
s � t � is a pointed type.

For a recent account of pointed types, see the paper by Howard [14]
or Mitchell’s text [18]. Similarly, the T� operation on types induces
a subset of types called the types protected at level � :



Table 1: Typing Rules for DCC.

�
Var � Γ � x : s � Γ ��� x : s

�
Unit � Γ ���	� : unit

�
Lam � Γ � x : s1 � e : s2

Γ ��� λx : s1 
 e � : � s1 � s2 �
�
App � Γ � e : � s1 � s2 � Γ � e � : s1

Γ ��� e e � � : s2

�
Pair � Γ � e1 : s1 Γ � e2 : s2

Γ �� e1 � e2 � : � s1 � s2 �
�
Proj � Γ � e : � s1 � s2 �

Γ ��� proji e � : si

�
Inj � Γ � e : si

Γ ��� inji e � : � s1 � s2 �
�
Case � Γ � e : � s1 � s2 � Γ � x : si � ei : s

Γ ��� case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 � : s

�
UnitM � Γ � e : s

Γ ��� η� e � : T��� s �
�
BindM � Γ � e : T� � s � Γ � x : s � e � : t

Γ � bind x � e in e � : t
t is protected at level �

�
Lift � Γ � e : s

Γ ��� lift e � : s �
�
Seq � Γ � e : s � Γ � x : s � e � : t

Γ � seq x � e in e � : t
t is pointed

�
Rec � Γ � f : s � e : s

Γ ��� µ f : s 
 e � : s
s is pointed

� If ��� ��� , then T��� � s � is protected at level � ;
� if s and t are protected at level � , then

�
s � t � and T��� � t � are

protected at level � ; and

� if t is protected at level � , then
�
s � t � are protected at level � .

The typing rules for DCC appear in Table 1. In all of the typing
judgements in this paper, a typing environment Γ denotes a list of
distinct variables with types. The rules for unit, function, product,
and sum types are all standard, as is the rule for the monadic unit
operation. The rule for monadic bind is nonstandard, using the
concept of “protected at level � ” for the body; usually, the body
must have type T� � s � � for some s � . The model of the next section
gives some justification for this rule. Finally, the rules [Lift] and
[Seq] are just special cases of the monadic unit and bind operations
for lifted types, and recursion is permitted only over pointed types.

The operational semantics for DCC is a call-by-name seman-
tics. In particular, the term

�
η � e � reduces to e, and

�
bind x �

e in e � � reduces to e ��� e � x  , where e � e �!� x  denotes the capture-free
substitution of e � for x in e. The rest of the operational semantics is
standard and hence omitted.

3.2 Semantics

The model of DCC draws on ideas from other noninterference
proofs [13, 19] which use Reynolds’s concept of parametricity [28].
The method is easiest to explain with an example with high- and
low-security booleans. A high-security computation can depend on
a high-security input, but a low-security computation cannot. Our
model explains the difference using “views” of the high-security
booleans, where each view is captured by a binary relation and
where computations must respect the relations. In this simple ex-
ample, the high-security view is the diagonal relation (i.e., x and y
are related iff x � y), so that high-security computations can dis-
tinguish between the booleans. The low-security view, in contrast,
is the everywhere true relation—that is, x is related to y for all x
and y. Low-security computations can therefore not take advantage
of the distinctions between the high-security booleans. Sabelfeld
and Sands develop these ideas in a recent manuscript [30]; similar
constructions appear in Nielson’s work on strictness analysis [24].

We formalize these ideas via a category. Recall that a complete
partial order (cpo) is a poset that contains least upper bounds for ev-
ery directed subset; a cpo may or may not have a least element [18].
Recall also that a directed-complete relation is a relation that pre-
serves least upper bounds of directed sets. Define the category DC
(for dependency category) to be the category with

� OBJECTS An object A is a cpo �A � and a family of directed-
complete relations RA " � on A for every � � L .

� MORPHISMS A morphism f : A � B is a continuous function
such that for any

�
x � y ��� RA " � , � f � x ��� f � y ����� RB " � .

We use Hom
�
A � B � to denote the set of morphisms from A to B.

The condition on morphisms is crucial. Consider, for instance,
the lattice with two points L # H, let B � � true � false  with the
trivial ordering, and define the objects

boolH � �
B � RL � RH �

boolL � �
B � R �L � R �H �

where RL � RH � R �L � R �H are relations on B. The relation RL corre-
sponds to a low-security viewer of a high-security boolean; such
a viewer cannot distinguish between the booleans. Hence we
choose RL to be the everywhere true relation, B � B. The rela-
tion RH , in contrast, corresponds to a high-security viewer of a
high-security boolean; such a viewer can distinguish between the
booleans. Hence we choose RH to be the diagonal relation on B.
In a similar manner, we can choose both R �L and R �H to be the di-
agonal relation on B. Now, if f : boolH � boolL is a morphism, it
must send arguments related by RL to results related by R �L. Since
RL is the everywhere true relation, for any x � y � B, the pair

�
x � y �

is in RL. Thus,
�
f
�
x � � f

�
y ����� R �L. In other words, f

�
x � � f

�
y � for

all x � y � B. Therefore, a function mapping high-security booleans
to low-security booleans must be a constant function. However, a
relation need not be either the diagonal relation or the everywhere
true relation.

The key property we need of DC is that it is a model of DCC
(and therefore of the typed lambda calculus with products and co-
products). To establish this, we adapt standard results from cat-
egorical semantics [16] to show that DC is cartesian closed, has



coproducts, and has a monad for each � � L. (These results are
necessary to justify the constructions in this paper; however, the
reader unfamiliar with category theory can safely skip them.) More
concretely, if A � B � C � D are objects and f : A � B � g : C � D:

� The unit object unit is defined by the poset ���  and the iden-
tity relations.

� Coproducts are given by

�A � B � � �A � � �B �
RA � B " � � � � inl a � inl b ��� � a � b ��� RA " � ��

� � inr a � inr b ��� � a � b ��� RB " � �
f � g � � x � �

�
inl
�
f
�
y ��� if x � inl

�
y �

inr
�
g
�
y ��� if x � inr

�
y �

� Products are given by

�A � B � � �A � � �B �
RA � B " � � � ��� a � b � � � a � � b �	������

a � a � ��� RA " � � � b � b � ��� RB " � �
f � g � � x � y � � �

f
�
x ��� g � y �
�

� Exponentiation is given by

�A � B � � Hom
� �A � ���B � �

RA � B " � � � � f � g ���� � a � a � � � RA " � , � f � a ��� f � a � ����� RB " � �
f � g � � h : Hom

�
B � C ��� � x : A � � g

�
h
�
f
�
x �����

� Lifting is given by

�A � � � � � 0 � a ��� a � �A � �� � � 1 ��� 
RA � " � � � ��� 0 � x ��� � 0 � y ����� for all

�
x � y ��� RA " � ��� ��� 1 ��� ��� � 1 ��� ��� �

f � � � x : A � � �
� �

1 ��� � if x � �
1 ��� ��

0 � f
�
y ��� if x � �

0 � y �
where � � 0 � a � � a � �A �  is ordered as in �A � , and

�
1 ��� � is or-

dered below all other elements.

� The monads are given by

� T� � A � � � �A �
RT��� A � " � � �

�
RA " � � if � � ���
�A � � �A � otherwise

T� � f : A � B � � f

We also define the maps η � �A  : A � T� � A � and µ� �A  :
T� � T� � A ��� � T� � A �

η� �A  � x � � x

µ� �A  � x � � x

That is, both maps are based on the identity function. How-
ever, these morphisms are not the identities in the category,
since they do not have the same domain and codomain.

The first four of these definitions are not surprising; Mitchell’s
text [18] gives a history of these definitions.

This structure gives us all the machinery needed to interpret the
types and terms of DCC. We use � � s   for the meaning of a type s in
the category, and � � x1 : s1 ��	�	�	�� xn : sn 
 e : s   : � � s1 � 	�	�	 � sn   � � � s   
for the meaning of a typing judgement. We omit the definitions of
the meanings of terms since they are standard. Using induction on
the definition of “pointed”, we can show that:

Proposition 3.1 If s is pointed, then � � � s   �� has a least element.

Hence recursion can be interpreted via least-fixed points.
The monads T� give a way to change the level of a type, e.g.,

as in TH
�
boolL ��� boolH. The operator T� changes the relations

not above � to the everywhere true relation. More generally, when
a type is protected at level � , views of that type at a level � � �� � are
the everywhere true relation.

Proposition 3.2 If t is a type protected at level � , and � � �� � , then
R � � t � � " � � � � � � t   �� � � � � t   �� .

4 Applications I: A Strong Version of Noninterference

In languages with recursion and some notion of dependency, there
are often two ways to state the notion of noninterference. The first
says that if a program terminates with an input and produces a re-
sult, then changing the input to a “related” input still causes the
program to terminate and the result is related to the original result.
This is a strong notion of noninterference. Some calculi, however,
do not satisfy the strong property but do satisfy a weaker property:
if two related inputs cause the program to terminate, the outputs
are related. Under this property, related inputs may yield different
convergence behavior.

In this section we study calculi with the strong version of nonin-
terference. These include calculi based on call-by-name semantics,
and they turn out to be easier to translate into DCC. In the next
section, we study calculi that satisfy the weaker version of nonin-
terference.

4.1 Call-by-name Functional SLam Calculus

Our first source calculus is the call-by-name, purely functional ver-
sion of the SLam calculus; this calculus is essentially the trust cal-
culus of Ørbæk and Palsberg [27] without the coercion from high
to low security. Let L denote a join semilattice of security levels
and let κ range over the levels of L . The types are

t :: � unit � � s � s � � � s � s � � � s � s �
s :: � �

t � κ �
and the typing rules appear in Table 2. In the typing rules, the
operation �

t � κ ��� κ � � �
t � κ � κ � �

is used to increase the security level of a type. The symbol # de-
notes the subtyping relation. The restriction of recursion to func-
tion types is not essential in a call-by-name context; the restriction
here merely allows us to use the same type system for a call-by-
value version below.

The operational semantics of this calculus deviates from the
original operational semantics of the SLam calculus [13] in that
arguments are passed by name rather than by value. Evaluation
contexts are defined in the style of Felleisen [10] by the grammar

E :: � � �  � � E e ��� � proji E ��� � caseE ofinj1
�
x ��	 e1 � inj2

�
x ��	 e2 �

and the local operational rules are
���

λx : s 	 e � κ e � � � e � e �!� x  �
proji

�
e1 � e2 � κ � � ei � i � 1 � 2�

µ f : s 	 e � � e � � µ f : s 	 e � � f  �
protectκ e � � e�

case
�
inji e � κ of inj1

�
x ��	 e1 � inj2

�
x ��	 e2 � � ei � e � x  i � 1 � 2



Table 2: Typing Rules for the Functional SLam Calculus.

�
Var� Γ � x : s � Γ ��� x : s

�
Unit � Γ � �	� κ : � unit � κ �

�
Sub � Γ � e : s s � s �

Γ � e : s �
�
Rec � Γ � f : s � e : s

Γ ��� µ f : s 
 e � : s
s is a function type

�
Lam � Γ � x : s1 � e : s2

Γ ��� λx : s1 
 e � κ : � s1 � s2 � κ �
�
App � Γ � e : � s1 � s2 � κ � Γ � e � : s1

Γ ��� e e � � : s2 � κ

�
Pair � Γ � e1 : s1 Γ � e2 : s2

Γ �� e1 � e2 � κ : � s1 � s2 � κ �
�
Proj � Γ � e : � s1 � s2 � κ �

Γ ��� proji e � : si � κ

�
Inj � Γ � e : si

Γ ��� inji e � κ : � s1 � s2 � κ �
�
Case � Γ � e : � s1 � s2 � κ � Γ � x : si � ei : s

Γ ��� case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 � : s � κ

�
Protect � Γ � e : s

Γ ��� protectκ e � : s � κ
�
SubTrans � s1 � s2 s2 � s3

s1 � s3

�
SubUnit � κ � κ �

� unit � κ ��� � unit � κ � �
�
SubSum � κ � κ � s1 � s �1 s2 � s �2� � s1 � s2 ��� κ ��� � � s �1 � s �2 ��� κ � �

�
SubProduct � κ � κ � s1 � s �1 s2 � s �2� � s1 � s2 ��� κ ��� � � s �1 � s �2 � � κ � �

�
SubFun � κ � κ � s �1 � s1 s2 � s �2� � s1 � s2 ��� κ ��� � � s �1 � s �2 ��� κ � �

We write e � v when e rewrites to v and v cannot be rewritten.
The translation of the SLam calculus into DCC is straightfor-

ward. Types are translated into DCC by the following recursive
definition, where † maps from types t (without a security level)
into DCC types, and � maps from types s (with a security level)
into DCC types.

unit† � unit � �
s1 � s2 � † � �

s �1 � s �2 ����
s1 � s2 � † � �

s �1 � s �2 �
�
s1 � s2 � † � �

s �1 � s �2 ��
t � κ �	� � Tκ

�
t† �

A SLam typing derivation of Γ 
 e : s is translated to a valid DCC
derivation of Γ � 
 e � : s � by the rules in Table 7. It is easy to check
that every SLam typing derivation yields a DCC typing derivation
by the translation. We can also prove the following correctness
properties of the translation:

Theorem 4.1 (Adequacy) If, according to Table 7,

/0 
 e :
�
unit � κ � � /0 
 e � :

�
unit � κ � �

then e � v iff � � e ��  �� � .

Theorem 4.2 (Noninterference) Let κ1 and κ2 be any two ele-
ments of L . Suppose κ1 �� κ2 and

x :
�
t � κ1 ��
 e :

���
unit � κ2 � � �

unit � κ2 � � κ2 �
is derivable in the SLam type system. Then

�
e � e �!� x  �
� v iff�

e � e � � � x  ��� v.

Proof: The proof follows directly from the structure of DC . We
sketch the argument for the case where L � � L � H  . Suppose

x :
�
t � H ��
 e :

���
unit � L � � �

unit � L ��� L �
is derivable in the SLam type system. Applying the typing rule
[Lam],

/0 
 �
λx :

�
t � H � 	 e � L :

���
t � H � � ���

unit � L � � �
unit � L ��� L ��� L �

Now, translating to DCC, we have

/0 
 � λx :
�
t � H ��	 e � �L : TL

�
TH

�
t† � � TL

���
TL
�
unit � � � TL

�
unit � ����� ���

Let f � � � � λx :
�
t � H ��	 e � �L   . Since L is the least element of L ,

f � � � TH
�
t† ��� �

unit � � unit �����   
Let D � � � TH

�
t† ��  and E � � � � unit � � unit � ���   . By the DC

condition on morphisms, for all l � L and for all x � y � D,

x RD " l y implies
�
f x � RE " l

�
f y � .

In the case l is L, RD " L is the everywhere true relation, and RE " L is
the diagonal relation. Hence, for all x � y � D,

�
f x ��� �

f y � . Thus,

� � � e � e � � x  � �   � � � ��� λx :
�
t � H ��	 e � L e � � �   

� � � ��� λx :
�
t � H ��	 e � L e � � � �   

� � � � e � e � � � x  � �   
and so by adequacy,

�
e � e �!� x  ��� v iff

�
e � e � � � x  ��� v.

This noninterference theorem is stated over one specific type only
for readability; it extends to types not involving function types.

4.2 Slicing Calculus

The slicing calculus, introduced in Section 2, attempts to calculate
which portions of a program may contribute to the final answer,
and which definitely do not. To study slicing, we formulate a type-
based slicing analysis. The types of the language are exactly the
same as in the SLam calculus, except that κ ranges over sets of
labels. The typing rules appear in Table 3. These rules resemble
the SLam calculus rules, although the rules for value constructors
are different.

Types are translated into DCC exactly as in the call-by-name,
functional SLam calculus, and a typing judgement Γ 
 e : s is trans-
lated to a judgement of the form Γ � 
 e � : s � by the rules in Ta-
ble 8. The correctness properties are also the same as for the call-
by-name, functional SLam calculus.



Table 3: Typing Rules for the Slicing Calculus (where subtyping is analogous to subtyping in the SLam calculus).

�
Var � Γ � x : s � Γ � � x : s

�
Unit � Γ ���	� n : � unit ��� n � �

�
Sub � Γ � e : s s � s �

Γ � e : s �
�
Rec � Γ � f : s � e : s

Γ ��� µ f : s 
 e � : s
s is a function type

�
Lam � Γ � x : s1 � e : s2

Γ ��� λx : s1 
 e � n : � s1 � s2 ��� n � �
�
App � Γ � e : � s1 � s2 � κ � Γ � e � : s1

Γ ��� e e � � : s2 � κ

�
Pair � Γ � e1 : s1 Γ � e2 : s2

Γ �� e1 � e2 � n : � s1 � s2 ��� n � �
�
Proj � Γ � e : � s1 � s2 � κ �

Γ ��� proji e � : si � κ

�
Inj � Γ � e : si

Γ ��� inji e � n : � s1 � s2 ��� n � �
�
Case � Γ � e : � s1 � s2 � κ � Γ � x : si � ei : s

Γ ��� case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 � : s � κ

Table 4: Typing Rules for the Binding-time Calculus.

�
Var � Γ � x : s � Γ � � x : s

�
Unit � Γ ���	� β : � unit � β �

�
Sub � Γ � e : � unit � sta �

Γ � e : � unit � dyn �
�
Rec � Γ � f : s � e : s

Γ ��� µ f : s 
 e � : s
s is a function type

�
Lam � Γ � x : s1 � e : s2

Γ ��� λx : s1 
 e � β : � s1 � s2 � β �
�
App � Γ � e : � s1 � s2 � β � Γ � e � : s1

Γ ��� e e � � : s2

�
Pair � Γ � e1 : s1 Γ � e2 : s2

Γ �  e1 � e2 � β : � s1 � s2 � β �
�
Proj � Γ � e : � s1 � s2 � β �

Γ � � proji e � : si

�
Inj � Γ � e : si

Γ ��� inji e � β : � s1 � s2 � β �
�
Case � Γ � e : � s1 � s2 � β � Γ � x : si � ei : s

Γ ��� case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 � : s � β

4.3 Binding-Time Calculus

The goal of binding-time analysis is to annotate a program with
binding times and specialization directives [12]. The binding times
specify when data is available. For instance, if there are only two
binding times, static and dynamic, then static denotes “known at
specialization-time” and dynamic denotes “known at run-time”.
Binding times are used to specify specialization directives: if an
expression has static binding time, then it is eliminable, i.e., can
be reduced at compile time. If an expression has dynamic binding
time, then it is residual, i.e., it cannot be reduced at compile time.

Hatcliff and Danvy define one binding-time type system, fo-
cused on the computational lambda calculus [12]. Under their sys-
tem, if in a dynamic context Γd an expression e of type ����� is
mapped by the analysis to an annotated term w with annotation
sta (for static), then w and e must be identical and must be equiv-
alent to some integer constant n [12, Lemma 2]. This property is
exactly noninterference: static data cannot rely on dynamic data.

Implicit in the Hatcliff-Danvy type system is a restriction
on the structure of types. This restriction can be made ex-
plicit by defining a notion of well-formedness of types [26,
35]. For example, if dyn denotes dynamic binding-time
with sta # dyn, the types

���
int � sta � � �

int � sta � � dyn �
and

���
int � sta � � �

int � sta � � dyn � are ill-formed, whereas���
int � dyn � � �

int � dyn ��� sta � is well-formed. Using DCC, we
can give a more generic account of this system. Specifically, we
can show that the noninterference property is independent of the
notion of well-formedness employed. The specific notion of well-
formedness is motivated by engineering constraints varying from

specializer to specializer. In summary, binding-time analysis can
be viewed as a dependency calculus (à la DCC) in conjunction with
a notion of well-formed types. The dependency captures a generic
notion of whether or not a computation depends on dynamic inputs,
and the well-formedness condition captures constraints imposed by
the specializer.

We formalize these ideas in a source language similar to SLam,
where the types are annotated with binding times sta # dyn.
Types in the binding-time calculus are therefore

t :: � unit � � s � s ��� � s � s � � � s � s �
s :: � �

t � β �
β :: � sta � dyn

The well-formed types [35] are a subset of the types defined as
follows:

� �
unit � β � and

�
s1 � s2 � β � are well-formed.

� ���
t1 � β1 � op

�
t2 � β2 ��� β � is well-formed iff

�
t1 � β1 � and

�
t2 � β2 �

are well-formed and β # βi, where op � � � � .

The typing rules are given in Figure 4. The judgement Γ 
 e : s
means that under assumptions Γ, expression e has the well-formed
type s. Note that the well-formedness restriction on types obviates
the need for � in the elimination rules App and Proj, since

�
t � β � �

β � � �
t � β � when β � # β.

The binding-time calculus can be translated into DCC. Types
are translated into DCC in the same way as in the call-by-name,
functional SLam calculus. A typing judgement Γ 
 e : s is translated



Table 5: Typing Rules for the Smith-Volpano Calculus over Booleans.

�
Var � ΓH ;ΓL � x : τ if x � Γτ

�
Const � ΓH ;ΓL � k : τ k � true or false

�
Skip � ΓH ;ΓL � skip : τ cmd

�
Sub � ΓH ;ΓL � e : τ τ � τ �

ΓH ;ΓL � e : τ �
�
Assign � ΓH ;ΓL � e : τ x � Γτ

ΓH ;ΓL ��� x : � e � : τ cmd
�
Seq � ΓH ;ΓL � e : τ cmd ΓH ;ΓL � e � : τ cmd

ΓH ;ΓL ��� e;e � � : τ cmd

�
If � ΓH ;ΓL � e : τ ΓH ;ΓL � ci : τ cmd

ΓH ;ΓL � if e then c1 else c2 : τ cmd
�
While � ΓH ;ΓL � e : L ΓH ;ΓL � c : L cmd

ΓH ;ΓL � while e do c : L cmd

to a judgement of the form Γ � 
 e � : s � by the rules in Table 9.
The correctness properties are the same as for the call-by-name,
functional SLam calculus.

4.4 Smith-Volpano Calculus

The Smith-Volpano calculus [31] is a simple language of while-
programs, modified so that the types keep track of the security
levels of variables and commands. Just as in the SLam calculus,
the type system prevents high-security inputs from influencing low-
security outputs. The translation of the Smith-Volpano calculus to
DCC, however, looks very different from translations of SLam, the
slicing calculus, and the binding-time calculus. Part of this differ-
ence arises from the difference between imperative and functional
languages. On a deeper level, some of the subtleties of pointed
types in DCC are useful in the translation.

Types in the Smith-Volpano calculus are divided into data types
τ and phrase types ρ:

τ :: � L � H
ρ :: � τ � τ cmd

When L or H is used in a phrase type, it is the type of storage
cells that hold values of type L or H. The subtyping relation, used
in the typing rules, is based on the primitive relations L # H and
H cmd # L cmd.

The typing rules for the calculus appear in Table 5. In order to
keep the translation to DCC simple, we modify the original type
rules [31] in two ways. First, variables have types L or H; variables
of command type, possible in the original Smith-Volpano calculus,
appear to have no use. Typing contexts are consequently split into
two parts, ΓH and ΓL, containing the sets of high and low variables
respectively; the type contexts are just lists of variables because of
this split. Second, the implicit data type is boolean instead of in-
teger. In other words, L is the type of low-security booleans and
H is the type of high-security booleans. We make this simplifica-
tion only for expository purposes, because there is no direct way
of encoding the integer type in DCC. To extend the encoding to
the original calculus, we could either directly add an integer type
to DCC, whose semantic domain would be the flat integers, or add
recursive types to DCC so that one could represent the integers as a
type expression. Both changes would complicate DCC, and essen-
tially no new difficulties arise with integers.

The operational semantics of the language uses a state, i.e., a
map σ from variables to � true � false  . There are two forms of
judgement in the operational semantics. A judgement of the form�
c � σ ��� σ � , where c is a command, denotes a computation that

terminates in state σ � . A judgement of the form
�
c � σ � � �

c � � σ � �
denotes a computation that has not halted yet; the command to be
run next is c � . The following rules define the operational semantics:

�
skip � σ � � σ
�
e σ ��� v�

x : � e � σ ��� σ � x �� v  
�
e σ � � false�

while e do c � σ ��� σ
�
c1 � σ ��� �

c �1 � σ � ����
c1;c2 � � σ ��� ���

c �1;c2 � � σ � �
�
c1 � σ � � σ ����

c1;c2 � � σ � � �
c2 � σ � �

�
e σ ��� false�

if e then c1 else c2 � σ � � �
c2 � σ �

�
e σ ��� true�

if e then c1 else c2 � σ � � �
c1 � σ �

�
e σ ��� true�

while e do c � σ ��� ���
c;while e do c � � σ �

We use � � for the reflexive, transitive closure of � .
Two observations about the calculus are in order. First, phrases

of type
�
H cmd � never modify variables of type L. Thus, a phrase

of type
�
H cmd � is a function from a state to the portion of the state

representing high variables. Low commands, in contrast, can mod-
ify high and low variables. Second, while loops may include only
low expressions and low commands. Without this restriction, the
type system does not satisfy the strong noninterference property.
Indeed, concurrency can be used to leak information [31]. From
the restriction on while loops, it follows that only low commands
may diverge.

The translation of the Smith-Volpano calculus into DCC de-
pends on these two observations. We define the type bool to be
the DCC type

�
unit � unit � , and let

SV
�
L � � bool

SV
�
H � � TH

�
bool �

SVτ
�
z1 ��	�	�	�� zn � � SV

�
τ � � 	�	�	 � SV

�
τ �� ��� �

n
SV

�
ΓH � ΓL � L � � SVH

�
ΓH � � SVL

�
ΓL � � bool

SV
�
ΓH � ΓL � H � � SVH

�
ΓH � � SVL

�
ΓL � � TH

�
bool �

SV
�
ΓH � ΓL � H cmd � � SVH

�
ΓH � � SVL

�
ΓL � � SVH

�
ΓH �

SV
�
ΓH � ΓL � L cmd � � SVH

�
ΓH � � SVL

�
ΓL � ��

SVH
�
ΓH � � SVL

�
ΓL �����

The translations of judgements are closed expressions in DCC, with
the form

ΓH ;ΓL 
 e : ρ � e � : SV
�
ΓH � ΓL � ρ �



where e ranges over expressions and commands, and e � denotes
the result of the translation of e. The complete translation is given
in Table 10. For example, suppose the last rule used in the typing
derivation is � If . The judgement ΓH ;ΓL 
 if e then c1 else c2 :
L cmd is translated as

λσ 	 if �
e � σ � then �

c �1 σ � else �
c �2 σ �

where if e then e1 else e2 is shorthand for�
case e of inj1

�
x � 	 e1 � inj2

�
x ��	 e2 � for a fresh variable x. In

contrast, the judgement ΓH ;ΓL 
 if e then c1 else c2 : H cmd
is translated to

λσ 	 bind v � �
e � σ � in if v then

�
c �1 σ � else �

c �2 σ �
Notice the use of the bind in the last rule—the value of the expres-
sion e is a high-security boolean, and hence must be decomposed.
Since both arms of the conditional are protected at level H, this part
of the translation is well typed.

Suppose ΓL is a set of variables; define σ � ΓL σ � if for all x �
ΓL, σ

�
x ��� σ � � x � . We can prove the following theorems from the

translation:

Theorem 4.3 (Adequacy) Suppose
�
x1 ��	�	�	�� xn � ; � y1 ��	�	�	�� yk � 
 c :

L cmd. Then
�
c � σ ��� � σ � iff

� � c �   �
� � �σ � x1 ��  ��	�	�	�� � � σ � xn ��  � � � � � σ � y1 �   ��	�	�	���� �σ � yk ��  � � �� �
Theorem 4.4 (Noninterference) Suppose ΓH ;ΓL 
 c : L cmd is
derivable in the Smith-Volpano calculus, and σ � ΓL σ � . If

�
c � σ � � �

σ0, then
�
c � σ � � � � σ �0 and σ0 � ΓL σ �0. Dually, if

�
c � σ � � � � σ �0, then�

c � σ ��� � σ0 and σ0 � ΓL σ �0.

The proof of the noninterference theorem uses the semantic model
of DCC, whereas the original operational proof uses a more de-
tailed operational analysis [31].

5 Applications II: A Weaker Version of Noninterference

Not all calculi that track dependency satisfy the strong version of
noninterference. For example, the original functional SLam calcu-
lus uses a call-by-value semantics rather than a call-by-name se-
mantics. In this calculus, high-security inputs may affect the ter-
mination behavior—but not the outputs—of a low-security compu-
tation. An earlier version of the Smith-Volpano calculus, due to
Volpano, Smith, and Irvine [38], also satisfies this weaker notion
of noninterference; the strong version of noninterference seems to
require the restriction of while-loops to low commands.

Unfortunately, it seems difficult to use DCC directly to model
these languages. We must alter the syntax and semantics of DCC
slightly. The main problem lies in the semantics of lifting. Con-
sider, for instance, the meaning of the DCC type

TH
�
bool � � bool �

where bool � �
unit � unit � as before and L �� H. A function

of this type must either map all elements to � or all elements to
a constant element of type bool, in essence obeying the strong
version of noninterference. For the weaker version, we want the
relation at bool � to relate � to any element of bool, not just
to � ; the relation on non- � elements should continue to be the
diagonal relation.

To model the weaker notion, we use the same underlying cat-
egory, and change the semantics of the lifting operator to have the
relations

RA � " � � RA " � � � � � ��� �  � � � x ��� ��� � � � x � � x � �A � 
and change the definition of “protected” to include the clause

� If t is protected at level � , then t � is protected at level � .
We call the new language vDCC, since it is tuned to call-by-value
(even though the operational semantics is still call-by-name). The
meaning of T� � t � � is now isomorphic to

�
T� � t ����� , via the terms

f � λx : T� � t � ��	 bind y � x in seq z � y in
�
lift

�
η � z ���

g � λx :
�
T� � t ������	 seq y � x in bind z � y in

�
η � � lift z ���

The terms are well typed because of the change in the definition of
“protected.”

We now describe two calculi satisfying the weak version of
noninterference and translations of them into vDCC.

5.1 Call-by-value Functional SLam Calculus

The first application of vDCC is the call-by-value version of the
functional SLam calculus in Section 4.1. The syntax and type-
checking rules of the language are exactly the same as in the call-
by-name setting, except that we require in recursion

�
µ f : s 	 e � that

s has the form
�
s1 � s2 � κ � where s2 � s2 � κ. The main change is

in the operational semantics, where the evaluation contexts become

v :: � � ��� � λx : s 	 e � � � inji v ��� � v� v �
E :: � � �  � � E e ��� � v E ��� � inji E ��� � E � e ��� � v � E ����

proji E � � � case E of inj1
�
x ��	 e � inj2

�
x � 	 e � �

and rewrite rules become
���

λx : s 	 e � κ v � � e � v � x  �
proji

�
v1 � v2 � κ � � vi�

protectκ v � � v�
case

�
inji v � κ of inj1

�
x ��	 e1 � inj2

�
x � 	 e2 ��� ei � v � x  �

µ f : s 	 e ��� e � � λx : s1 	 � µ f : s 	 e � x � κ � f  s � �
s1 � s2 � κ �

Types are translated into vDCC as follows:

unit† � unit
�
s1 � s2 � † � �

s �1 � s �2 ��
s1 � s2 � † � �

s �1 � s �2 �
�
s1 � s2 � † � �

s �1 �
�
s �2 ��� ��

t � κ � � � Tκ
�
t† �

Unlike in the call-by-name case, not every type is translated to a
pointed type; function types, though, are guaranteed to be pointed.
A typing judgement Γ 
 e : s is translated to a judgement of the
form Γ � 
 e � :

�
s � ��� by the rules in Table 11.

Theorem 5.1 (Adequacy) If, according to Table 11,

/0 
 e :
�
unit � κ ��� /0 
 e � :

�
unit � κ � �

then e � v iff � � e �   �� � .

Theorem 5.2 (Noninterference) Let κ1 and κ2 be any two ele-
ments of L . Suppose κ1 �� κ2 and

x :
�
t � κ1 ��
 e :

���
unit � κ2 � � �

unit � κ2 ��� κ2 �
is derivable in the SLam type system. Then

�
e � e �!� x  � � v iff�

e � e � � � x  ��� v.



Table 6: Typing Rules for the Call-tracking Calculus.

�
Var � Γ � x : s � Γ ��� x : s � L �

Unit � Γ ��� � : unit � L
�
Sub � Γ � e : s1 � κ s1 � s2

Γ � e : s2 � κ � κ � κ � �
Rec � Γ � f : s � e : s � κ

Γ ��� µ f : s 
 e � : s � κ s � � s1
κ� � s2 �

�
Lam � Γ � x : s1 � e : s2 � κ

Γ ��� λx : s1 
 e � n : � s1

�
n ��� κ� � s2 ��� L

�
App � Γ � e : � s1

κ� � s2 ��� κ1 Γ � e � : s1 � κ2

Γ ��� e e � � : s2 � κ � κ1 � κ2

�
Pair � Γ � e1 : s1 � κ1 Γ � e2 : s2 � κ2

Γ �� e1 � e2 � : � s1 � s2 ��� κ1 � κ2

�
Proj � Γ � e : � s1 � s2 ��� κ

Γ ��� proji e � : si � κ
�
Inj � Γ � e : si � κ

Γ ��� inji e � : � s1 � s2 ��� κ
�
Case � Γ � e : � s1 � s2 ��� κ Γ � x : si � ei : s � κ �

Γ ��� case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 � : s � κ � κ �

5.2 Call-tracking Calculus

Types in the call-tracking calculus [33, 34] are given by the gram-
mar

s :: � unit � � s � s ��� � s � s ��� � s κ� � s ��	
where κ ranges over sets of labels. (These labels occur only on
lambdas.) The typing rules appear in Table 6. A term is assigned
with a type and an effect (a set of labels of lambdas that may be
called). We use L to denote the least element of the lattice of sets
of labels. The subtyping rule for function types is

s �1 # s1 s2 # s �2 κ � κ ��
s1

κ� � s2 � # �
s �1

κ �� � s �2 �
The other subtyping rules are obvious and omitted.

Types are translated into vDCC as follows:

unit � � unit
�
s1 � s2 � � � �

s �1 � s �2 ��
s1 � s2 � � � �

s �1 � s �2 �
�
s1

κ� � s2 �	� � �
s �1 �

�
Tκ
�
s �2 ����� �

A typing judgement Γ 
 e : s � κ is translated to a judgement of the
form Γ � 
 e � :

�
Tκ
�
s � ����� by the rules in Table 12.

Theorem 5.3 (Adequacy) If, according to Table 12,

/0 
 e : unit � κ � /0 
 e � :
�
Tκ
�
unit �����

then e � v iff � � e ��  �� � .

Theorem 5.4 (Noninterference) Let κ be an element of L , and
n �� κ. Suppose

/0 
 e � � λx : s 	 e � � n � f  : unit � unit � κ
/0 
 e � � λx : s 	 e � � � n � f  : unit � unit � κ

are derivable in the call-tracking type system. Then�
e � � λx : s 	 e � � n � f  ��� v iff

�
e � � λx : s 	 e � � � n � f  ��� v.

This theorem formalizes the intuition “expression e does not call-
ing function f ” as the property “function f can be replace by an
arbitrary function (of appropriate type) without changing the result
of evaluating of e”.

6 Discussion

We have shown how many dependency analyses can be cast in
DCC. As Section 4 shows, we can compare and contrast various
dependency analyses in a single framework. For example, the call-
by-name functional SLam calculus, the slicing calculus, and the
binding-time calculus share a common translation of types into
DCC and a set of common correctness properties; small differences
occur only in the translations of terms. Larger differences between
these calculi and the Smith-Volpano calculus can also be described.

Another advantage of the translations is their utility in the de-
sign of dependency analyses. For instance, we have found a certain
incompleteness in the functional SLam calculus; it would make se-
mantic sense to add a rule

Γ � x :
�
t � κ � 
 e :

�
t � � κ � �

Γ � x :
�
t � κ � � 
 e :

�
t � � κ � � κ � κ �

(since it is easily modelled in DCC), but the original SLam cal-
culus does not have the rule. DCC can also be used to point out
apparent design inconsistencies in some of the existing calculi. We
are currently redesigning the Imperative SLam Calculus [13] us-
ing a translation into DCC as a guide for the type system, and as a
vehicle for proving noninterference.

The model underlying DCC simplifies proofs of noninterfer-
ence. The model was also invaluable in developing DCC itself. For
instance, the pattern

seq x � e in
�
bind y � e � in e � � �

occurs frequently in the translations; the type of e � � must be both
pointed and protected in order for the translation to work. With-
out the concepts of “pointed” and “protected”, the obvious path
might be to adopt an ever increasingly complex set of type con-
versions and equations. The model was also helpful in developing
the weaker notion of noninterference, and extending the notion of
“protected” types to lifted types by changing the semantics of lift-
ing. It would have been difficult to make this change in the syntax
of DCC alone (other than, perhaps, by directly imposing the equa-
tion T� � s ��� � �

T� � s ����� ).
Not all aspects of dependency can be translated into DCC. For

example, the binding-time analyses of Davies and Pfenning [7, 6]
cannot be directly translated into DCC because DCC cannot model
the coercion from run-time objects to compile-time objects. A
rather different semantics due to Moggi [21] has been developed
for such binding-time analyses, using the concept of a fibration to



model dependency. A similar comment applies to the trust oper-
ator that maps from untrusted to trusted in Ørbæk and Palsberg’s
work [27].

Other possible extensions of DCC include accounting for the
spawning of concurrent threads [13] and modelling cryptographic
operations in such a way that encrypting a high-security datum
could produce a low-security ciphertext [1]. The relationship of
DCC to semantic dependency in the context of optimizing com-
pilers [4, 11] and to region systems for memory management [37]
should also be explored.
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A Translations into DCC

The translations of the various source calculi into DCC are given in
Tables 7-12 below. To make the translations more readable, most
of the cases of sums and products are left out. We also use the DCC
combinator and abbreviation

dot : Tκ
�
Tκ �

�
t ����� Tκ � κ �

�
t �

dot � λx : Tκ
�
Tκ �

�
t ����	 bind y � x in bind z � y in

�
ηκ � κ � z �

�
seqbind f � ein e � ��� �

seq v � e in bind f � v in e � �
where v is a fresh variable. Most of the translations also re-
quire a coercion combinator for interpreting subsumption, but these
combinators—and a few others—need to be defined specially for
each system. These definitions are found in each translation.



Table 7: Translation of the Call-by-name Functional SLam Calculus into DCC (excerpts).

coerces1 " s2 : s �1 � s �2
coerce � unit " κ � " � unit " κ � � � λx : Tκ

�
unit � ��	 bind y � x in

�
ηκ � y �

coerce � s2 � u1 " κ � " � s1 � u2 " κ � � � λx : Tκ
�
s �2 � u �1 ��	 bind y � x in ηκ �

�
λz : s �1 	 coerceu1 " u2

�
y
�
coerces1 " s2 z �����

coerce � s1 � u1 " κ ��" � s2 � u2 " κ � � � λx : Tκ
�
s �1 � u �1 ��	 bind y � x in ηκ �

�
coerces1 " s2

�
proj1 y ��� coerceu1 " u2

�
proj2 y �
�

coerce � s1 � u1 " κ ��" � s2 � u2 " κ � � � λx : Tκ
���

s �1 � u �1 ������	 bind y � x in ηκ �
�
seq z � y in case z

of inj1
�
w � 	 lift �

inj1
�
coerces1 " s2 w ���

� inj2
�
w � 	 lift �

inj2
�
coerceu1 " u2 w �����

�Var Γ � x : s � Γ � 
 x : s � Γ � � x : s � � � Γ � � � 
 x : s �

�Unit  Γ 
 � � κ :
�
unit � κ � � Γ ��
 ηκ

�
lift

� ��� : Tκ
�
unit � �

� Sub  Γ 
 e : s1 s1 # s2
Γ 
 e : s2

� Γ � 
 e � : s �1
Γ � 
 �

coerces1 " s2 e � � : s �2

�Rec  Γ � f : s 
 e : s
Γ 
 �

µ f : s 	 e � : s
� Γ � � f : s � 
 e � : s �

Γ � 
 � µ f : s � 	 e � � : s �

� Lam  Γ � x : s1 
 e : s2
Γ 
 �

λx : s1 	 e � κ :
�
s1 � s2 � κ � � Γ � � x : s �1 
 e � : s �2

Γ � 
 �
ηκ

�
λx : s �1 	 e � ��� : Tκ

�
s �1 � s �2 �

�App  Γ 
 e :
�
s1 � s2 � κ � Γ 
 e1 : s1
Γ 
 � e e1 � : s2 � κ � Γ � 
 e � : Tκ

�
s �1 � s �2 � Γ ��
 e �1 : s �1

Γ � 
 dot �
bind f � e � in �

ηκ
�
f e �1 ����� :

�
s2 � κ � � f is fresh

�Pair Γ 
 ei : si
Γ 
 �

e1 � e2 � κ :
�
s1 � s2 � κ � � Γ � 
 e �i : s �i

Γ � 
 � ηκ
�
e �1 � e �2 ��� : Tκ

�
s �1 � s �2 �

�Proj Γ 
 e :
�
s1 � s2 � κ �

Γ 
 � proji e � : si � κ � Γ � 
 e � : Tκ
�
s �1 � s �2 �

Γ � 
 dot �
bind x � e � in �

ηκ
�
proji x ����� :

�
si � κ �	� x is fresh

� Inj  Γ 
 e : si
Γ 
 �

inji e � κ :
�
s1 � s2 � κ � � Γ ��
 e � : s �i

Γ � 
 �
ηκ

�
lift

�
inji e � ����� : Tκ

���
s �1 � s �2 ��� �

�Case  Γ 
 e :
�
s1 � s2 � κ � Γ � x : si 
 ei : s

Γ 
 �
case e of inj1

�
x ��	 e1 � inj2

�
x ��	 e2 � : s � κ �

Γ � 
 e � : Tκ
���

s �1 � s �2 ��� � Γ � � x : s �i 
 e �i : s �
Γ � 
 dot �

bind y � e �
in

�
ηκ

�
seq v � y in
case v
of inj1

�
x � 	 e �1� inj2
�
x ��	 e �2 ����� :

�
s � κ � �

y fresh

�Protect Γ 
 e : s
Γ 
 � protectκ e � : s � κ � Γ � 
 e � : s �

Γ � 
 dot �
ηκ e � � :

�
s � κ �	�

Table 8: Translation of the Slicing Calculus into DCC (excerpts).

�Var Γ � x : s � Γ � 
 x : s � Γ � � x : s � � � Γ � � � 
 x : s �

�Unit Γ 
 � � n :
�
unit ��� n  � � Γ � 
 η � n �

�
lift

� ��� : T� n �
�
unit � �

� Lam  Γ � x : s1 
 e : s2
Γ 
 � λx : s1 	 e � n :

�
s1 � s2 � � n  � � Γ � � x : s �1 
 e � : s �2

Γ � 
 �
η � n �

�
λx : s �1 	 e � ��� : T� n �

�
s �1 � s �2 �

�App  Γ 
 e :
�
s1 � s2 � κ � Γ 
 e1 : s1
Γ 
 �

e e1 � : s2 � κ � Γ � 
 e � : Tκ
�
s �1 � s �2 � Γ � 
 e �1 : s �1

Γ � 
 dot �
bind f � e � in �

ηκ
�
f e �1 ����� :

�
s2 � κ � � f is fresh



Table 9: Translation of the Binding-time Calculus into DCC (excerpts).

� Var Γ � x : s � Γ 
 x : s � Γ � � x : s � � � Γ � �	��
 x : s �

� Unit  Γ 
 � � β :
�
unit � β � � Γ � 
 � ηβ

�
lift

� ����� : Tβ
�
unit � �

� Lam  Γ � x : s1 
 e : s2
Γ 
 � λx : s1 	 e � β :

�
s1 � s2 � β � � Γ � � x : s �1 
 e � : s �2

Γ � 
 �
ηβ

�
λx : s �1 	 e � ��� : Tβ

�
s �1 � s �2 �

� App  Γ 
 e :
�
s1 � s2 � β � Γ 
 e1 : s1

Γ 
 �
e e1 � : s2

� Γ � 
 e � : Tβ
�
s �1 � s �2 � Γ � 
 e �1 : s �1

Γ � 
 � bind f � e � in �
f e �1 ��� : s �2

f is fresh

Table 10: Translation of the Smith-Volpano Calculus into DCC.

true � � inj1 �	� �
false � � inj2 �	� �

� if e then e1 else e2 � � � case e of inj1 � x � 
 e1 � inj2 � x � 
 e2 ��� x is fresh

projx � the projection of the state to the variable x

coerce ��� � � λ f 
 f � � � L, H, � L cmd ��� or � H cmd �
coerceL � H � λ f 
 λs : SVH � ΓH � � SVL � ΓL � 
 ηH � f s �

coerceH cmd � Lcmd � λ f 
 λs : SVH � ΓH � � SVL � ΓL � 
 lift  f s � proj2 s �
�
Var� ΓH ;ΓL � x : τ � � λσ 
 projx σ � : SV � ΓH � ΓL � τ � if x � Γτ
�
TrueH � ΓH ;ΓL � true : H � � λσ 
 ηH true � : SV � ΓH � ΓL � H �
�
FalseH � ΓH ;ΓL � false : H � � λσ 
 ηH false � : SV � ΓH � ΓL � H �
�
TrueL � ΓH ;ΓL � true : L � � λσ 
 true � : SV � ΓH � ΓL � L �
�
FalseL � ΓH ;ΓL � false : L � � λσ 
 false � : SV � ΓH � ΓL � L �
�
SkipH � ΓH ;ΓL � skip : H cmd � � λσ 
 proj1 σ � : SV � ΓH � ΓL � H cmd �
�
SkipL � ΓH ;ΓL � skip : L cmd � � λσ 
 lift σ � : SV � ΓH � ΓL � L cmd �
�
Sub � ΓH ;ΓL � e : s0 s0 � s1

ΓH ;ΓL � e : τ �
� e

�
: SV � ΓH � ΓL � s0 �

� coerces0 � s1 e
� � : SV � ΓH � ΓL � s1 �

�
AssignH � ΓH ;ΓL � e : H ΓH � � x1 � 
�
�
 � xn �

ΓH ;ΓL ��� xi : � e � : H cmd
� e

�
: SV � ΓH � ΓL � H �

� λσ 
  proj1 � proj1 σ � � 
�
�
 ��� e � σ ��� 
�
�
 � � � : SV � ΓH � ΓL � H cmd �
�
AssignL � ΓH ;ΓL � e : L ΓL � � x1 � 
�
�
 � xn �

ΓH ;ΓL ��� xi : � e � : L cmd
� e

�
: SV � ΓH � ΓL � L �

� λσ 
 lift  � proj1 σ ���� proj1 � proj2 σ ��� 
�
�
 ��� e � σ ��� 
�
�
 � ��� � : SV � ΓH � ΓL � L cmd �
�
SeqH � ΓH ;ΓL � c1 : H cmd ΓH ;ΓL � c2 : H cmd

ΓH ;ΓL ��� c1;c2 � : H cmd
� c

�

1 : SV � ΓH � ΓL � H cmd � c
�

2 : SV � ΓH � ΓL � H cmd �
� λσ 
 c �2  c �1 σ � proj2 σ � � : SV � ΓH � ΓL � H cmd �

�
SeqL � ΓH ;ΓL � c1 : L cmd ΓH ;ΓL � c2 : L cmd

ΓH ;ΓL ��� c1;c2 � : L cmd
� c

�

1 : SV � ΓH � ΓL � L cmd � c
�

2 : SV � ΓH � ΓL � L cmd �
� λσ 
 seq σ1 � � c �1 σ � in � c �2 σ1 ��� : SV � ΓH � ΓL � L cmd �

�
IfH � ΓH ;ΓL � e : H ΓH ;ΓL � ci : H cmd

ΓH ;ΓL � if e then c1 else c2 : H cmd
� e

�
: SV � ΓH � ΓL � H � c

�

i : SV � ΓH � ΓL � H cmd �
� λσ 
 bind v � � e � σ � in if v then � c �1 σ � else � c �2 σ � � : SV � ΓH � ΓL � H cmd � v is fresh

�
IfL � ΓH ;ΓL � e : L ΓH ;ΓL � ci : H cmd

ΓH ;ΓL � if e then c1 else c2 : L cmd
� e

�
: SV � ΓH � ΓL � L � c

�

i : SV � ΓH � ΓL � L cmd �
� λσ 
 if � e � σ � then � c �1 σ � else � c �2 σ ��� : SV � ΓH � ΓL � L cmd �

�
While � ΓH ;ΓL � e : L ΓH ;ΓL � c : L cmd

ΓH ;ΓL � while e do c : L cmd
� e

�
: SV � ΓH � ΓL � L � c

�
: SV � ΓH � ΓL � L cmd �

� µ f 
 λσ 
 if � e � σ � then seq σ � � � c � σ � in � f σ � � else � lift σ � � : SV � ΓH � ΓL � L cmd �



Table 11: Translation of the Call-by-value Functional SLam Calculus into vDCC (excerpts).

fix � µ f 
 λg : s
� � � s � � � 
 g � ηκ � λx : s

�

1 
 seqbindh � � f g � in � h x ����� if s � � s1 � s2 � κ � and � s2 � κ � � s2

coerce � unit � κ � � � unit � κ � � � λx : Tκ � unit � 
 bind y � x in � ηκ � y �
coerce � s2 � u1 � κ � � � s1 � u2 � κ � � � λx : Tκ � s �2 � � u �

1 � � � 
 bind y � x in ηκ � � λz : s
�

1 
 seq v � � y � coerces1 � s2 z � � in lift � coerceu1 � u2 v � �
�
Var � Γ � x : s � Γ � � x : s � Γ

� � x : s
� ��� Γ � � � ��� lift x � : � s � � �

�
Unit � Γ ��� � κ : � unit � κ � � Γ

� ��� lift � ηκ �	� � � : � Tκ � unit � � �
�
Sub � Γ � e : s1 s1 � s2

Γ � e : s2

� Γ
� � e

�
: � s �1 ���

Γ
� � seq w � e

�
in lift � coerces1 � s2 w � : � s �2 ��� w fresh

�
Rec � Γ � f : s � e : s s � � s1 � s2 � κ � � s2 � κ � � s2

Γ ��� µ f : s 
 e � : s
� Γ

� � f : s
� � e

�
: � s � � �

Γ
� � fix � λ f : s

� 
 e � � : � s � ���
�
Lam � Γ � x : s1 � e : s2

Γ ��� λx : s1 
 e � κ : � s1 � s2 � κ �
� Γ

� � x : s
�

1 � e
�

: � s �2 � �
Γ
� � lift � ηκ � λx : s

�

1 
 e
� � � : � Tκ � s �1 � � s �2 � � � � �

�
App � Γ � e : � s1 � s2 � κ � Γ � e1 : s1

Γ ��� e e1 � : s2 � κ
�

Γ
� � e

�
: � Tκ � s �1 � � s �2 � � � � � Γ

� � e
�

1 : � s �1 � �
Γ
� � seqbind f � e

�
in

seq v � e
�

1 in seq r � � f v � in lift � dot � ηκ r � � : � s2 � κ � ��
f � v� r fresh

�
Protect � Γ � e : s

Γ ��� protectκ e � : s � κ
� Γ

� � e
�

: � s � � �
Γ
� � seq m � e

�
in lift � dot � ηκ m ��� : � s � κ � �� m fresh

Table 12: Translation of the Call-tracking Calculus into vDCC (excerpts).

fix � µ f 
 λg : s
� � � Tκ � s � � ��� 
 g � λx : s

�

1 
 seqbindh � � f g � in � h x � � if s � � s1
κ� � s2 �

�
Var � Γ � x : s � Γ � � x : s � L � Γ

� � x : s
� ��� Γ � � � � lift � ηL x � : � TL � s � �����

�
Unit � Γ ���	� : unit � L � Γ

� � lift � ηL �	� � : � TL � unit � � �
�
Rec � Γ � f : s � e : s � κ s � � s1

κ� � s2 �
Γ ��� µ f : s 
 e � : s

� Γ
� � f : s

� � e
�

: � Tκ � s � � ���
Γ
� � fix � λ f : s

� 
 e � � : � Tκ � s � � � �
�
Lam � Γ � x : s1 � e : s2 � κ

Γ ��� λx : s1 
 e � n : � s1
κ � � n �� � s2 ��� L

� Γ
� � x : s

�

1 � e
�

: � Tκ � s �2 � ���
Γ
� ��� lift � ηL � λx : s

�

1 
 seq r � e
�
in lift � dot � η � n � r ���	��� � : � TL � s �1 � � T� n ��� κ � s �2 ��� � � � � r fresh

�
App � Γ � e : � s1

κ� � s2 ��� κ1 Γ � e1 : s1 � κ2

Γ ��� e e1 � : s2 � κ � κ1 � κ2

�

Γ
� � e

�
: � Tκ1 � s

�

1 � � Tκ � s �2 � � � � � � Γ
� � e

�

1 : � Tκ2 � s
�

1 ��� �
Γ
� � seqbind f � e

�
in

seqbind y � e
�

1 in
seqbind v � � f y � inlift � ηκ � κ1 � κ2 v � : � Tκ � κ1 � κ2 � s

�

2 � � �
f � y � v fresh


