
A Core Grid Ontology for the Semantic Grid ∗

Wei Xing Marios D. Dikaiakos
Department of Computer Science

University of Cyprus
CY-1678 Nicosia, Cyprus
{xing, mdd}@cs.ucy.ac.cy

Rizos Sakellariou
School of Computer Science

University of Manchester
M13 9PL Manchester, UK

rizos@cs.man.ac.uk

Abstract

In this paper, we propose a Core Grid Ontology (CGO)
that defines fundamental Grid-specific concepts, and the re-
lationships between them. One of the key goals is to make
this Core Grid Ontology general enough and easily extensi-
ble to be used by different Grid architectures or Grid mid-
dleware, so that the CGO can provide a common basis for
representing Grid knowledge about Grid systems, including
Grid resources, Grid middleware, services, applications,
and Grid users. The Core Grid Ontology is designed and
developed based on a general model of Grid infrastructures,
and described in the Web Ontology Language OWL. Such
an ontology can play an important role in building Grid-
related Knowledge bases and in supporting the realization
of the Semantic Grid.

1 Introduction

In the Semantic Grid, Grid-related information and ser-

vices are given a well-defined meaning, better enabling

computers and people to work in cooperation [9]. Ontolo-

gies are among the key building blocks for the Semantic

Grid. They define and determine the concepts, vocabularies

of Grid entities, resources, capabilities and the relationships

between them, with which any kind of content can become

meaningful by the addition of ontological annotations.

A number of recent efforts have focused on Grid-related

ontologies [5, 15, 6, 13, 8]. However, to the best of our

knowledge, no existing ontology can be suitable for repre-

senting a Grid system. Most ontologies proposed so far, are

Grid sub-domain specific, and have been developed for spe-

cial purposes. Thus, they can be used for only certain Grid

sub-systems. For instance, the Virtual Organization ontol-

ogy (VOO) is developed for Grid Virtual Organization man-

∗This research work is carried out under the FP6 Network of Ex-
cellence CoreGRID funded by the European Commission (Contract IST-
2002-004265).

agement [5]; it defines what a virtual organization is, espe-

cially but not exclusively in the context of Grid computing.

VOO classes are mainly about policies and goals of a VO.

Several important Grid concepts, such as Grid middleware,

Grid application, and Grid resources, are not included. Cer-

tainly, this ontology is not applicable for representing Grid

systems. Therefore, we design and develop the Core Grid

Ontology for representing Grid systems, including funda-

mental aspects of a Grid system, such as Grid entities, Grid

users, Grid applications, Grid resources, Grid middleware,

etc. In order to make the CGO general, open and exten-

sible, we design the CGO based on a general model for

Grids, which is compatible to major Grid infrastructures

[3, 4, 2, 12, 7]. Also we implement this ontology with the

Web Ontology Language OWL as the description language

for representing the CGO concepts and their relationships

[14]. This paper presents our work on the design and devel-

opment of the Core Grid Ontology.

The main problem for building an ontology for Grids is

that there is currently a multitude of proposed Grid archi-

tectures and Grid implementations, which are comprised of

thousands of Grid entities, services, components, and appli-

cations. It is thus very difficult, if at all feasible, to develop

a complete Grid ontology that will include all aspects of

Grids. Furthermore, different Grid sub-domains, such as

Grid resource discovery and Grid job scheduling, normally

have different views of, or interests about a Grid entity and

its properties. This makes the definition of Grid entities and

the relationships between them very hard. To tackle these

issues, we propose a Core Grid Ontology (CGO) that de-

fines fundamental Grid-specific concepts, and relationships.

One of our main goals is to make this Core Grid Ontology

general enough and easily extensible to be used by different

Grid architectures or Grid middleware, so that the CGO can

provide a common basis for representing Grid knowledge

about Grid systems, including Grid resources, Grid middle-

ware, services, applications, and Grid users.

The remainder of this paper is organized as follows. In

Section 2, we present the design and development of the

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

Core Grid Ontology. We illustrate how to build a Grid

knowledge base using CGO with examples in Section 3. Fi-

nally, we conclude our paper in Section 4.

2 The Core Grid Ontology

A key design goal when proposing a Core Grid Ontology

is to make it extensible and general enough to be used by,

or incorporated in different Grid systems and tools. To ad-

dress this challenge, we build an abstract, generic model of

Grids as the object of our Core Grid Ontology (CGO). Key

concepts of the CGO are derived from this model. Since

the Grid model is an abstraction of different Grid architec-

tures, it ensures that the concepts of the CGO are general

enough and suitable for different Grid infrastructures and

Grid middleware. We adopt the Web Ontology Language

OWL as the description language for representing CGO

concepts and the relationships among them [14]. OWL is

a semantic markup language for publishing and sharing on-

tologies on the World Wide Web. Given the fact that OWL

are W3C recommendations, the Core Grid Ontology is thus

open, and compatible with other systems.

2.1 Building a Grid Model for CGO

The key challenge of building a Grid model is to cap-

ture a “right” abstraction for the Grid, which could be used

to further specify Grid concepts, relations, and constraints.

This abstraction must remain simple and should have a

proper level of detail. It should also provide a general view

of important aspects of Grids [10].

The Grid can be considered as a collection of Virtual Or-

ganizations and of different kinds of resources. Resources

are organized and utilized by Grid middleware to provide

Grid users with computing power, storage capability, and

services required for problem solving. VOs enable dis-

parate groups of organizations and/or individuals to share

resources in a controlled fashion, so that members may col-

laborate to achieve shared goals.

Therefore, we regard a Grid as a constellation of Vir-

tual Organizations (VOs), which includes VOs, users, ap-

plications, middleware, services, computing and storage re-

sources, networks, and policies of use. As shown in Fig-

ure 1, the proposed model is layer-structured, and is de-

signed around a simple three-layer scheme. The top layer

of the model includes multi-VOs, Grid Users, and Applica-

tions; Grid middleware and Grid services lie on the middle

layer; the bottom layer includes the Grid resources. The

Grid fundamental elements of each aspect (appeared in Fig-

ure 1(b)) can be “located” in a corresponding layer of the

proposed model (in Figure 1(a)).

Figure 1. The Overview of the Proposed Grid
Model

2.2 Choosing a Data Model and Descrip-
tion Language for the CGO

The Core Grid Ontology is designed to represent the

knowledge of Grid systems. Therefore, it should be open

and extensible as there are thousands of Grid entities, ser-

vices, components, and applications of different Grid archi-

tectures and Grid implementations. To cope with the open-

ness and extensibility requirements, we adopt the Web On-

tology Language OWL to describe the concepts and classes

in the Core Grid Ontology [14]. OWL is actually devel-

oped as a vocabulary extension of the Resource Description

Framework (RDF), namely, it takes RDF data model as its

data model [11]. The RDF data model is a directed graph

with labeled nodes and arcs; the arcs are directed from one

node (subject) to another node (object). The object may be

linked to other nodes (e.g. other classes) through proper-

ties. One key feature of this data model is that properties in

RDF are defined globally, namely, they are not encapsulated

as attributes in class definitions. It is thus possible to define

new properties that apply to an existing class without chang-

ing that class. The characteristics of the RDF data model

make the ontology easier to extend by adding new classes

and properties (slots) into a defined class without any con-

flict with existing definitions. However, RDF can not de-

scribe resources in sufficient detail. For instance, there is

no localized range and domain constraints in RDF. To avoid

the weakness of the RDF, OWL comes with a larger vocab-

ulary and stronger syntax than RDF.

2.3 The Design of the Core Grid Ontology

The key role of the CGO is to provide a higher level

framework in which all concepts of Grids can be given a

consistent and semantically coherent representation. Thus

it is designed as an upper-level ontology, which captures

and models the basic concepts and knowledge of Grids. We

start with some basic distinctive Grid concepts, such as VO,

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

GridMiddleware, GridService, GridResource, etc. Further

on, the CGO goes into more details to an extent that Grid en-

tities of general importance are included, like Policy, Com-
putingComponent, StorageComponent, ResourceMgt, In-
foService, SecurityInfra, ComputingResource, NetworkRe-
source, etc. The characteristic attributes and relations for

the featured entities are defined. Having this Core Grid On-

tology as a basis, one could add platform-specific exten-

sions to it easily, in order to represent a platform-specific

Grid, for instance, GlobusToolkit4, GridPortal, XSpace,
GRAM, MDS, BDII.

One main challenge in developing a Core Grid Ontology

is to provide formal definitions and axioms that constrain

the interpretation of classes. We describe the concepts and

represent their constraints on the Grid domain according

to the knowledge derived from analyzing, evaluating, and

experimenting with different Grid architectures, production

middleware and large Grid infrastructures, such as Globus,

Unicore, DataGrid, Crossgrid, and EGEE [3, 4, 2, 12, 7].

2.3.1 Definition of Core Grid Ontology Classes and the
Class Hierarchy

Based on the Grid model described in Section 2.1, we start

with defining basic concepts. These concepts should cor-

respond to classes that are the fundamental elements or

the very important aspects of a Grid. We define 7 core

classes of a Grid system from the abstract Grid model. They

are: VO, GridResource, GridMiddleware, GridComponent,

GridUser, GridApplication, GridService. The definitions of

the core classes are explained in Table 1.

To describe a Grid system, VO, GridMiddleware, and

GridResource are three vital, crucial aspects that define dis-

tinct features of a Grid according to the abstract model. And

GridUser, GridApplication, GridComponents, and Grid-
Service are associated concepts of basic Grid entities. A

Grid user registers in a VO in order to run a Grid applica-
tion; and a Grid application must belong to a VO in which it

can share the distributed resources of the VO. Grid middle-
ware may include some Grid components/Grid services that

provide functionalities. Each Grid component may have

one or several Grid services together to perform the func-

tions. Finally, Grid resources provide computing power,

storage capability, network connection to Grids for execut-

ing user applications. Therefore, with these core classes we

can represent a Grid system by the three aspects: (i) Which

VOs does a Grid infrastructure support? (ii) What kind of

middleware is it supported? (iii) What resources does it

have? Subsequently, we define 24 general classes that cor-

respond to general Grid entities referring to VO, Grid mid-

dleware, and Grid resource: ComputingComponent, Stor-
ageComponent, UserInterface, Policy, ResourceMgt, InfoS-
ervice, JobMgt, DataMgt, SecurityInfra, MonMgt etc (see

Class Description Constraints
VO A dynamic collection of 1) has ID;

distributed resources that 2) has some GridUsers registered;
are shared by a dynamic 3) has some GridResource accessible;
collection of users from one 4) has a VOManager support;
or more physical organizations. 5) has policy; including: policy of the

VO, policy on users, policy on resources;
GridUser A person who can 1)hasID

access to a Grid. 2)registeredVO
3)gridEntry

GridApplication An application 1)hasName
that can run on Grids, 2)registeredVO
complied with VO policies. 3)neededLib

4)coService
GridMiddleware Software that provide transparent 1)hasName

access to distributed Grid 2)releaseVersion
resources such as processing, 3)architectureType
network bandwidth and storage capacity. 4)hasComponent: hasInfoSys,

hasSecurityInfra,
hasResourceMgt,
hasScheduler, hasMon
5)requiredService

GridComponent A collection of Grid services 1)hasID
and interfaces, which can 2)installedSoftware
provide access to 3)runningService
Grid resources. 4)requiredService

GridService A service on a Grid, which is software 1)hasID
that carries out some task 2) hasPort
on behalf of yet another piece 3)requiredService
of software called a client. 4)status

GridResource A Grid entity that is 1) hasID: it can be identified
employed to fulfill a job or resource in the Grid environment;
request. It could be: (1) all the 2) belongToVO: it must support at least
computers, workstations that make up one VO.
a Grid; (2) the communication
networks connecting those computers;
(3) all the data storage connected
to a Grid, and the data on them.
(4) all the other active components
and networks connected to a Grid.

Table 1. The CGO core Classes (1)

Figure 2). These classes represent important generic Grid

entities that can be used to describe a Grid with more de-

tailed information, such as: (a) What kind of applications

are supported by a VO? (b) What is the policy of a VO? (c)

How many and what kind of components does a Grid mid-

dleware have? (d) Which services are used to support Grid

resource sharing?

After describing general features of a Grid system, we

need platform specific details about a Grid system in order

to represent a Grid concretely. We introduce Grid platform

specific classes to represent the entities of a specific Grid

architecture. For instance, the MDS information service of

Globus-2 is represented by the class MDS, which is a sub-

class of InfoService. Similarly, class BDII (the information

service of EGEE) is a subclass of InfoService, representing

the information service used in EGEE Grid [7]. Using the

platform specific classes, a Grid system can be represented

in a consistent and meaningful way.

In order to make CGO general and extensible, we in-

tend to provide a class “framework” for representing a Grid

system, instead of having a complete set of classes and

properties of Grids. Thus, users can extend the CGO by

adding their classes and properties on a “required-to-have”

basis. Any required details of a specific Grid system can be

represented by introducing new Grid architecture specific

classes. Consequently, classes of the CGO can together es-

tablish a constructional foundation to represent any Grid en-

tities in Grids, and Grids as well.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

Figure 2. The Overview of the Core Grid On-
tology Classes

2.3.2 The Properties of the Core Grid Ontology

In order to represent the relationships and constraints

among the ontology classes, we define properties that pro-

vide the semantic meaning for the Core Grid Ontology

classes. Properties of the CGO are practically defined ac-

cording to the constraints of the CGO classes, For instance,

the constraints of the VO class (See Table 1) are:

1) hasID;
2) has some GridUsers registered;
2) has some GridResource accessible;
3) has a VOManager support;
4) has policy; including: a)policy of the VO;

b)policy on resources;
c)policy on users.

Consequently, we can define four properties of the CGO,

which are:

<owl:ObjectProperty rdf:ID="hasID">
<rdfs:domain rdf:resource="#GridEntity" />
<rdfs:range rdf:resource="#URI" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#registeredUser">

<rdfs:domain rdf:resource="#VO"/>
<rdfs:range rdf:resource="#GridUser"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasPolicy">

<rdfs:range rdf:resource="#Policy"/>
<rdfs:domain rdf:resource="#VO"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#requiredSevice">
<rdfs:subPropertyOf rdf:resource="#withService"/>
<rdfs:domain rdf:resource="#GridEntity"/>
<rdfs:range rdf:resource="#GridService"/>

</owl:ObjectProperty>

According to the constraints of the core classes in Ta-

ble 1, we define a set of key properties of the CGO (the full

version of the defintion of the CGO properties can be found

in [1]) as follows:

<owl:DatatypeProperty rdf:about="#hasName">
<rdfs:domain rdf:resource="#GridEntity"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>The name of a Grid entity</rdfs:comment>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="#needLib">
<rdfs:domain rdf:resource="#GridEntity"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Grid application need libiary to run.</rdfs:comment>
<rdfs:range rdf:resource="#Lib"/>

</owl:ObjectProperty>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>The type of Grid middleware.</rdfs:comment>
<rdfs:domain rdf:resource="#GridEntity"/>
<rdfs:range rdf:resource="#GridMiddleware"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#releaseVersion">

<rdfs:domain rdf:resource="#GridMiddleware"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>The realeased version of a Grid middleware.</rdfs:comment>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:about="#hasComponent">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>A Grid has different components.</rdfs:comment>
<rdfs:domain rdf:resource="#GridMiddleware"/>
<rdfs:range rdf:resource="#GridComponent"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasPort">

<rdfs:domain rdf:resource="#GridService"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>The port number of a Grid service.</rdfs:comment>
<rdfs:range rdf:resource="#Port"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#state">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
<rdfs:domain rdf:resource="#GridService"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>The state of a Grid service.</rdfs:comment>

</owl:DatatypeProperty>
......

Any other properties can be added on demand. There

are two methods to add new properties. One is to extend

the key properties, which are regarded as super properties.

A new property can be defined as a sub-property of a su-

per property. For instance, the key property withService can

be extended to two other sub properties: requiredService is

used to specify the services that are required by Grid appli-

cations and Grid components; coService is used to define

the co-operative relationship between Grid services. An-

other method is to add a new property directly that can be

used for describing a desired feature of classes in the CGO.

In CGO, properties are defined globally, that is, they are not

encapsulated as attributes in class definitions. Therefore, it

is possible to define new properties that apply to an existing

class without changing that class. For example, we define

that class CPU has key properties: model, type, and speed;

later, if the information about CPU price is also needed,

we can add pricePerCPUTime property into the class CPU.

This makes the CGO flexible and extensible to adopt any

new features of Grid entities.

3 Representing Grid Entities using the CGO

Based on the defined classes and properties of the CGO,

we can represent any particular Grid entities. For exam-

ple, the Computing Element, a component of the EGEE in-

frastructure, can be described as: (a) Computing Element

is a Grid component that provides access to computing re-

sources. (b) A Computing Element is comprised of one or

more similar machines managed by a JobMgt, and a Sched-

uler service.

According to the definition, we can first define a new

class ComputingElement with its constraints: (1) a Com-

putingElement must support at least one VO; (2) a Com-

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

putingElement must contain a SecurityInfra service; (3)

a ComputingElement must contain a JobMgt service and

Scheduler service. Then, these three restrictions can be de-

scribed in Description Logics as follows:

ComputingElement ∃ supportVO VO

∃ requiredSevice SecurityInfras

∃ requiredSevice (JobMgt � Scheduler).

So, we can describe the class ComputingElement by the de-

fined CGO classes in OWL as follows:

<owl:Class rdf:ID="ComputingElement">
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#JobMgt"/>
<owl:Class rdf:about="#Scheduler"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
<owl:onProperty rdf:resource="#requiredSevice"/>

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>

After that, we can generate instances of class Computin-

gElement. In the CY01-LCG2 Grid node of the EGEE Grid

infrastructure [7], we have a computing element named

ce101.grid.ucy.ac.cy. We describe the ce101 based on the

definition of the class ComputingElement. From the infor-

mation service (i.e. BDII), we can retrieve the information

that the GridMiddleware of the ce101 node is LCG; it sup-

ports three VOs, i.e. ATLAS, BioMed, LHCB; and the Job-

Mgt service is openPBS; the Scheduler service is MAUI.
Besides, we can fetch the information about totalCPU from

the openPBS server. Finally, we can create an instance of

the class ComputingElement as follows:

<ComputingElement rdf:ID="ce101.grid.ucy.ac.cy">
<hasName xml:lang="en">ce101.grid.ucy.ac.cy</hasName>
<hasID rdf:resource="#IP_CE101_UCY"/>
<belongToVO rdf:resource="#Biomed"/>
<belongToVO rdf:resource="#SEE"/>
<belongToVO rdf:resource="#Dteam"/>
<installedSoftware rdf:resource="#Scientific_Linux_303"/>
<installedSoftware rdf:resource="#LCG_2.6.0"/>
<runningServices rdf:resource="#openpbs_ucy"/>
<runningServices rdf:resource="#maui_ucy"/>
...
</ComputingElement>

4 Conclusions and Future Work

In this paper, we presented our work towards building

a Core Grid Ontology (CGO). We first introduced an ab-

stract model of Grid. After that, we designed the CGO that

expresses the basic concepts and relationships of Grid en-

tities and Grid resources according to the proposed Grid

model. The flexibility and extensibility of the ontology al-

lows it to be used, among other things, for Grid informa-

tion integration, information searching, resource discovery

and resource allocation management. The fact that it is

Grid-architecture and implementation independent, renders

it quite useful for hybrid large-scale Grids.

In the future, we plan to support knowledge-based

queries. Since the ontologies/knowledge will be stored in

multi-Grids enviroment, we need a suitable OWL query lan-

guage and distributed query mechanism to query those dis-

tributed knowledge efficiently.

References

[1] CGO OWL. http://grid.ucy.ac.cy/grisen/cgo.owl.
[2] European DataGrid. http://eu-datagrid.web.cern.ch/eu-

datagrid/.
[3] Globus Toolkit. http://www.globus.org/toolkit/.
[4] Unicore Grid. http://www.unicore.org.
[5] P. Alper, O. Corcho, I. Kotsiopoulos, P. Missier, S. Bech-

hofer, D. Kuo, and C. Goble. S-OGSA as a Reference Ar-

chitecture for OntoGrid and for the Semantic Grid. The 3rd

GGF Semantic Grid Workshop, GGF16, 2006.
[6] J. Brooke, K. Garwood, and C. Goble. Semantic Match-

ing of Grid Resource Descriptions. In M.D.Dikaiakos, edi-

tor, Proceedings of Second European Across Grids Confer-
ence (AXGrids 2004), LNCS 3165, pages 240–249, Nicosia,

Cyprus, 2004. Springer-Verlag.
[7] S. Campana, M. Litmaath, and A. Sciaba. LCG-

2 Middleware Overview. LCG Technical Document.

https://edms.cern.ch/file/498079/LCG-mw.pdf.
[8] C.Wroe, C.Goble, M.Greenwood, P.Lord, S.Miles, J.Papay,

T.Payne, and L.Moreau. Automating Experiments Using Se-

mantic Data on a Bioinformatics Grid. IEEE Intelligent Sys-
tems, 19(1):48–55, 2004.

[9] D. De Roure, N. R. Jennings, and N. R. Shadbolt. The Se-

mantic Grid: Past, Present and Future. In Proceedings of
the IEEE, volume 93(3), ISSN:0018-9219, pages 669–681.

IEEE, March 2005.
[10] M. Dikaiakos and A. Artemiou. Navigating the grid in-

formation space: Design and implementation of the ovid

browser. Technical Report TR-2004-07, Department of

Computer Science, University of Cyprus, December 2004.
[11] G. Klyne and J. Carroll. Resource Description Framework

(RDF): Concepts and Abstract Syntax. W3C Recommenda-

tion, February 2004.
[12] J. Marco and et al. First Prototype of the Crossgrid Testbed.

In Proceedings of First European AcrossGrids Conference
(AXGrids 2003), LNCS 2970, pages 67–77, Santiago de

Compostela, Spain, 2003. Springer-Verlag.
[13] S. Miles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne,

and L. Moreau. Personalised Grid Service Discovery. IEE
Proceedings Software: Special Issue on Performance Engi-
neering, 150(4):252–256, 2003.

[14] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax. World

Wide Web Consortium, February 2004.
[15] R. Stevens, A. Robinson, and C. Goble. myGrid: Person-

alised Bioinformatics on the Information Grid. In 11th In-
ternational Conference on Intelligent Systems in Molecular
Biology, 2003.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

