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Abstract: Models for sexually-transmitted diseases generally assume that the size 

of the core group is fixed. Publicly available information on disease prevalence 

may influence the recruitment of new susceptibles into highly sexually-active pop­

ulations. It is assumed that the recruitment rate into the core population is low 

while disease prevalence is high; core group members only mix with core group 

members; and disease levels outside the core are negligible. It is further assumed 

that some core group members reduce their risk through the use of a partially 

effective vaccine or prophylactics. 

A demographic-epidemic model is formulated where the combined size of the 

core and non-core population is constant. The threshold condition for an en­

demic infection is determined. Backward bifurcations, multiple infective station­

ary states, and hysteresis phenomena can be observed. Abrupt changes in disease 

prevalence levels are possible as a function of the success rate of the disease man­

agement program, and do not occur in the absence of such program. The general 

conclusion is that partially effective vaccination or education programs may in­

crease the total number of cases while decreasing the relative frequency of cases 

in the core group. 

Introduction 

Significant changes in behavior have been observed in various homosexual pop­

ulations including those of San Francisco, New York, and Boston. These changes 

include a reduction in average sexual activity, a decline in risky behavior, and a 

decrease of the rate of unprotected sexual contacts (see Baldwin and Baldwin [1], 

Curran et al. [5], Fineberg [7], Evans et al. [6], Martin [12], Saltzman et al. [14], 

Shechter et al. [15], van Griensven et al. [17],[18], Wilkenstein et al. [20], and 

Wiktor et al. [19]). Changes in behavior have been observed also as the result of 

perceived environmental risks that are measured in terms of disease prevalence (see 

[7] and the references therein). The combined effects of the short- and long-term 

t This paper is dedicated in friendship to the memory of Stavros Busenberg. 
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reduction of risk behaviors on the transmission dynamics of sexually-transmitted 

diseases (STDs) needs to be explored. Short-term changes may alter the course 

of treatable STDs such as gonorrhea or syphilis but it may have no impact on 

the long-term dynamics of herpes or HIV I AIDS. More importantly, the evalua­

tion of the effectiveness of disease management strategies depends on our ability 

to differentiate between changes that can be traced to programmatic efforts and 
changes driven just by the epidemiological status of a community, e.g. knowing 

somebody with HIV I AIDS. Educational programs that have no significant effect 

in core populations with high disease prevalence may not only fail to have a posi­

tive impact in core populations with low disease prevalence but may even increase 
their effective group size by implying a reduction in risk within the core. Brauer 

et al. [3], Blythe et al. [2] have looked at the effect that disease prevalence has on 

the recruitment of new susceptible core-group members. Their results show that 

changes in behavior generate not only gradual but also qualitative differences. The 

core population may experience a significant reduction in size and sustained oscil­
lations are possible. Our goal here is to look, in as simple setting as possible, at the 

role of partially effective disease management programs in communities where the 

level of disease prevalence is known (see Evans et al. [6], Martin [12], McKusick 

et al. [13], Shilts [16], Wiktor et al. [19]) 

In the study of the dynamics of sexually transmitted diseases, a population 

is usually subdivided into an active and relatively small core group and a weakly 

connected and largely inactive remainder, the non-core (see Hadeler and Milller [9) 

for models for general populations). In the core group one finds high transmission 

rates and high disease prevalence and, consequently, disease management strategies 

are usually aimed at the core group (see Hethcote and Yorke [11]). 

The core group recruits individuals from the non-core, and the rate of re­

cruitment may depend on the state of the core group, i.e. a high prevalence of the 

disease may slow down the recruitment process. 

We consider a demographic-epidemic model of the simplest type where the 

non-core group is completely inactive. A part of the core group is educated (or 

vaccinated), the partially effective prophylactics (or vaccine) decreases the risk of 

acquiring a sexually transmitted disease. The average contact rate qf the members 

of the core group remains constant but their risk of contracting an infection is 

decreased through the application of a partially effective vaccine or the use of 

prophylactics. 

We assume that infected individuals are to some extent symptomatic and 

that after treatment they may return (at a constant per capita rate) either to the 

susceptible or to the educated (vaccinated) class. 

We formulate the model as a general homogeneous system ([10], [8], [4]) al­

though we later specialize to the case of constant population size. We determine 

the threshold condition for an endemic infection. An interesting feature of this 

model is the occurence of a backward (subcritical) bifurcation, several infected 

stationary states, and hysteresis phenomena, in particular abrupt changes in the 
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prevalence levels of the disease are possible for small changes in the success rate 

of the disease management program. 

A simple core and non-core epidemic model 

The total population has the size P = P(t), and this population is divided into 

the core group of size C and the non-core group of size A, hence P = C + A. The 

population of the core group is further subdivided into susceptibles S, educated 

(vaccinated) V, and infected I, such that 

C = S+ V +I, A+C=P. 

The birth rate is b > 0, the birth rate of infected is b ::::; b, b 2': 0. The death rate is 

JL > 0, and the death rate of infected is jl2': p,. The recovery rate is a+ 'Y where 

a 2': 0 is the transition rate from infected to susceptible, and 'Y 2': 0 is the rate 

of transition from infected to educated (vaccinated). The education (vaccination) 

rate is '¢ 2': 0. The transmission rate from infected to susceptibles is /3 > 0, and the 

transmission rate from infected to educated (vaccinated) is jj where 0 ::::; jj ::::; /3. 
It is convenient to introduce K = jj //3. Thus K is the proportion of cases in which 

the prophylactics does not work. We assume K < 1. 

Since mixing and transmission of disease takes place mainly in the core group, 

the incidence rates are assumed to be proportional to I /C (and not to I/ P). 

Further we assume, in this simple scenario, that the non-core does not play a 

direct role in the transmission process. 

Recruitment into the core group is described by a function r(I /C), where 

ro = r(O) > 0, and r is decreasing in the interval 0 ::::; I /C ::::; 1, that is, an increase 

in the prevalence slows down the rate of recruitment into the core. 

The general homogeneous system reads 

. - I 
A= b(P- I)+ bi- A r(C)- p,A, 

. I SI 
S = Ar(0 )- {30 - '¢8 + ai- p,S, 

. -VI 
V = 'lj;S- /3C +"'I- p,V, 

I. _ {3SI + jjv I I I _I 
- C -a -"( -p,. 

(1) 

This system is homogeneous of degree 1. Rather than looking for stationary solu­

tions, we have to consider persistent (exponential) solutions of the form 

(A, S, V, I) exp(.-\t), (2) 

where .,\ is the exponent of demographic growth, and (A, S, V, I) is the vector of 

(constant) proportions. For a general approach to homogeneous systems, persis­

tent solutions and the corresponding stability theory see Hadeler [8]. 
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If we insert (2) into (1) then we obtain the nonlinear eigenvalue problem 

- I 
.XA = b(P- I)+ bi- Ar(C)- p,A, 

I SI 
.XS = Ar(C)- {30 - 7/JS + a:I- p,S, 

-VI 
.XV= 'ljJS- {3C + 'Yl- p,V, 

(3) 

.XI= {3SI ~/JVI _ a:I _ 'Yl _ jll. 

Observe that the system (3) represents four equations for the five unknowns 

A, S, V, I and A. Since the vector of proportions is determined only up to a mul­
tiplicative constant, we can always add a normalization condition. Then we have 
five equations for five unknowns, and we can duly expect, in a nondegenerate 

situation, that solutions will be isolated. However, we cannot expect, that the 

persistent solution is unique, in general not even the infected persistent solution 

will be uniquely determined. 

The uninfected exponential solution is easily found as 

(b b 7/J 0) (b-~-t)t 
, ro b + 1/J , ro b + 7/J , e . (4) 

If we linearize the system (1) at this exponential solution then we obtain the 

Jacobian 

(

b-p,-ro b b b-br'(O)/ro . ) 
J _ ro -7/J- J.L 0 br'(O)/r:_o +a- {3bj(b + 1/J) 

- 0 1/J -p, -/37/J/(b+'l/J) +'Y . 
0 0 0 (f3b + /31/J)/(b + 1/J)- a:- 'Y- jl 

(5) 

The fourth diagonal element is an eigenvalue of the matrix. According to the 

general theory of homogeneous systems ([8]), this eigenvalue has to be compared 

to the exponent of demographic growth .X = b - p,. Thus we obtain the following 

stability criterion. 

Result 1: The threshold condition for the stability of the tminfected exponential 

solution is 

{3b + /37/J -
b + 7/J < (b- p,) +a:+ 'Y + p,. (6) 

If this condition is satisfied then the uninfected exponential solution is locally stable, 

if the strict opposite inequality holds then it is unstable. 

The left hand side of (6) comprises the effects that produce infected, the left 
hand side those that remove infected (death and recovery, and the washout effect 
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due to demographic change). We shall see in the case of population size that the 

threshold condition gives only partial insight into the bifurction phenomenenon. 

We specialize to the case of constant population size (of the uninfected as well 

as of the infected population), i.e. we assume, from now on, 

Then the exponent of demographic growth is A = 0 in either case, and we arrive 

at a nonlinear system for stationary states. 

For a first mathematical treatment it is convenient to normalize the size of 

the core group C = 1 (and not P = 1). Later we shall return to the problem 

of determining the size of the core group. With this normalization we have the 

following system of nonlinear equations, 

0 = J.L{l +A) -A r(I) - J.LA, 

0 = A r(I) - {3SI- tf;S + al- J.LS, 

0 = tf;S- i}V I+ "'fl- J.LV, 

0 = {3SI + Sv I- a!- "'(l- jll, 

together with 

S+V+l=l. 

First we look for uninfected stationary states, I = 0. Then 

0 = J.L{l + A) - r0A - J.LA, 

0 = roA - '1/;S - J.LS, 

0 = '1/;S- J.LV, 

{7) 

{8) 

from where we find immediately the unique uninfected stationary state (see also 

(4)) 

J.L J.L '1/J 
(Ao, So, Vo, Io) = {-, --n1., '¢, 0) 

ro J.L + 'P J.L + 
{observe So+ Vo = 1). For an infected solution I> 0, we have {8) and 

0 = J.L{l +A) - A r(I) - J.LA, 

0 = A r(I) - {3SI- tf;S + al- J.LS, 

0 = ,PS- i}V I+ "'fl- J.LV, 

o = {3S + Sv - a - "Y - J.L· 

;.From equation (lOa) we get the relation 

Ar(I) = J.L 
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which can be used to replace the nonlinearity r(I) in the remaining equations, 

0 = p,- (3SI- '1/;S + ai- p,S, 

0 = 'l/JS- iJVI +1I- p,V, 

o = f3 s + jjv - a - 1 - p,. 

(12a) 

{12b) 

(12c) 

Later we use equation (11) to compute the quantity A. Here we use {12b)(12c) to 

eliminate the variable V and obtain an equation for S, 

;,From (12a) we find 

and thus 

S = (a+ !:)(jji + p,) _+Il-L. 

(3(3I + (3p, + (3'1/J 

S = p, + ai 
(3I + p, + '1/J' 

p, + ai (a+ p,)(jji + p,) +Il-L 
-

(3I + p, + '1/J (3j3I + (3p, + iJ'l/J 

{13) 

(14) 

(15) 

Multiplying by the denominators, we arrive at a quadratic equation for the infec­

tion level I, 

((3I + p, + 1/J)[(a + p,)(jji + p,) + IJ-L]- (ai + p,)((3j3I + (3p, + j)'if;) = 0. (16) 

After collecting terms we find that I is a zero of the function 

f(I) =f3iJI(I- 1) + (3I(p, + 1) + jji(p, +a+'¢) 

- (3p,- i3'l/J + (p, +a+ IHJ-L + '1/J). 
(17) 

For a given set of parameters, the zeros I E ( 0, 1) of this function correspond to 

feasible infected stationary states. From /(1) > 0, /'(1) > 0 it follows that f has 

no zeros in [1, oo). There is a single root in (0, 1) if and only if f(O) < 0, i.e. if 

{18) 

This important inequality can be reformulated in several ways. 

We introduce the basic reproduction number (in the absence of education) 

(3 
Ro= ' 

p,+a+l 
(19) 

and also the reproduction number in case everybody is in the educated class, 

- i3 
Ro = =K.Ro. 

p,+a+l 
(20) 
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Then we introduce the reproduction number in the presence of the prophylactics 

level r;, and the education rate'¢, 

J1. '¢ - J1. + tt'l/J 
R( 7/J, r;,) = ---;;;, Ro + ---;;;, Ro = '¢ Ro. 

J1. + '{/ J1. + '{/ J1. + 
(21) 

We see that R('lj;, tt) is a decreasing function of'¢, and an increasing function of 

tt. The inequality (18) is equivalent with R('lj;, tt) > 1. We state the threshold 

condition as follows. 

Result 2: The inequality R('lj;, r;,) < 1 is the threshold condition for the stability 

of the uninfected stationary state. If it is satisfied then the uninfected stationary 

state is locally stable, and there is either no infected state or there are two infected 

stationary states. If R( 7/J, r;,) > 1 is satisfied then the uninfected stationary state is 

unstable and there is exactly one infected stationary state. 

The most interesting case occurs when Ro > 1 (the disease can spread in an 

uneducated population) and Ro < 1 (the disease cannot spread in totally educated 

population). In this case increasing'¢ will lead to values R('lj;, r;,) < 1 and thus to 

transition to another situation. Whereas in classical epidemic models the condition 

R('lj;, r;,) < 1 will ensure the elimination of the disease, the possible transitions in 

the present model are more complicated. 

When the parameters are varied then the uninfected state can change from a 

stable situation to an unstable situation in the form of a bifurcation. Quite in con­

trast to usual single group epidemic models there may be a backward bifurcation 

(the bifurcating infected solution is unstable) which we shall investigate now. 

The case of two feasible infected stationary states occurs when f' (0) < 0, i.e. 

R('lj;, r;,) < 1, and the minimum of j, assumed at some point in (0, 1), is negative. 

One can write down the correponding inequalities explicitly, but they do not give 

much insight. 

Therefore we take another approach. In equation (16) we solve for 7/J and 

express 't/J as a fuction of I, 

a!+ J1. 
't/J(I) = Ro(1- r;,) 1 _ Rott(1 _I) - (p. +a+ 1)Roi- p.. (22) 

If we keep all parameters (except 7/J) fixed, and let I run from 0 to 1, then we 

obtain for each infection level the corresponding education rate. In particular we 

find the critical education level 

'lj;(O) = '¢* = p.(Ro- 1). 
1- Rott 

Result 3: It takes at least the education rate 7/J* in order to achieve I= 0. 
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For 't/J = 0 we get the equation 

ai + Jl 
Ro(1- K) 1 _ RoK(1 - I) = (Jl +a+ 1)R0 I + Jl· (24) 

The right hand side is a straight line running from Jl to (Jl+a+'Y)Ro+Jl. The left 

hand side is a hyperbola (concave or convex) running from Ro(1-K)Jl/(1-RoK,) > 
Jl to Ro ( 1 - K) (Jl + a) < (Jl + a + 'Y) Ro + Jl· Thus we get, as expected, uniqueness. 

Result 4: In the absence of education the infected stationary state is uniquely 

determined. 

We return to (22). From 

1 a- (Jl + a)"'Ro 
'1/J (I) = Ro(1 - K) [1 _ Ro"'(1 _ I)]2 - Ro(Jl +a+ 'Y) (25) 

it follows that the function '1/J' (I) has at most two zeros. Furthermore we see the 

following property. 

Result 5: Let a:::; KRo(a + Jl) (in particular a= 0}. Then 't/J(I) is decreasing. 

Thus 't/J(l) is decreasing from the positive value '1/J* = 't/J(O), it stays positive 

in the interval 0 :::; I < Io where Io is the prevalence at 't/J = 0, then becomes 

negative. In other words, an increase of the education effort 't/J always leads to a 

decrease of the proportion of infected in the core group. This behavior occurs in 

particular in the case a = 0, i.e. when infected, after recovery, do not return to 

the uneducated class. 

For other parameter sets, the derivative '1/J'(O) may be positive, we see the 

following. 

Result 6: If 

(26) 

then there is a backward bifurcation, i.e. there is a branch of stationary solutions 

with the following behavior. If 'ljJ is increased from the critical level 't/J* then an 

initially small proportion of infected I in the core group will increase rather than 

decrease. 

Of course, the solutions presented in Result 6 are unstable. Nevertheless there 

is an interesting hysteresis phenomenon near I = 0, 't/J = 'lj;*. Assume the system is 

in the stable uninfected state with some 'ljJ > '1/J*. If 't/J is decreased below 't/J* then 

the uninfected state becomes unstable and the system jumps to an infected state 

with a large proportion of infected. If 'ljJ is increased again then the prevalence 

stays at the high level unless 't/J becomes very large when the system jumps down 

to the uninfected state. 
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So far we have worked from the inside, i.e. from within the core group. For 

a core group normalized to size 1 we have determined the possible stationary pro­
portions of infected, which are 1 = 0 and possibly one or two non-zero prevalence 

levels 1b 12. For each of these levels one can use equation (11) to determine the 

size of the corresponding non-core A as 

A= J-L/r(i) (27) 

and the total population size P = 1 + A that would correspond to this prevalence 

1 in a core group of size 1. 

In reality, however, the total population size P is given, and for given pa­

rameters the size of the core group C = S + V + I is intrinsically determined. 

There may be even several stationary core group sizes. Thus we have to proceed 

as follows. 

Let P and the model parameters be given. From the model parameters we 

can determine i (i.e. i = 0, and possibly 1~, 12). Then the actual size of the core 

group is 

C = Pr(i)_ . 

J1 + r(I) 
(28) 

Thus to each value of the proportion of infected there is an actual size of the core 

group. Since r is a decreasing function (and x ~ x / (J-L + x) is increasing) we find 
the following monotonicity property. 

Result 7: The size of the core group is a decreasing function of the proportion of 

infected within the core group. · 

Thus, if one considers an isolated stationary solution and parameters are var­

ied then the proportion of infected is decreasing while the core group is increasing. 

This may look like a simple dilution effect but it is fact more complicated. 

Indeed, the number of infected cases is given by 

I= Ci = Pr(i)!. 
J1 + r(I) 

(29) 

Thus the relation between the infected proportion within the core and the size of 

the core is governed by the monotone function (28) while the relation between the 

infected proportion and the total number of infected is given by the function (29) 

which need not be decreasing. 

We illustrate the various possibilities with an example, 

r(i) = ro(l - bi)+· (30) 

For 1 ~ 0, the function (29) is first increasing, then decreasing, and finally becomes 
zero. The parameters can be chosen such that the maximum falls irito the interval 
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(0, 1). Then the function (29) is not monotone. Hence the question whether the 

total number of cases goes up or down as a function of the education strategy 

will depend on the relative position if the zero(s) off with respect to the said 

maximum. 

In Fig.1 we present the graph of the function J(i) for a fixed set of parameters 

J-L = 0.2, a= 4, "Y = 0.1, f3 = 6, /3 = 3. Then Ro = 1.4, Ro = 0.7. The parameter 
'¢ is ranging from 0 to 0.4 in steps of 0.08. The graph moves up as 'if; increases. For 

'¢ = 0 and for small values of'¢ the function f has one zero in ( -oo, 0) and one in 

(0, 1), the latter corresponding to the unique infected stationary solution. For'¢ at 

about 0.24 both solutions become feasible. The prevalence i at the upper solution 

is reduced in comparison to 'if;= 0, but there is also the lower (unstable) infected 

solution. For still larger values of '1/J these solutions coalesce and disappear, leaving 

the uninfected solution (i = 0) as the only stationary state. 

In Fig.2 we show the bifurcation diagram (i versus 1/J) for the same set of 

parameters, except for /3, which ranges from 0 to 3.3 in steps of 0.3 (Ro from 0 

to 0. 77). The graphs move to the right as /3 increases. For small /3 the graph is 

monotone, in particular '¢' (0) < 0. As /3 is increased, 1/J' (0) becomes positive and 

the graphs are bent. One sees the backward bifurcation at i = 0 and the "knee" 

of the saddle-node bifurcation. 

In Fig.3, for the same set of parameters and the recruitment function (30) 

with ro = 0.1 and b = 3, the total number of infected I is plotted against the value 

of'¢ (P=1). Only the first (/3 = 0) and the last curve (/3 = 3.3) are presented. 

The backward bifurcation near I = 0 persists since the function r is approximately 

linear near i = 0. Since the function r is not monotone, the graph is not monotone 

near 'if;= 0. This example shows a situation where an education campaign with 

low efficiency (small positive 'if; as compared to 'if; = 0) has a detrimental effect: 

Although the relative proportion of infected i in the core group is decreased, the 

size of the core group is increased and the total number of infected I is going up. 

Conclusions 

Unfortunately, it appears that a population at risk of STDs needs to expe­

rience relatively high levels of disease prevalence before changes in behavior help 

stem disease spread (see Fineberg [7]). Our results illustrate the potential for a 

sad and somewhat paradoxical situation; the use of prophylactics or a partially 

effective vaccine may increase the size of the core group relative to what·'it would 

have been in the absence of any disease management program. These increases 

on the effective size of the core population may generate unexpected and abrupt 

changes in disease levels. · 

If higher disease levels lead to the recruitment of fewer individuals to highly 

sexually active groups then a reduction in risk through a partially effective vaccine 

or the use of prophylactics, by decreasing prevalence, may in fact increase the size 
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of the network. Furthermore, the evaluation of a disease managment program 

through the random sampling from the core group may yield misleading results as 
the size core changes. In fact it is possible to observe a reduction in prevalence in 

the core group while the actual number of cases is increased. 

Evaluation of control programs must take into account the effects of differ­

ential recruitment, disease-induced mortality, and the actual size of the infected 

class. The availability of partially effective risk-reducing mechanisms may in fact 

increase the size and number of highly-active sexual groups and, possibly, the num­

ber of cases. Because populations are not isolated, disease management programs 

that do not have as one of their main objectives the promotion of substantial and 

permanent behavioral changes through counseling and other means may, in the 

long run, increase the number of cases even in moderately active sexual networks. 

To put it succinctly, programs that do not include effective counseling services may 

cause unnecessary risks to populations with low average levels of sexual activity. 
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