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where the function E (tn, 0, $) is determined from a recurrence equation 
in [2]. 

Proo) Follows from an application of dynamic programming 
techniques. 

Examination of these two feedback control laws reveals that the first is 
the continuous-discrete version of the continuous results presented in [ 1 ] 
and [ l l ]  originally derived using dynamic programming techniques, 
while the second is the continuous-discrete version of results in [6] 
derived using maximum principle techniques. It can be shown, by taking 
appropriate limits as the sampling period goes to  zero, [2] that both of 
these forms of the optimal control law can be obtained by dynamic 
programming techniques using the two different state representations 
given above.  This indicates that the appearance of the two different, but 
equivalent forms of the control laws are a conseauence of the choice of the 

rather than the optimization method. 
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mial are given. The relation betw?een realizability properties such as 
causality of the compensator and structural properties of the system are 
also described. An example is provided to illustrate the design technique. 

I. INTRODUCTION 

The control of linear delay-differential systems has been a subject of 
study for many years (see [1]-[6] among many others). This note is 
motivated by recent work of Byrnes, Spong, and Tam [6] on feedback 
stabilization of linear neutral delay systems, and can be viewed as  an 
extension of the results of Lu et a/. [9 ] .  We consider a single-input neutral 
system with finitely many noncornmensurate delays modeled by 

D(z )x ( t )=A(z )x ( t )+b (z )u ( t )  (1.1) 

where z = (zl, . . -, za) with delay operators zr,  Le., z,x(t) = x(t - hi), 
hi > 0, hi’s are noncommensurable, A(z) E Bnxn[z],  D(z) E WX”[z], 
and b(z) E Rn x [z] . Based on the generalized Bass-Gura formula given 
in [6], we show in this note how the requirements of the causality as well 
as the stability of a feedback stabilizer for system (1.1) lead naturally to 
two simple implementation schemes of such a compensator. Furthermore, 
in the case of commensurate delays (i.e., k = I ) .  a parameterization of all 
possible coefficient vectors associated with the characteristic polynomials 
of the closed-loop systems will be given in terms of a specific submodule 
in Rd defined in Section II. 

u. NOTATION AND PRELIMLNARIES 

Notation of Byrnes et a/. [6] will be utilized throughout the note. Let X ,  
= {z = (zl,  .-.,zk)l,lzil 5 1 + 6, 1 5  i s  k].DefineSh E R[z]bySa 
= {p(z)  E R[z] I p(z) # 0 for z E &} and let R6 denote the localization 
R6: = S;’W[z] = {q(z)/p(z)l q E S [ z ] ,  p E Sa}. Clearly Rh forms a 
ring under usual addition and multiplication. An element r = q / p  E R6 is 
a unit in R6 whenever q E &, Le., r(z) # 0 for z E X,. A matrix D(z) E 
Rnxn[z] is said to be formally stable if det D(z) E S, for some 6 > 0. 
Obviously formal stability of D(z) implies that D ~ ‘(z) E R,“ The set 

forms a noncommutative ring under usual matrix addition and 
multiplication. An element U(z) E R: x is a unit whenever det U is a 
unit in Rh. 

In the rest of the note it is assumed that D(z) in (1.1) is formally stable. 
For such a system, we define the Rs-associated system as 

X(t )  =F(z)x(t)   +g(z)u(t)  (2.1) 

wherenz) = D-’(z)A(z) E Rax”,  g(z) = D-’(z)b(z) E R6nX’. Define . 
the reachability matrix of system (2. I )  as 

[Flg12Ig(z),  F(z)g(z). . . ., F“-’(z)g(z)l. (2.2) 

System (F, g) is said to be R6-reachable if [Fig] is a unit in R,”’”.  Namely 
the R,-reachability of (F, g) is equivalent to det [Fig] E Sa. 
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Define 

f(z) = LfI(Z), . . . . f"(Z)l. 
For any desired coefficient vector 

f(z)=fi(z), ..., fn(z)], 5 E Rd. I s i s n ,  

the state feedback controller 

u ( t ) =  -k(z)x(r)+u(t) 

with 

k ( z )  = Cf-f)r '[iq g ]  - I  
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Fig. 1 .  Feedback-feedfonvard compensation scheme for neutral delay systems. 

(3 4 
Hence. 

results in a closed-loop system whose characteristic polynomial det [sl - where 
F(z) + g(z)k(z)] is associated with the desired coefficient vector f ( z ) ,  
where [Flg] is the reachability matrix of pair (F, g) and r is the inversc of Ul(f)' -R(z)x(t)+(l- W ( Z ) ) U , ( f ) +  w(z)u(t).  (3.9) 

the lower triangular Toeplitz matrix 

Expression (3.3) is known as  the generalized Bass-Gura formula 161. R6- 
associated system (2.1) is said to be arbitrarily coefficient-assignable b;. 
state feedback if, for a n y 7  E R6, there exists a state feedback (3.2) with 
k(z) E RQx" such that the resulting closed-loop system has coefficient 
vector f associated with its characteristic polynomial. By (3.3), system 
(2.1) is arbitrarily coefficient-assignable by a state feedback if and only if 
( F ,  g) is a R6 -reachable pair. 

If we write now 
1 

and define 

The combination of (3.8) and (3.9) yields an implementable scheme as 
diagrammed in Fig. 2 which may save delay elements as will be seen in 
the example in Section V. 

w. COMMENSUFLATE DELAY CASE: A PARAMETERIZATION OF THE 
ATTAINABLE SET OF COEFFICIENT VECTORS J(z) 

In this section k = 1 is always assumed. 
Let 

r q ~ l g l  -~=D-~z)N(z) 

be an irreducible factorization of the matrix rTIFlg]- '  E ~ i f l X n ( z ) ,  
where D(z) and N(z)  are n X n polynomial matrices. The feedback gain 
k(z) in (3.3) can then be written as 

k(z) = (Z-f  ) D  - '(Z)h'(Z). 

Note that k(z) belongs to R Q X n  if and only if there exists a polynomial 
w(z) E S, such that w(z)k(z) E R1""[z], i.e.. 

w(z)=least common  multiple  of wi(z), 1 s i s n  w(z)(.-f)D-l(z)N(z) E Wl""[Z]. (4.1) 
then we have Further, observe that (4.1) holds if and only if 

k ( ~ ) = C f - n r ~ [ ~ l g l ~ ~ = w - ~ ( z ) ~ ( z )  for some N ( z )  E ~ l ~ " [ z ] .  (3.4) Nz)(f-f) = h(z)D(z), 

Clearly k(z) in (3.4) belongs to Ri x n  if and only if 1.e., 

w(z) E s,. (3.5) Z=f+ w-'(z)h(z)D(z) (4.2) 
Thus, we have the following. for some h(z) E !21xn[~], see 17, Lemma 6.6.-11 and [8]. Denoting the 
Proposition I :  The coefficient vector associated with the closed-loop row vectors ofD(z) by d,{z) (i 1, 2, . . . , n), and observing that - lh 

system can be assigned to be flZ) E Rd '" by the feedback controller E R6 we can restate condition (4.2) in the following equivalent way. 
(3.2),  (3.3) if and only if (3.5) holds. Proposition 2: Given a single-input neutral system (1.1) with 

Notice that condition (3.5) also implies that the feedback controkr commensurate delays and with formally stable D-operator, the coefficient 
(3.2) With k(Z) given by (3.4) is Physically implementable. Since w(0) * vector associated with det [sZ - F + gk] can be assigned to befiz) by a 
0, one may assume that feedback controller (3.2) with k(z) E R6"" if and only if 

w(0) = 1 (3.6)  Z(z)-f(z) E 9 6  (4.3) 
without loss of generality. Combining (3.2) with (3.4) we get where D6 is the submodule (in RQ spanned by {d,{z), 1 5 i 5 n}. 

u ( t ) =  - N ( z ) x ( t ) + ( I - w ( z ) ) u ( t ) + w ( z ) u ( t )  (3.7) V. EXAMPLE 

where term (1  - w(z))U(t) involves Only data U ( I  - l ) ,  U ( t  - 2), etc. NOW Consider the neutral system 
control law (3.7) can be implemented in a feedback-feedforward scheme 
as diagrammed in Fig. 1. -2ul(t)+xl(t-h)=2ul(t)-xl(t-h)-2u~(~-h)+xZ(t-2~)+u(t-h), 

Furthermore, in the case of commensurate delays (i.e., k = 1) we can 
save delay elements in the controller implementation. We apply division - ~ ~ ( t ) + x 1 ( t - h ) = 2 x - , ( t ) - x l ( r - h ) + 4 X ~ ( t ) - 2 Y : ( f - h ) + u ( t ) ,  
algorithm to obtain 

I.e., 



Fig. 2. Compensation scheme with the reduced number of delay lines in the controller. 

The  D-operator is formally stable and the Rh-associated pair is 

for which 

IF1 S I  = [? - 2 - 2  -- :+.I z - 2  
and det [Flg] = - z (z+2)  

(2-2)’ 

Notice that det [Fig] is not a unit in R6 so (F, g )  is not Rh-reachable. 
Further, we compute 

[ F i g ] - ’ =  - 
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and det [sZ - F:(z) ]  = sz + 3s + (2 + z ) .  
Thus,f(z) = [3 2 + 21, and 

Suppose one chooses the desired coefficient vector &) to be 

1: z + 2  0 

2-2 2 - 2  

where w(z) = E S, has been normalized, i.e., w(0) = 1 .  
The desired compensator is - - 

u ( t - h ) + u ( r ) + -  ~ ( t - h ) .  
1 
2 

To save the delay elements used in (5.5), we use the second implementa- 
tion scheme shown in Fig. 2 by rewriting (5.4) as 

1 
k ( ~ ) = [ - 2  ~ - 6 ] + -  ( z  + 2)/2 [4 81 

which leads to the following compensator structure: 

u ( t ) =  - [ - 2  ~ - 6 ] x ( t ) + u , ( t ) ,  

67 

where 

One may further seek the set of all possible coefficient vectors fiz) 
associated with the closed-loop system where k(z) E R p 2 -  Ohserve that 
r‘[Flg] - I  has an irreducible factorization as 

Therefore, the set of all possible vectors Az) can be parameterized as 

where h; and h; are  “free” parameters in R6. Notice that since the system 
(F, g) is not R,-reachable, the set of all such coefficient vectors forms a 
proper submodule in Rd x 2 .  Also, it can easily be seen that the coefficient 
vectorfgiven in (5.3) is in this set. Indeed if one chooses 

then fiz) = [2 11. 
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A  Corrective  Feedback  Design for Nonlinear  Systems 
with  Fast  Actuators 

KHASHAYAR KHORASANI AND PETAR V. KOKOTOVIC 

Abstract-Recent two-time-scale results can be derived from a geomet- 
ric framework which allows further extensions and computational 
improvements. In this note the two-time scale behavior of singularly 
perturbed systems is exploited to design slow and fast  controls and to 
combine them into a composite  control. As an illnslration, we present a 
corrective design to compensate for  fast  actuator dynamics modeled as 
singular perturbations. 
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