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Abstract

Background: An important class of interaction switches for biological circuits and disease

pathways are short binding motifs. However, the biological experiments to find these binding motifs

are often laborious and expensive. With the availability of protein interaction data, novel binding

motifs can be discovered computationally: by applying standard motif extracting algorithms on

protein sequence sets each interacting with either a common protein or a protein group with

similar properties. The underlying assumption is that proteins with common interacting partners

will share some common binding motifs. Although novel binding motifs have been discovered with

such approach, it is not applicable if a protein interacts with very few other proteins or when prior

knowledge of protein group is not available or erroneous. Experimental noise in input interaction

data can further deteriorate the dismal performance of such approaches.

Results: We propose a novel approach of finding correlated short sequence motifs from protein-

protein interaction data to effectively circumvent the above-mentioned limitations. Correlated motifs

are those motifs that consistently co-occur only in pairs of interacting protein sequences, and could

possibly interact with each other directly or indirectly to mediate interactions. We adopted the (l,

d)-motif model and formulate finding the correlated motifs as an (l, d)-motif pair finding problem.

We present both an exact algorithm, D-MOTIF, as well as its approximation algorithm, D-STAR

to solve this problem. Evaluation on extensive simulated data showed that our approach not only

eliminated the need for any prior protein grouping, but is also more robust in extracting motifs

from noisy interaction data. Application on two biological datasets (SH3 interaction network and

TGFβ signaling network) demonstrates that the approach can extract correlated motifs that

correspond to actual interacting subsequences.

Conclusion: The correlated motif approach outlined in this paper is able to find correlated linear

motifs from sparse and noisy interaction data. This, in turn, will expedite the discovery of novel

linear binding motifs, and facilitate the studies of biological pathways mediated by them.
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Background
An important class of interaction switches for biological
circuits and disease pathways are the binding motifs [1,2].
These are very short, functional regions on the proteins
that conform to particular sequence patterns; a well-
known example is the set of peptides expressing a PxxP
consensus (where x represent any arbitrary amino acid)
that bind SH3 protein domains [3,4]. Finding such motifs
is important for drug discovery as many have been impli-
cated in disease pathways. For instance, the proline-rich
motifs and glutamine-rich motifs have been linked to
Alzheimer's disease, Muscular Dystrophy [5] and Hunt-
ington's disease [6]. Recently, Marti et. al. reported that
the short linear sequence motif RxLx [QE] played a key
role in the pathogenesis of malaria [7,8].

Binding motifs can be discovered by biological experi-
ments, such as site-directed mutagenesis and phage display,
which are laborious and expensive. However, given a set
of protein-protein interaction data, binding motifs can be
discovered computationally as follows: (i) group protein
sequences that interact with the same protein, and (ii) for
each set of protein sequences grouped, extract the motifs
using motif discovery algorithms like MEME [9], Gibbs
Sampler [10], PRATT [11] and TEIRESIAS [12]. For exam-
ple, to computationally detect any possible motif binds by
protein Crk, we could input protein sequences interacting
with Crk to motif discovery programs. The underlying
assumption is that Crk binds through similar sequence
segments in many of its interaction partners, which can be
detected by string pattern algorithms. For discussion, we
denote such approach as One-To-Many (OTM) since we
start with one protein to derive a group of multiple pro-
teins associated with it for motif extraction.

The OTM approach is effective only when the protein we
start with have enough number of interacting partners for
motif extraction. In reality, many proteins have limited
interacting partners [13]. This means that for many of the
proteins, the signals from the few and short motif
instances would be too weak for detection by the existing
motif discovery algorithms. The scenario is actually worse
when we further consider the high noise levels in interac-
tion data [14] and the inherent heterogeneity of protein
interactions – not all the real interacting partners of a pro-
tein necessarily carry the same binding motif. In the
extreme cases of proteins having only one known interact-
ing partner, it is impossible to extract binding motifs
using the OTM approach.

Sometimes, it is possible to apply some known knowl-
edge of protein groups to increase the number of
sequences for motif extraction. For example, if individual
copies of the SH3 domain bind limited protein partners,
we could pool all sequences that bind any SH3 domain

proteins to increase the PxxP motif's instances for its "dis-
covery". We denote this approach as the Many-to-Many
(MTM) approach since we derived a set of sequences for
motif extraction from another set of sequences (protein
group). Reiss and Schwikowski adopted an MTM-based
method with a modified Gibbs sampling algorithm to
enhance motif finding on proteins with limited binding
partners and successfully extracted more motifs than the
OTM-based approaches [15]. In another work, Neduva et.
al. complement the OTM approach with MTM approach
to find novel linear motif from protein interaction data
[16]. However, the MTM will not be applicable if prior
knowledge on the protein group is not available. Even if
the knowledge are available, they might be incomplete,
erroneous or just too generic. As a result, finding motifs
from the interacting partners of such a group might often
yield less satisfactory results.

In this paper, we are interested in the case when the linear
motif in question actually bind directly or interact indi-
rectly with another linear motif. It makes a lot of sense
since linear motifs are in general short enough that most
of the time it interacts with a similarly short region on the
other protein. For modular interaction domains, for
example, it is often the subregions, rather than the entire
domains, that are involved in mediating protein-protein
interactions. In essence, we are modelling interactions as
mediated by pair of motifs each occurring in separate pro-
teins that are interacting, and this work revolves around
discovering such motif pairs from protein interaction
data.

Formally, suppose a set of protein-protein interactions
occurring between sequences containing the linear motif
x and sequences containing the linear motif y, we present
a novel approach to simultaneously find both motifs x
and y directly from protein interaction data. It is based on
the intuition that if a set of interactions were indeed medi-
ated by x and y, they will be presented for extraction as
over-represented co-occurring similar substring pairs
found in pairs of interacting proteins in the data set (see
Figure 1). Our approach mines such substring pairs in
input interaction data – which we termed the correlated
motifs – that correspond to x and y. The term "correlated"
indicates that the output motif pair may not necessarily be
directly binding each other but their co-occurrences in
interacting sequences are significant. Our new approach
offers the following advantages:

1. In contrast to both OTM and MTM-based approaches,
it simultaneously finds two motifs that are interaction-
correlated instead of one motif.

2. Like the MTM approach, it increases the number of
motif instances for detection (See Figure 1).
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3. However, it does not require any prior knowledge for
protein grouping (although, when available, such infor-
mation would still be useful), resting on the assumption
that members of a protein group should share similar sub-
strings that can be extracted by our approach as one of the
motifs (See Figure 1).

4. By finding pairs of correlated motifs in the interaction
data instead of single motifs in protein sequence data, our
approach is more stringent and hence more resilient
against noise since it is less likely for two spurious noise-
induced motifs to co-occur in the interaction data more
frequently than the true ones.

We adopted the (l, d)-motif model which had been used
frequently to model motifs in biological sequences thanks
to its simplicity [17-22]. In the (l, d)-motif model, the
actual motif and motif instances are strings of length l and
each instance differs by no more than d mismatches from
the actual motif. Thus any two motif instances would have
at most 2d mismatches. Consequently, a set of very similar
substrings can be modelled as a (l, d) motif with a small d
while a more diverse substring set need to be modelled
with a larger d. We then formulated our approach as an (l,
d)-motif pair finding problem, and presented an exact algo-
rithm, D-MOTIF, as well as its approximation algorithm,
D-STAR to solve the problem.

Our benchmarking analysis shows that D-STAR's per-
formance is comparable to D-MOTIF's with a substan-

tially shorter running time. Thus, in evaluation
experiments, we compare only D-STAR with other existing
algorithms so that we can run extensive tests on both sim-
ulated and real biological datasets. Result from the former
validates that the correlated motif approach is more
robust than OTM and MTM in extracting motifs from
sparse but noisy interaction data. Evaluation on real bio-
logical datasets, on another hand, demonstrates that our
D-STAR algorithm is able to extract correlated motifs that
are biologically relevant. On a SH3 domain interaction
dataset [3], D-STAR extracted "PxxPx[KR]" and "Gxx-
PxNY" as correlated motifs; the two motifs were subse-
quently validated to actual interacting interfaces in the
structural data of SH3 domain and its ligand (see Figure
2). D-STAR also extracted "[KR]xxPxxP", a known SH3
binding motif, that was not detected by any existing algo-
rithms tested in this study(see Figure 3 and Table 1).
Application of D-STAR on the TGFβ signaling pathway
[23] extracted correlated motifs that mapped to putative
phosphorylation sites and kinase subregions in proteins
respectively (more details in the Additional file 1).

Related works

There are existing works [24-27] that also find over-repre-
sented pairs of co-occurring sequence patterns from pro-
tein-protein interaction data, but most focused on
discovering interaction correlations between sequence
patterns pre-defined in existing databases such as Pfam,
InterPro and Prosite. Such usage of pre-defined patterns
drastically reduces the motif search space to enable motif
mining in large interaction network. However, their cov-
erage is also consequently limited by the degree of com-
pleteness of existing pattern databases. To-date, only
about 200 binding motifs out of some few thousands that
possibly exist [2] have been found. The correlated motif
approach outlined in this work can therefore complement
existing works by discovering more novel motifs as well as
their correlations from the increasingly abundant protein
interaction data. Our algorithms can also be applied on
biological pathways or protein networks directly to detect
the most significant co-occurring motif pairs in these
pathways. Such functionality is important for studying
pathways known to be mediated by recurring domains
and motifs, like various signaling pathways [28,29].

Results and discussion
In the following discussion, we compared our algorithms
(D-STAR and D-MOTIF) against the existing algorithms,
run in either OTM or MTM mode. This is because, to our
knowledge, there is no existing algorithm based on our
approach. Recall that in the (l, d)-motif model, the motif
(a consensus string) and its instances are strings of length
l and each instance differs by no more than d mismatches
from the actual motif. The l and d are two parameters to
the algorithms. Users can either input specific l and d into

Correlated motif pair approachFigure 1
Correlated motif pair approach. A depiction of our 
approach for finding correlated motifs. The dotted lines indi-
cates the interactions between the proteins.
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the algorithms or input a range of values for l and d
instead. In the latter, the algorithms will extract the differ-
ent (l, d)-motif pairs and output them, ranked based on
their significance. At the same time, user must provide two
additional parameters ki and kn for more directed search: ki

specifies the minimum number of interactions that (l, d)-
motif pairs must co-occur in while kn dictate the mini-
mum of interacting proteins that must express each of the
(l, d) motif.

In short, our algorithms tries to cluster the interaction
data into groups of interaction which express some statis-
tically significant (l, d)-motif pair; it look for pairs of sim-
ilar substring set (defined by the (l, d) motif model)
occurring across pairs of interacting proteins, and rank
them based on their co-occurrence statistical significance.
The exact algorithm D-MOTIF would find all possible
motif pairs which satisfy the threshold given while D-
STAR would allow a bit of inaccuracy for the sake of speed.
We performed a preliminary experiment on D-MOTIF and
D-STAR to compare their accuracy and efficiency, and

found out that D-MOTIF is only modestly more accurate
than D-STAR while running several orders of magnitude
slower than the latter. The details of the comparison can
be found in the Methods section. For efficiency, we there-
fore only ran D-STAR in our following evaluation experi-
ments.

Artificial data with planted (l, d)-motifs

We evaluate the robustness of D-STAR against noise in
input data using simulated data with planted (l, d)-motifs.
Another goal of the study is to investigate the performance
of D-STAR when dealing with problems involving weak
motifs. This will provide insights to the user on how the
latter influences D-STAR's accuracy.

Simulation setup

We follow the simulation setup devised in [17], where the
authors planted well-defined artificial (l, d)-motifs into
random sequences to create artificial datasets for evalua-
tion. Here, we create sequences with planted (l, d)-motifs
and then pair them up to generate artificial interaction

Evidence from PDB structural data – SH3 domain vs. PxxPxRFigure 2
Evidence from PDB structural data – SH3 domain vs. PxxPxR. 3D structure (PDB ID: 1AVZ) of a SH3 domain of FYN 
tyrosine kinase bound to with another protein. The sequence segments that express the "PxxPxR" motif and "GxxPxNY" motif 
(detected by D-STAR in this work) are highlighted in dark blue and orange respectively. The two segments correspond to 
actual interacting subsequences.
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The "PxxP", "PxxPx[KR]" and "[KR]xxPxxP" motifs and their associated motifs extracted by D-STARFigure 3
The "PxxP", "PxxPx[KR]" and "[KR]xxPxxP" motifs and their associated motifs extracted by D-STAR. Lines 
between the sequence segments denote interaction between their parent proteins. The result is found from multiple runs of 
D-STAR with different combination of motif width l = 6, 7, 8, distance d = 1 and ki = kn = 5. We then rank all the outputs from 
the different runs by their χ-score.
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datasets. For each pair of (l, d)-motifs (x, y), five instances
of motif x and five instances of motif y are inserted into
ten randomly selected protein sequences. To simulate the
real scenarios as close as possible, the motifs were planted
in randomly selected yeast (Saccharomyces cerevisiae) pro-
tein sequences instead of random sequences. Let us
denote the five sequences with planted motif x as
sequence set Px, and the five sequences with planted motif
y as sequence set Py. We set |Px| = |Py| = 5 in our current
simulations.

We simulate the real protein interactions by pairing every

sequences in Px to  sequences in Py, and vice versa. A

spurious interaction is modeled by pairing a protein in

Px(Py, resp.) with a random yeast protein not in Py(Px,

resp.). Given that a protein interacts with an average of 5.8

other proteins (interaction statistics in DIP [30]), and that

the high throughput yeast two-hybrid technique is known

to have at least 50% error [14], we would expect at most

2.9 true interactions per protein. Being conservative, we

set  = 2 here. Let ε be the noise level defined as the frac-

tion of the spurious interactions within all interactions

that belong to one particular protein. We investigate the

performance of the algorithms with ε = 0.50 as well as ε =
0.60. For instance, when  = 2 and ε = 0.50, the proteins

in Px and Py will be involved in (on average) 4 interactions;

two of which would be spurious.

The algorithms and parameter settings

We applied D-STAR, as well as other known motif extrac-

tion algorithms such as MEME and Gibbs Sampler to see

whether they can extract instances of both planted motifs

amongst its motif pairs with the highest scores from the

noisy input datasets. We also implemented an algorithm,

S-STAR, to find single (l, d)-motifs in subsets of protein

sequences based on the well-established SP-STAR algo-

rithm [17]. We ran MEME, Gibbs Sampler and S-STAR

using the MTM approach since  = 2 is too low for an

OTM-based approach to detect the motifs. We assume

that all the algorithms using the MTM-approach will be

ran only on the proteins that interact with those in Py

when trying to find motif x (and vice versa for y). The aver-

age of the two cases is the reported performance. Note that

this effectively provides the existing algorithms with prior

knowledge on the underlying groupings of the protein

sequences; the knowledge of sequence groups Px and Py.

To search for the set of planted (l, d)-motifs, we set the
parameters for the various algorithms as follows. For
MEME, the parameters are: Mode = ZOOPS (option in
MEME when not every input sequences are guaranteed to
contain a motif of interest) and Motif Width = l. For Gibb
Sampler, the parameters are: Mode = Motif Sampler (option
in Gibbs Sampler when not all input sequences are guar-
anteed to contain a motif of interest), Motif Width = l and
Expected Motif Occurrence = 5. For D-STAR and S-STAR,
being (l, d)-motif searching algorithms, the first two
parameters are l and d. We set the minimum number of
motif occurrences in the sequences, kn = 5. For D-STAR,
the minimum number of interactions between the
instances of the correlated motifs, ki is also set to 5 as well.

Evaluation metrics

We evaluate the relative performance of the algorithms
using the following metrics:

where TPx(TPy, resp.) is the number of correctly recovered
planted motifs x(y, resp.) FNx(FNy, resp.) is the number of
instances of the planted motif x(y, resp.) the algorithm
fails to recover. Lastly, FPx(FPy, resp.) is the number of
spurious motifs included by the algorithm as a candidate
instance of x(y, resp.).

Results

We applied D-STAR and all the other algorithms on
numerous sets of simulated interaction data with different
planted (l, d)-motifs, namely the (8, 1), (7, 1), (9, 2), (6,
1) and (8, 2)-motifs (listed in decreasing order of motif
strength). For each combination of motif and ε value, we
generated 10 random datasets and compute the average
performance of the algorithms in discovering correct
motif. Our results showed that MEME and Gibbs Sampler
performed quite poorly. Even for a relatively strong (8, 1)-
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Table 1: Comparison on the performance of various algorithms 

on the SH3 dataset

Algorithm PxxP PxxPx[KR] [KR]xxPxxP

D-STAR 1st 1st 8th

S-STAR 1st - -

MEME 1st - -

GIBBS 3rd 3rd -

Rank of sequence segment sets or sequence segment pair sets output 
by the various algorithms that express various known binding motifs 
of SH3 domains. "-" denote the biological motif is not expressed 
within the top 50 sequence segment sets.
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motif, MEME can only achieve F-Measures of 0.49 and
0.35 for ε = 0.50 and 0.60, respectively (As for Gibbs Sam-
pler, the F-Measures were 0.58 and 0.29 respectively).
However, since both of these algorithms used different
motif models, they may not be optimized to search for
(l, d)-motifs. Instead, we will compare their relative per-
formance on real biological data later. An noteworthy
observation, however, is increased noise in input data can
drastically decrease the performances of the algorithms.

Not surprisingly, both D-STAR and S-STAR attained very
high average F-Measure of 0.99 for relatively stronger (8,
1) and (7, 1) – motifs on all values of ε (data not shown).
Figure 4 shows the comparison of F-Measures of D-STAR
and S-STAR on the weaker (9, 2), (6, 1) and (8, 2) motifs.
Observe that D-STAR performed consistently better than
S-STAR on all the cases, and furthermore, the performance
margins were higher when there were more noise in the
data. This study validates that even without having the
prior knowledge of the motifs contained in the interaction
data, D-STAR is able to handle noise much better than the
other algorithms. This is of practical importance since real
interaction data are often highly noisy data containing
many interactions between unknown domains and/or
motifs.

Biological data

In this section, we apply our algorithm on two biologi-
cally significant datasets: SH3 domain interaction data
and TGFβ signaling pathway data. We show that our

approach can better discover real biological motifs than
the other methods.

SH3 domain interaction data

SH3 domains are conserved amino acid segments (of
length ≈ 60 amino acids) found across multiple proteins.
Through various biological experiments, SH3 domains
have been determined to bind short sequence segments
expressing the general motif "PxxP" [3]. The interactions
between SH3 proteins and the "PxxP" motif mirror our
motif pair (x, y) (in this case, one of the motifs should cor-
respond to parts of SH3 domain). For evaluation, we use
the same dataset derived by Tong et. al. to find the inter-
acting partners of SH3 domain proteins [3]. This dataset,
which we called SH3-PxxP-Tong, was downloaded from
BIND online database. It consists of 233 protein-protein
interactions among 146 yeast proteins of which 23 are
SH3 domain proteins (as determined using HMMER pro-
gram from Pfam). We will first assess whether the known
SH3 binding motifs can be extracted among the top
motifs by each algorithm. Next, we investigate the biolog-
ical relevance of the correlated motifs extracted by D-
STAR.

The algorithms and parameters

We ran D-STAR on the SH3-PxxP-Tong dataset multiple
times with different combinations of l = 6, 7, 8, d = 1 and
kn = ki = 5. The outputs from the different runs were then
systematically ranked using their χ-scores. Note again that
in the case of our D-STAR algorithm, the motifs were

Comparison between D-STAR and S-STARFigure 4
Comparison between D-STAR and S-STAR. Comparison between D-STAR and S-STAR(A variant of SP-STAR) in 
extracting planted (l, d)-motifs. The motifs are arranged on the x-axis in decreasing order of motif strength. The number of 
planted motif instances in each dataset is 5 and the datapoint is the average over 10 runs.
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mined without having to separate the SH3 domain pro-
teins and the non-SH3 domain proteins, unlike the other
MTM motif extraction methods which require such prior
knowledge. For comparison, we also attempted to extract
the "PxxP"-like motifs with MEME (ZOOPS mode, Motif
Width = 4 – 9), Gibbs Sampler (Motif Sampler mode, Motif
Width = 4 – 8, Expected Motif Number ≥ 5) and SP-STAR (l
= 6, 7, 8, d = 1 and Minimum Motif Number = 5) from the
130 sequences in the dataset that bind to any SH3 pro-
teins (the MTM approach).

Validation

Without the luxury of experimentally validating the
motifs extracted, it is hard to determine the accuracy of the
various algorithms correctly. However, we reasoned that a
good algorithm should at least extract most of the known
motifs. In other words, when applying D-STAR on the
interaction data of SH3 proteins, we should expect it to
extract some "PxxP"-like motifs on one side and another
motif that occurs consistently in SH3 domains on the
other side. We consider here the well-known SH3-binding
motifs "PxxP", "PxxPx[RK]" and "[RK]xxPxxP". For each of
these three motifs, we check whether it was "expressed"
within the top 50 motifs reported (usually user would not
want to check beyond this number). We define a set of
protein sequence segments reported by an algorithm to be
expressing a motif if at least 50% of the sequence seg-
ments match the pattern.

Results

Table 1 shows the results for D-STAR, S-STAR, MEME, and
Gibbs Sampler. The generic "PxxP" motif was extracted
among the top outputs by all algorithms. However, only
our D-STAR algorithm managed to extract both
"PxxPx[KR]" and "[KR]xxPxxP" motifs (within the top 50
motifs output of each algorithm). In fact, only two
instances of the "PxxPx[KR]" motif are found in the seg-
ments extracted within the top 50 sets of segments
extracted by MEME. No "[KR]xxPxxP" motif instance was
extracted. To be sure, we re-ran MEME on the same 130
sequences with more specific motif lengths = 6–7 (instead
of motif length = 4–9) but to no avail. This confirmed that
MEME with the MTM approach has indeed missed out the
more specific variants. As for S-STAR, the limited instances
of the "PxxPx[KR]" and "[KR]xxPxxP" motifs extracted
were overwhelmed by the more general "PxxP" motif. D-
STAR, despite having no access to prior grouping knowl-
edge unlike the other algorithms, was the only algorithm
that was able to extract the specific SH3-binding motifs.

One might argue that since the MTM-algorithms were
applied on the set of all SH3-binding sequences which
contained either of the motifs "PxxPx[KR]" and
"[KR]xxPxxP", it may be unsurprising that only the gen-
eral "PxxP" motif was extracted instead of the more spe-

cific motifs. The OTM approach may be more suitable for
extracting the specific motifs since it does not consider the
SH3-binding sequences in a "wholesale" manner as the
MTM approach. As such, we applied MEME, Gibbs Sam-
pler and S-STAR on the interacting protein partners of
each individual SH3 protein in the SH3-PxxP dataset. In
total, the OTM approach can be applied on the 22 SH3
proteins that bind more than 1 protein sequence. We used
the same parameters used in the MTM approach for each
algorithm except that the Minimum Motif Occurrence = 2.
We deemed a motif to be extracted successfully if more
than 50% of a segment set within the top 50 sets extracted
expressed the motif and that 50% should comprise of at
least 2 instances. For MEME, "PxxP" motif was extracted
for 3 SH3 proteins (Abp1,Rvs167,Bzz1) and "PxxPx[KR]"
motif was extracted for 2 other SH3 proteins
(Ysc84,Myo3). Gibbs Sampler extracted the "PxxP" and
"PxxPx[KR]" motifs for 1(Sho1) and 2 SH3 proteins
(Yfr024c,Ysc84) respectively. Finally, for S-STAR, the
"PxxP" motif was extracted for 8 SH3 proteins
(Fus1,Bbc1,Rvs167,Hse1,Bzz1,Myo3,Hof1,Nyo5) and
the "PxxPx[KR]" motif was extracted for 2 other SH3 pro-
teins (Yfr024c,Ysc84). Again, all the algorithms failed to
extract "[KR]xxPxxP" motif within the top 50 output for
any of the SH3 proteins. In comparison, D-STAR extracted
the specific "PxxPx[KR]" and "[KR]xxPxxP" for more SH3
proteins (Figure 3).

Since D-STAR extracts correlated motifs, it is interesting to
further analyze the extracted associated sequence seg-
ments of the three proline-rich motifs as shown in Figure
3. We were intrigued to discovered that all associated
sequence segments extracted together with "PxxP",
"PxxPx[RK]" and "[RK]xxPxxP" by D-STAR were found
within SH3 domains. In addition, we also discovered that
all associated sequence segments of the three proline-rich
motifs expressed a "PxxY" general consensus. Specifically,
D-STAR extracted "GxxPxNY" as the associated motif of
"PxxPx[KR]" motif. A further check into the structural data
(PDB ID:1AVZ) of an experimentally determined interac-
tion between an SH3 protein and a protein expressing a
"PxxPx[KR]" motif reveals that the sequence segment in
SH3 domain expressing the "GxxPxNY" motif indeed
forms a binding interface with the segment expressing the
"PxxPx[RK]" motif (Figure 2). Hence, in this particular
case, D-STAR has extracted correlated motifs that actually
are binding motifs.

TGFβ signaling pathway

Next, we applied D-STAR on the interaction network of
TGFβ signaling pathway that was derived using LUMIER
[23] – an automated high-throughput protein interaction
detection technology that can detect phosphorylation-
dependent interactions. Note that the original experiment
was not specifically geared toward detecting interactions
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of any particular protein domain or motif. Hence, unlike
the SH3-PxxP dataset, it is not immediately apparent
whether any relevant motif pairs can be found in the inter-
action network. We applied D-STAR on this interaction
dataset to see whether we can extract any interesting motif
pairs. The dataset was retrieved from BIND database and
consists of 446 interactions among 214 proteins. D-STAR
was applied on the dataset with the same parameters used
for SH3-PxxP dataset. As we do not know what to expect
as correct answer, we focused on validating the top motif
pair extracted. Interestingly, D-STAR extracted a motif
pair, with general consensus patterns "[TA]E[LI]Y[NQ]T"
and "GKT[CIS][ILT][IL]", from 87 unique interactions as
our top output (Additional file 1). For ease of discussion,
let us denote the motif pair as (X, Y). First, we verified that
(X, Y) is not likely to occur by chance as the estimated
probability (p-value) of getting the motif pair with the
same interaction set size is less than 0.001 (by testing the
motif pair on 1000 randomly generated interaction data
with the same network topology and sequences). Hence,
we conjectured that the motif pair is a possible key inter-
action mechanism in the TGFβ signaling pathway.

We also found that the sequence segment set of motif Y is
enriched in known kinase phosphorylation motifs (27
sites in 50 segments, based on result from PhosphoMotif
Finder [31]). To determine the significance of finding 27
sites in the segment sets, we generate 1000 segments sets,
each containing 50 segments randomly selected from the
same protein set. We found out that none of them contain
at least 27 segments with the phosphorylation motifs,
implying an estimated p-value < 0.001.

We listed the over-represented phosphorylation motifs in
Table 2 (for a detailed listings of all of the phosphoryla-
tion sites, see Additional file 1). Further analysis also
showed that 5 out of 6 associated sequence segments of
motif X were also found within kinase protein domains
(determined using HMMER from Pfam). Such biological
characterization of our extracted motif pair (X, Y) with X
as kinase motifs and Y as phosphorylation motifs is
indeed in concurrence with the fact that signalling path-
ways are typically regulated by kinases through protein
phosphorylation. This further indicates that our method
have extracted a biologically feasible motif pair from the
TGFβ interaction dataset.

We also investigated whether such kinase phosphoryla-
tion motifs may also be extracted using the OTM
approach. For each kinase protein found in Y by D-STAR,
we submitted their binding partners to MEME (ZOOPS
mode, Motif Width = 4 – 8), Gibbs Sampler (Motif Sampler
mode, Motif Width = 4 – 8, Expected Motif Number ≥ 2) and
S-STAR (l = 6, 7, 8, d = 1 and kn = 5). We found that over-
represented phosphorylation motifs can be found within
the top 10 output segment sets for only 2 out of the 5
kinase proteins by all MEME, Gibbs Sampler and S-STAR
(based on result from PhosphoMotif Finder).

Note that the above OTM approach had relied on the pre-
grouping of kinase proteins to guide the motif discovery
(and yet its result were still not as good as our D-STAR's
motifs). In practice, such specific prior biological knowl-
edge may not be available. In this case, in order to dis-
cover that (X, Y) is a significant interaction mechanism in
the TGFβ signaling pathway, one would first need to
repeatedly mine motifs in all possible groupings of the
protein sequences before finding some significant correla-
tions between the motifs extracted from the protein
groups. This can be a laborious process – even if we were
to use the proteins' domain information for pre-grouping
the proteins, there could be a large number of domains
involved, while the performance may be limited by the
coverage of domain information. D-STAR, on the other
hand, depends on no such information and found the
correlated motif pairs directly from input interaction data
in one single process.

Conclusion
Discovery of novel binding motifs acting as interaction
switches for biological circuits can lead to invaluable
insights for important applications such as drug discov-
ery, as various short binding motifs have been found to be
associated with disease pathways. However, such motifs
have also been known to be hard to find both experimen-
tally and computationally [2].

The recently available protein-protein interaction data
present a rich data source to aid in such important discov-
eries through motif discovery algorithms. The efforts can
be hindered by sparse and noisy nature of existing protein
interaction data, as well as the inadequacy of current bio-
logical knowledge. In this paper, we have proposed a

Table 2: The over-represented phosphorylation sites motifs found by D-STAR

Motif Expected Observed Odd-Ratio

[R/K]x[S/T] 3.15 17 5.40

Kxx[S/T] 1.22 6 4.92

The motifs of the phosphorylation sites that are over-represented in the segment set with the general pattern "GKT[CIS][ILT][IL]". As the motifs 
are degenerate, we compared their actual number of occurrence with their expected random occurrence within any random segment set of the 
same size preserving the same amino acid distribution as the whole dataset's.
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novel approach of mining correlated de – novo motifs
from interaction data. We formulated our approach as an
(l, d)-motif pair finding problem for which we gave an
exact algorithm, D-MOTIF, as well as its approximation
algorithm, D-STAR. Our evaluation results have shown
that our proposed approach can eliminates the need for
prior knowledge on protein groups during the discovery
process. Such functionality allows the discovery of motifs
not to be constrained by inadequate biological knowl-
edge. The approach is also more robust in extracting
motifs from noisy interaction data. Of course, since D-
STAR is devised for finding linear sequence motifs, it
would fail if one of the correlated motifs is a structural
one. However, it may still be used to identify short con-
served sequence regions that formed parts of such struc-
tural motifs. Given that existing protein structural data is
still very limited when compared to available protein-pro-
tein interaction data, short conserved sequence regions
identified by D-STAR could facilitate further biological
experiments like mutagenesis studies.

While we have presented an approximation algorithm D-
STAR to speed up the extraction of motif pairs from inter-
action data, more work will need to be done in order to
scale up the approach to handle genome-wide interaction
data or the larger DNA-protein interaction data. Also, as
real biological motifs can be of varying lengths, we will
also need to extend our current approach to discover
binding motifs that are not of any predefined lengths. We
leave these as future work.

Methods
Preliminaries

Let s = a1a2a3...an be a length-n protein sequence defined
over the alphabet Σ of 20 amino acids, and s[u, v] as the
substring of the string s starting at position u up to posi-
tion v. When the substring's length l is fixed, we simply
write s[u] for s[u, u + l - 1]. We will call such a substring the
l-substring at position u.

The (l, d)-motif finding problem

The definition of (l, d)-motif was originally proposed in

[17] to model motifs in biological sequences. Consider a

set S = {s1, s2, s3...,st} of t protein sequences of length n. A

length-l pattern p is an (l, d)-motif in S' ⊆ S if all sequences

si ∈ S' have at least one l-substring si[u] which differs from

p by at most d mismatches. Such si[u]'s are termed as the

instances of p. In their work, Pevzner et. al. [17] computed

for the (l, d)-motif p that has at least one instance in each

sequence in S. In our work, it is important to find motifs

from a significantly large subset S' of S since, in some case,

there is no guarantee that every input sequence would

contain an instance of the motif. In other words, for a

given (l, d)-motif p, let d(p) be {s ∈ S | s contains an l-

substring of distance at most d from p}. Given the mini-

mum number of instance threshold kn, we then define the

general (l, d)-motif finding problem as finding all (l, d)-

motif p in S such that | d(p)| ≥ kn.

The (l, d)-motif pair finding problem

We extend the problem of finding (l, d)-motifs in a set of
sequences into one for finding motif pairs in a set of
sequence pairs for mining interacting motifs in a set of
protein-protein interactions. Given a protein interaction
dataset I ⊆ S × S of size m over the set of proteins S where
for any (si, sj) ∈ I we have i ≤ j, we want to find a pair of (l,
d)-motifs which is over-represented in I. That is, we want
to find an (l, d)-motif pair (x, y) that have the following
characteristics:

(1) Let I(x, y) be the set of interactions between d(x) and

d(y), namely, I(x, y) = I ∩ ( d(x) × d(y)). We require

that |I(x, y)| ≥ ki for a minimum number of interaction

threshold ki.

(2) Let (x) be a subset of d(x) containing sequences

that interact with those in d(y). Similarly, let (y) be

a subset of d(y) with interacting sequences with d(x).

We also require that | (x)|, | (y)| ≥ kn.

We call this problem the (l, d)-motif pair finding problem.
For every (si, sj) ∈ I(x, y), we want find (si[u], sj[v]) which are
instances of x and y. Biologically, (si[u], sj[v]) may corre-
spond to the functional regions in the proteins si and sj

that mediate their interaction.

Scoring function

It is likely for many (l, d)-motif pairs (x, y) to exist within
a given interaction dataset I over the set of proteins S. We
define here a scoring function to rank them systemati-
cally.

Let O(Sx, Sy) be the observed number of interactions

between two protein sets Sx and Sy containing the motifs x

and y respectively. Let E(Sx, Sy) be the expected number of

interactions between Sx and Sy. We estimate E(Sx, Sy) based

on the assumption that interactions occur at random.

Since the probability of any interaction occurring between

two random proteins in S is , we have
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where the term in the brackets computes the total number
of interactions possible between the proteins in Sx and Sy.
Based on the idea of χ2-statistic, we formulate the follow-
ing function χ to score a given pair of (x, y)-motif contain-
ing protein sets Sx and Sy as

Methods

For illustration, we will first give an exact algorithm D-
MOTIF to find co-occurring motifs in I. Then, we will
present our approximation algorithm, D-STAR, that can
offer significant speed-up at the cost of slight accuracy
degradation. The use of D-STAR for scaling up is necessary
for dealing with the large input datasets in practice.

D-MOTIF algorithm

The basic idea of the exact algorithm is to enumerate all
possible (l, d)-motif pairs and then check if they have
enough instances to satisfy the minimum size threshold
knand ki. Note that any (l, d)-motif pair must be of ham-
ming distance d from some (l, d)-motif pair instance.
Given a string p of length l, we define Xp to be all strings p'
of length l with hamming distances at most d from p. The
algorithm named D-MOTIF-BASIC in Figure 5 describes
the most straightforward brute force approach on the
problem. Observe that the instances of any (l, d)-motif x
would be of distance 2d from one another. Pevzner et. al.
[17] described a method to compute all instances of an
(l, d)-motif by transforming the problem into finding
cliques in a t-partite graph G. In this graph, all l-substrings
in all si ∈ S are the nodes and any two of them will be con-
nected by an edge if (a) they originate from distinct pro-

teins and (b) they are at most 2d apart. Thus, finding the
(l, d)-motifs having at least kn instances is equivalent to
finding cliques of size at least kn in G, which is an NP-hard
problem.

We attempt to reduce the complexity of the problem by

assuming that kn ≥ 3 and try to find all cliques of size 3

first. In other words, we first find three l-substrings, (si[u],

sj[v], sk[w]), from distinct sequences si, sj, and sk and then

only try those candidate (l, d)-motifs p ∈
. For convenience, we call the string

triplet (si[u], sj[v], sk[w]) a triangle within si, sj, and skand we

denote the set intersection  by

.

In the case of interaction data, we have to find all interac-
tion triplets (si, si'), (sj, sj'), (sk, sk') and compute the trian-
gles from (si, sj, sk) and (si', sj', sk'). But as interaction is
commutative (at least in our current consideration) i.e. (si,
sj) is equivalent to (sj, si), we also have to consider the lat-
ter configuration when we choose the interaction triplets.
As such, we let Id be the set of ordered pair which contains
both �si, sj� and �sj, si� for each (si, sj) ∈ I. The algorithm can
then start by choosing the ordered pair triplets from Id(|Id|
≈ 2m). The complete listing of the algorithm, D-MOTIF, is
presented in Figure 6.

In practice, D-MOTIF runs much faster when compared to
the straightforward brute force algorithm(which we have
also implemented as a benchmark). However, the mem-
ory requirement of D-MOTIF could be much larger than
the latter as we have to store the sets X for the different tri-
angles in the set Tl and Tr to avoid redundant computa-
tions. When d is large relative to l, there would be a lot of
candidate (l, d)-motifs to check given a triangle. When the
number of triangles is also large, even D-MOTIF would
soon run at a crawling speed. In view of that, we propose
the following approximation algorithm, D-STAR. Before
we start, let us define the (l, d)-star pair finding problem
and show how it approximates for the (l, d)-motif pair
finding problem.

The (l, d)-star pair finding problem

For any given pair of l-substrings (si[u], sj[v]) from some
interaction (si, sj), there may be an exponential (with
respect to d) number of possible (l, d)-motifs (x, y) which
is within distance d. Hence, even after speeding-up the
algorithm with filtering, D-MOTIF can only handle rela-
tively small-sized problems. In our proposed algorithm
D-STAR, we will aim to find only the instances of a motif
pair (x, y) instead of finding the motif (x, y) themselves
since they may not even occur in S.
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The D-MOTIF-BASIC algorithmFigure 5
The D-MOTIF-BASIC algorithm.

D-MOTIF-BASIC

1 for (si, sj) ∈ I

2 for (si[u], sj [v]) ∈ (si, sj)

3 for (p, p′) ∈ Xsi[u] × Xsj [v]

4 Compute Sd(p) and Sd(p′)

5 I(p,p′) = I ∩ (Sd(p) × Sd(p′))

6 Compute S′

d
(p) and S′

d
(p′)

7 if |I(p,p′)| ≥ ki and |S′

d
(p)|, |S′

d
(p′)| ≥ kn

8 Store (p, p′) sorted by χ(Sd(p),Sd(p′)) in list L.
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D-STAR algorithm

Recall that given an (l, d)-motif x, any two instances of x,

xi and xj, would be at most 2d apart. Hence, if we manage

to get one instance xi of x, all the other instances of x

would surely be in 2d(xi). In the context of interaction

data, we first get all l-substring pairs (si[u], sj[v]) from each

interacting proteins (si, sj) ∈ I. Next, we find those (si[u],

sj[v]) that satisfy two conditions (1) There are more than

ki interactions between 2d(si[u]) and 2d(sj[v]). (2) Let

the set of the interactions be denoted similarly by

, and we require that both

 . The pair of protein set

( ) is denoted as an (l, d)-star pair.

Our simulation experiments indicate that D-STAR yields a

good approximation of the exact solution while being

much more efficient when the dataset is large. The com-

plete listing of the algorithm is in Figure 7.

Time complexity

The loop in line 1 takes O(m) time. The next loop in line

2 takes another O(m) time. Both pairwise sequence com-

parisons in step 3 and 4 require O(n2) time. Each time, the

number of position pairs (u, v) in P1 × P2 could also reach

O(n2). Updating , , can

all be done in constant time with a lookup table (one

could save space using hash-sets, but the updating will

take amortized constant time instead). The loop in line 11

would require at most O(n2) time for all entries [u, v], each

requiring at most O(t) time to build

, from ( )

for computing the χ-score. Therefore, in the worst case, D-

STAR would run in O(m2n2+ mtn2). We also need to be

mindful that the memory requirement to store the matrix

and arrays is max{O(mn2), O(tn)}.

Comparison between D-MOTIF and D-STAR

First, we investigate the effect of data size on the perform-
ance of our two approaches. We ran our evaluation on 5



 

I s u s vi j( [ ], [ ])

| ( [ ]) |, | ( [ ]) |′ ′ ≥ 2 2d ds u s v ki j n  

′ ′ 2 2d d( [ ]), ( [ ])s u s vi j 

I s u s vi j( [ ], [ ]) ′ ′ 2 2d d( [ ]), ( [ ])s u s vi j 

( ( [ ]), ( [ ])) 2 2d ds u s vi j ′ ′ 2 2d d( [ ]), ( [ ])s u s vi j 

The D-MOTIF algorithmFigure 6
The D-MOTIF algorithm.

D-MOTIF

1 for 〈si, si′ 〉, 〈sj , sj′ 〉, 〈sk, sk′ 〉 ∈ Id where i �= j �= k and i′ �= j′ �= k′

2 for (si[u], sj [v], sk[w]) ∈ (si, sj , sk)

3 Compute and store X(si[u],sj [v],sk[w]) in Tl

4 for (si′ [u
′], sj′ [v

′], sk′ [w′]) ∈ (si′ , sj′ , sk′ )

5 Compute and store X(si′ [u
′],sj′ [v

′],sk′ [w′]) in Tr

6 for (Xl, Xr) ∈ Tl × Tr

7 for (p, p′) ∈ Xl × Xr

8 Compute Sd(p) and Sd(p′)

9 I(p,p′) = I ∩ (Sd(p) × Sd(p′))

10 Compute S′

d
(p) and S′

d
(p′)

11 if |I(p,p′)| ≥ ki and |S′

d
(p)|, |S′

d
(p′)| ≥ kn

12 Store (p, p′) sorted by χ(Sd(p),Sd(p′)) in list L.
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different datasets containing artificial interaction sets I of
size ranging from 10 to 150 (note that for some weaker
motifs, we did not evaluate up to size 150 as the running
time of the D-MOTIF became too slow to be measured).
In each interaction set, the protein sequences in all inter-
action are distinct; in other words, |S| = 2|I|. We also
planted the (l, d)-motif pair in only half of the interactions
in I to effect a fixed ε = 0.50 on all datasets.

Evaluation was performed here by checking if the planted
motifs were reported as the best motif by the motif finding
algorithm. Table 3 shows the average result over 10
datapoints (I = 10, 20, ..100) in each of the 5 evaluation

datasets. Figure 8 displays the running time of both algo-
rithms on different data size averaged over the 5 datasets.
We use an x86 Pentium 4 M 1.6 GHz machine with 512
MB of memory for running the comparison. We observed
that when the (l, d)-motifs get less specific and kn is small,
the planted motifs could be masked out by other signals
present in the protein sequences. This happened in one of
the datapoints of (6, 1)-motifs with |I| = 10, in which D-
STAR failed to have 100% sensitivity rate. Overall, it is
clear that D-STAR performs only slightly worse than D-
MOTIF while the running time of D-STAR is much better
than D-MOTIF for larger datasets. The running time of D-
MOTIF is also highly influenced by the strength/specifi-

Table 3: Comparison on specificity and sensitivity between D-MOTIF and D-STAR

(l, d) D-MOTIF D-STAR

Spec Sens Spec Sens

(6, 1) 99.69% 100% 95.16% 99.1%

(7, 1) 100% 100% 99.89% 100%

(8, 1) 100% 100% 100% 100%

This table, in conjunction with Figure 8 showed that D-STAR runs orders of magnitude faster than D-MOTIF while sacrificing a small amount of 
accuracy in terms of sensitivity and specificity.

The D-STAR algorithmFigure 7
The D-STAR algorithm.

D-STAR

1 for (si, sj) ∈ I

2 for 〈sk, sℓ〉 ∈ Id − 〈si, sj〉

3 Perform a pairwise sequence comparison to find all positions in

si which has a neighbor of distance 2d in sk. Let the positions

be P1 = {u1, u2, ..ug}.

4 Do the same for sj and sℓ and get the list of positions in sj which

is P2 = {v1, v2, ..vh}.

5 if P1 �= ∅

6 for all u ∈ P1 add sk into S′

2d
(si[u])

7 if P2 �= ∅

8 for all v ∈ P2 add sℓ into S′

2d
(sj [v])

9 for (u, v) ∈ P1 × P2,

10 Add 〈sk, sℓ〉 into I(si[u],sj [v]).

11 for (u, v) whose |S′

2d
(si[u])|,|S′

2d
(sj [v])| ≥ kn and |I(si[u],sj [v])| ≥ ki.

12 Compute S2d(si[u]), S2d(sj [v]), and χ(S2d(si[u]),S2d(sj [v]))

13 Put the (l, d)-star (S′

2d
(si[u]),S′

2d
(sj [v])) into the sorted list L.
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city of the (l, d)-motif. As compared to D-STAR, the run-
ning time of D-MOTIF increases much more rapidly when
the motif gets less specific. For example, for |I| = 100, the
running time of D-MOTIF on (8, 1), (7, 1), (6, 1) motifs
are 797.4 s, 1930.7 s and 17385.2 s, respectively. For the
same datapoints, D-STAR only required 253 s, 266.5 s,
and 306.1 s, respectively. Indeed, this observation was fur-
ther confirmed when we tried D-MOTIF on our real bio-
logical dataset later – it was still running after 10 hours
while D-STAR terminates in less than 20 minutes.

On choosing the parameters kn and ki

As with many other algorithm, the setting of the appropri-
ate parameters would be a challenge for the user. Most of
the time, these cannot be derived directly from the data.
For D-STAR, one must set the minimum threshold param-
eters kn and ki for the minimum number of each motif
instance and the minimum number of interaction that
must be involved to derive the motifs. We performed a set
of test where we vary the kn and ki value. The trend shows
that the accuracy is highest when kn and ki is near their real
value Z, where Z denotes the actual number of motif
instances in the data, and N, the number of true interac-
tions between the motif pair instances in the data, respec-
tively. For strong motifs, accuracy is not affected even
when kn or ki are set to relatively low values. For weaker
motifs, it is easier to find spurious motifs and hence when
kn and ki are too low, the performance will be poor. Hence

we would suggest using large enough kn or ki and try to
reduce them when one still cannot find any result. In gen-
eral, like other existing motif algorithm, when the user has
a good estimate of the length of the motif found, the qual-
ity of the motifs found would be better. The details can be
found in Figure 9.

Availability and requirements
Project name: Correlated motif discovery project.

Project homepage: http://www.comp.nus.edu.sg/~bio
info/hugowill/DSTAR.html

Operating Systems: Windows XP, RedHat Linux, Solaris.

Programming Language: C.

License: The binaries used in the experiments are freely
available in the website and in additional file 2.
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Comparison of running time between D-MOTIF and D-STARFigure 8
Comparison of running time between D-MOTIF and D-STAR. Observe that the running time of D-MOTIF increases 
rapidly as the input data grows and also as the (l, d)-motif gets weaker. All experiments were run on a x86 Pentium 4 1.6 GHz 
machine with 512 MB of memory.
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