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Abstract

Conventional correlated topic models are able to
capture correlation structure among latent topics
by replacing the Dirichlet prior with the logistic
normal distribution. Word embeddings have been
proven to be able to capture semantic regularities
in language. Therefore, the semantic relatedness
and correlations between words can be directly cal-
culated in the word embedding space, for exam-
ple, via cosine values. In this paper, we propose
a novel correlated topic model using word embed-
dings. The proposed model enables us to exploit
the additional word-level correlation information
in word embeddings and directly model topic cor-
relation in the continuous word embedding space.
In the model, words in documents are replaced
with meaningful word embeddings, topics are mod-
eled as multivariate Gaussian distributions over the
word embeddings and topic correlations are learned
among the continuous Gaussian topics. A Gibbs
sampling solution with data augmentation is given
to perform inference. We evaluate our model on
the 20 Newsgroups dataset and the Reuters-21578
dataset qualitatively and quantitatively. The exper-
imental results show the effectiveness of our pro-
posed model.

1 Introduction

Conventional topic models, such as Probabilistic Latent Se-
mantic Analysis (PLSA) [Hofmann, 1999] and Latent Dirich-
let Allocation (LDA) [Blei et al., 2003], have proven to be a
powerful unsupervised tool for the statistical analysis of doc-
ument collections. Those methods [Zhu et al., 20121, [Zhu
et al., 2014] follow the bag-of-word assumption and model
each document as an admixture of latent topics, which are
multinomial distributions over words.

A limitation of the conventional topic models is the in-
ability to directly model correlations between topics, for in-
stances, a document about autos is more likely to be related to
motorcycles than to politics. In reality, it is natural to expect
correlated latent topics in most text corpora. In order to ad-
dress this limitation, the Correlated Topic Model (CTM) [Blei
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and Lafferty, 2006a] replaces the Dirichlet prior with logis-
tic normal distribution which allows for covariance structure
among the topics.

Nowadays, the rapidly developing technique in natural lan-
guage processing — word embeddings [Bengio et al., 2003],
[Mikolov and Dean, 2013] — provides us with the possibility
to model topics and topic correlations in the continuous se-
mantic space. Word embeddings, also known as word vectors
and distributed representations of words, are real-valued con-
tinuous vectors for words, which have proven to be effective
at capturing semantic regularities in language. Words with
similar semantic and syntactic properties tend to be projected
into nearby area in the vector space. By replacing the orig-
inal discrete word types in LDA with continuous word em-
beddings, Gaussian-LDA [Das et al., 2015] has shown that
the additional semantics in word embeddings can be incorpo-
rated into topic models and further enhance the performance.

The main goal of correlated topic models is to model and
discover correlation between topics. And now we know that
word embeddings are able to capture semantic regularities
in language, and the correlations between words can be di-
rectly measured by the Euclidean distances or cosine val-
ues between the corresponding word embeddings. More-
over, semantically related words are close to each other in
space and should be more likely to be grouped into the same
topic. Since Gaussian distributions depict a notion of central-
ity in continuous space, it is a natural choice to model top-
ics as Gaussian distributions over word embeddings in space.
Therefore, the motivation of this paper is to model topics in
the word embedding space, exploit the known correlation in-
formation at word level and further improve the correlation
discovery at topic level.

In this paper, we propose the Correlated Gaussian Topic
Model (CGTM) to model both topics and topic correlations in
the word embedding space. More specifically, first we learn
word embeddings with the help of external large unstructured
text corpora to obtain additional word-level correlation in-
formation; Second, in the vector space of word embeddings,
we model topics and topic correlations to exploit useful addi-
tional semantics in word embeddings, wherein each topic is
represented as a Gaussian distribution over the word embed-
dings and topic correlations are learned among those Gaus-
sian topics. Third, we develop a Gibbs sampling algorithm
for CGTM.
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To validate the efficacy of our proposed model, we evalu-
ate our model on the 20 Newsgroups dataset and the Reuters-
21578 dataset, which are well-known dataset for experiments
in text mining domain. The experimental results show that
our model can discover more reasonable topics and topic cor-
relations than the baseline models.

2 Related Works

Correlation is an inherent property in many text corpora, for
example, [Blei and Lafferty, 2006b] explores the time evolu-
tion of topics and [Mei et al., 2008] analyzes the locational
correlation among topics. However, due to the use of the
Dirichlet prior, traditional topic models are not able to model
the topic correlation directly. CTM [Blei and Lafferty, 2006a]
proposes to use logistic normal distribution to model the vari-
ability among topic proportions and thus learn the covariance
structure of topics.

Word embeddings can capture the semantic meanings of
words via low-dimensional real-valued vectors [Mikolov and
Dean, 2013], for example, vector operation vector(‘king’) -
vector(‘man’) + vector(‘woman’) results in a vector which is
very close to vector(‘queen’). The concept of word embed-
dings was first introduced into natural language processing
by Neural Probabilistic Language Model (NPLM) [Bengio et
al., 2003]. Due to its effectiveness and wide variety of appli-
cation domains, word embeddings have garnered a great deal
of attention and development [Mikolov et al., 20131, [Pen-
nington et al., 2014], [Morin and Bengio, 2005], [Collobert
and Weston, 2008], [Mnih and Hinton, 2009], [Huang et al.,
2012].

Since word embeddings carry additional semantics, many
researchers have tried to incorporate them into topic mod-
els to improve the performance [Das et al., 2015], [Li et al.,
2016], [Liu et al., 2015], [Li et al., 2017]. [Liu et al., 2015]
proposed Topical Word Embeddings (TWE) which combines
word embeddings and topic models in a simple and effective
way to achieve topical embeddings for each word. [Das et al.,
2015] uses Gaussian distributions to model topics in the word
embedding space.

The aforementioned models either fail to directly model
correlation among topics or fail to leverage the word-level
semantics and correlations. We propose to leverage the word-
level semantics and correlations within word embeddings to
aid us in learning the topic-level correlations.

3 Learning Word Embeddings

We begin our topic discovery process with learning the word
embeddings with semantic regularities. Unlike the traditional
one-hot representations of words which encode each word as
a binary vector of N (the size of vocabulary) digits with only
one digit being 1 the others 0, the distributed representations
of words encode each word as a unique real-valued vector.
By mapping words into this vector space, word embeddings
are able to overcome several drawbacks of the one-hot rep-
resentations such as the curse of dimensionality, the out-of-
vocabulary words and the lack of semantics.

In this paper, we adopt a recently developed, very effective
and efficient distributed representations of words based model
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Figure 1: Schematic illustration of the CGTM framework.
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called Word2Vec [Mikolov and Dean, 2013] to train word
embeddings. In the learning process of Word2Vec, words
with similar meanings gradually converge to nearby areas in
the vector space. In this model, words in the form of word
embeddings are used as input to a softmax classifier and each
word is predicted based on its neighbourhood words within a
certain context window.

Having learnt the word embeddings, given a word wgy,,
which denotes the n** word in d*® document, we can en-
rich that word by replacing it with the corresponding word
embedding. The following section describes how this enrich-
ment is used in a generative process to model topics and topic
correlations.

4 Generative Process

Trained word embeddings give us useful additional seman-
tics, which helps us discover reasonable topics and topic cor-
relations in the vector space. However, each document now
is a sequence of continuous word embeddings instead of a se-
quence of discrete word types. Therefore, conventional topic
models no longer are applicable. Since the word embeddings
are located in space based on their semantics and syntax, in-
spired by [Hu et al., 2012] and [Das et al., 2015], we consider
them as draws from several Gaussian distributions. Hence,
each topic is characterized as a multivariate Gaussian distri-
bution in the vector space. The choice of Gaussian distribu-
tion is justified by the observations that Euclidean distances
between word embeddings are consistent with their semantic
similarities.

The graphical model of CGTM is shown in Figure 1. More
formally, there are K topics and each topic is represented by a
multivariate Gaussian distribution over the word embeddings
in the word vector space. Let p; and 3j denote the mean
and covariance for the k' Gaussian topic. Each document
is a admixture of K Gaussian topics. 14 is a K dimensional
vector where each dimension represents the weight of each
topic in document d. Then the document-specific topic distri-
bution 4 can be computed based on ng. . is the mean of n
and X, is the covariance of . By replacing the Dirichlet pri-
ors in conventional LDA with logistic normal priors, the topic
correlation information is integrated into the model. g, 3,
vy, i, 3 and v are hyper parameters for Gaussian topics and
logistic normal priors.

Note that variables in bold font mean they are either vectors
or matrices, for example, wg,. The generative process is as
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follows:

1. Draw ¥, ~ W=1(®, v).

2. Draw p, ~ N(p, = 3).

3. For each Gaussian topic k =1,2,--- | K:
(a) Draw topic covariance X ~ W™1(¥g, 1p).
(b) Draw topic mean pu;, ~ N (g, £3%).

4. For each documentd =1,2,--- , D:
(a) Draw ng ~ N (g, Ee).
(b) For each word indexn =1,2,---, Ny:

i. Draw a topic zg,, ~ Multinomial(f(ny)).
ii. Draw a word wan, ~ N (p,, ,3.,,).

where 7 and 7. are constant factors; and f(n) is the logistic
transformation:

exp(nk)

doiexp(n})

The following conjugate priors are utilized for topic parame-
ters: a Gaussian distribution N for the mean and an inverse
Wishart distribution W~ for the covariance. However, note
that there is still a non-conjugacy problem between the logis-
tic normal distribution and multinomial distribution, and we
will solve this with data augmentation technique in the fol-
lowing section.

fh) =05 = (1

5 Parameter Inference

The observed variables are documents consisting of word em-
beddings, and our goal is to infer the posterior Gaussian dis-
tribution of each topic, topic assignment of each word, and
topic correlations. Given D documents and the correspond-
ing word embeddings w, the joint distribution of topic assign-
ments z and logistic normal parameters 7 is:

D Ng
p(z,{na} i lw) o p(wlz) [T (] ] 65N (.. Ze)
d=1 n=1
2T exp(ng)
’LU|Z H H 761) (nd'p’u )7
d=1 n=1
(2)

where p(w|z) is the Gaussian probability of words w under
topic assignments z. Because of the choice of conjugate pri-
ors for topic parameters, those variables can be integrated out
and we can efficiently re-sample topic assignment for each
word. However, due to the non-conjugacy between the logis-
tic normal and multinomial distributions, regular Gibbs sam-
pling scheme doesn’t work for the logistic normal parameters.
Thus we adopt Gibbs sampling with data augmentation tech-
nique to solve this non-conjugacy problem.

5.1 Sampling Topic Assignments

Since the topic parameters have conjugate priors, the sam-
pling process of topic assignments is similar to the Gibbs
sampling scheme for LDA [Griffiths, 2002]. Given i and
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Z_4n, Which is the topic assignment scheme without consid-
ering the current word wy,, the topic of each word is drawn
iteratively as:

w) X p(zdn = k|z—dn)p(wdn|zdn = k)
exp(ns) e+ 1

S exp ()

p(zdn = klz—dn;

Tr(wan|pg, —— k),

3)

where T,.(w|p, ¥) is the multivariate Student’s t-distribution
for Gaussian sampling with (r = v — dim + 1) being its
degrees of freedom and dim being the dimensionality of word
embeddings. (vy = v + Ni) and (7, = 7 + Ni) are the
parameters of topic k, where Vi denotes the total number of
words that are assigned to topic k.

5.2 Updating Gaussian Topics

Every time we re-sample topic assignment z4,, we need to
update the two involved Gaussian topics because the current
word wgy, is either leaving or joining this Gaussian topic. Fol-
lowing [Das et al., 2015], we derive the updates for p;, and
3, of the posterior Gaussian distributions for topic k:

o T/,LO'FNkﬂik
K = Tk ’
_ _ “4)
5, = Yo+ Ck + 7Nk() — pro) (wy. — po) " /7

v, —dim +1
where wy, is the sample mean of all the word embeddings as-
signed to topic k, and CY, is the scaled form of sample covari-
ance of all the word embeddings assigned to topic k. These
two intermediate variables are calculated as follows:

Y1 Yonetr 8(Zdn, K)wan
Ny ’

D N,
Cr= Z Z 5(2(1”, k)(wdn - ﬁ)k)(wdn — ﬁ)k)T7
=1

g

k=

&)

=1ln

d
where 0(z4n,k) is the Kronecker delta function that
0(zdn, k) = 1if 24, = k, 6(2an, k) = 0 otherwise.

5.3 Sampling Logistic Normal Parameters

Given topic assignments, directly sampling logistic normal
parameters 7 is difficult due to non-conjugacy. To address the
non-conjugacy problem between the logistic normal distribu-
tion and multinomial distribution, following [Holmes et al.,
2006], [Polson et al., 2013] and [Chen et al., 2013], we sam-
ple the logistic normal parameters 77 based on z with auxiliary
variables. For document d, the likelihood for 7]5 conditioned

on n;k 18
(ndlnd )
k
exp nd Fan 1
> exp(n

_ ey
(1 + exp(pl) ¥’

1—-27,
eXP(Wd)‘ >
> exp(ng) (6)
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where 2% is the topic indicator that z% = 1 if word wgy, is
assigned to k*" topic, an = 0 otherwise. pf = nk — ¢k,
¢k = log (3=, exp(n})) and C* is the number of words
assigned to topic k in document d. Therefore, we obtain the

posterior distribution of 775 proportional to multiplying the
likelihood by the prior:

plnglng ",z w) o Unglng )N (nglpg, o). (D

For the prior part, it is a univariate Gaussian distribution
conditioned on the other logistic normal parameters in the
current document n;k. Thus, given n;k and p., 2. of the

multivariate Gaussian distribution over 77, we have:
k -1 —k
pa = pk — A Ak (" — p_y),
2 -1
i = A

®)

where A = X! is the precision matrix. However, the non-
conjugacy makes it difficult to directly calculate the likeli-
hood I(nk |n;k ) and thus unable to directly sample 7%.

By introducing auxiliary Polya-Gamma variable )\’3 [Pol-
son et al., 2013], we are able to get around the non-conjugacy
problem and the likelihood /(1|1 *) can now be expressed
as:

Unilng ") =
N (p)?

2

)P(NE| NG, 0)dAE,

)
where k& = C* — N, /2 and p(\%| N4, 0) is the Polya-Gamma
distribution PG(Ng, 0). As one can observe, Equation 9 im-
plies that p(n%|n;*, z, w) is the marginal distribution of the
joint distribution:

(0, Adlng*, 2, w) o

A (k)2

1 oo
N exp(kkph) / exp(—
0

)P(AGINa, 0N (nf| sl o).
(10)

Therefore we can sample 175 based on the auxiliary variable
)\’3. The sampling procedure is as follows:

1 k k
Ng exp(Kgpq —

e Sampling )\’3: according to Equation 10 and [Pol-
son et al., 2013], we havke t]l;l(z conditional distribution
p(AE|z,w,m) exp(—%)p()\’[ﬂNd, 0), which re-
sults in a Polya-Gamma distribution PG (N, p%). Fol-
lowing the ideas in [Polson er al., 2013] and [Chen et
al., 2013], Polya-Gamma variables can be drawn in O(1)
time, and so a sample of )\’3 is obtained.

e Sampling nfj: according to Equation 10, we can sample
775 with posterior probability:

A ()

2

p(niIng*, 2, w,\) oc exp(rgng—

e3Y)
This results in a univariate Gaussian distribution
N (%, (7%)?) conditioned on the auxiliary variable A%,
where v5 = (79¥)2 (0 2uk + Kk + NECE) and (7F)? =
(0,2 4+ Ak)~1. Thus, given the auxiliary variable A%, 1%
can be easily drawn from a univariate Gaussian distribu-
tion.
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N (15|11, 7).

5.4 Updating Topic Correlation

Given {n,}%_,, the logistic normal parameters g, and X,
are updated as:

Te

c = —+ 7,
He= 5D ¥ D" 1)
T.D
. =0 (n—-p@m-p)’,
tQ+ M- mn -

where 7) is the mean of {n,}2 ;,and Q = 5(n, — 1) (ny —
)"

6 Experiments

In this section, we carry out experiments on two real-
world text collections — the 20 Newsgroups dataset' and the
Reuters-21578 dataset? to demonstrate the efficacy of our
proposed model. 20 Newsgroups contains approximately
20,000 text documents partitioned evenly across 20 different
newsgroups. Reuters contains about 10,000 documents, but
due to the imbalance of each category, only the largest 8 cat-
egories are selected in Reuters, leaving us with 7,674 docu-
ments in total. Both datasets have become popular datasets
for experiments in many data mining tasks, such as text
classification. Each document is associated with one sin-
gle category label. For 20 Newsgroups, correlation is exhib-
ited across different newsgroups (e.g. rec.sport.baseball and
rec.sport.hockey), which makes this dataset a suitable choice
to verify the effectiveness of topic correlation discovery for
CGTM.

We compare CGTM with three topic modeling methods:
LDA [Blei et al., 2003], CTM [Blei and Lafferty, 2006a] and
Gaussian-LDA [Das et al., 2015]. CTM replaces the dirichlet
prior in LDA with logistic normal distribution to capture the
correlation among topic proportions. Gaussian-LDA was first
proposed for audio retrieval [Hu ef al., 2012] and then used
to leverage word embeddings in the continuous vector space
[Das et al., 2015].

To learn high quality word embeddings, we combine the
current dataset with Wikipedia as the knowledge source. The
motivation of using Wikipedia as the supplemental source lies
in the sheer range of topics and subjects that are covered and
it allows us to enhance the semantics of word embeddings ex-
tracted from 20 Newsgroups and Reuters. In the experiment,
we set the dimensionality of word embeddings to 100, and
the context window size to 12. We train word embeddings
for 100 epochs.

We are interested to see if the learned topics can reveal a
similar mixture and correlation with the ground truth text cat-
egories. Hence we set the number of topics K to the number
of categories. For uniformity, all the models are implemented
with Gibbs sampling and run for 100 iterations. The Gaus-
sian topic hyper parameter p, is set to the sample mean of
all the word vectors, the initial degree of freedom 1 to the
dimensionality of word embeddings, and ¥ to an identity
matrix.

'www.qwone.com/ jason/20Newsgroups/
2www.daviddlewis.com/resources/testcollections/reuters2 1578/
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Figure 2: Topic Words

6.1 Topic Words and Correlations

To investigate the quality of topics and the topic cor-
relations discovered by CGTM, we visualize each topic
with their top words as well as the topic correlations.
To make the visualization clearer, we select only 6 cate-
gories from the 20 Newsgroups dataset whose topic words
and correlations can be easily recognized and defined.
The selected newsgroups are “rec.autos”, “rec.motorcycles”,
“rec.sport.baseball”, “rec.sport.hockey”, “talk.politics.guns”,
and “talk.politics.mideast”. Thus, in this experiment, we set
the number of topics K to 6. As Figure 2 shows, we display
top 10 words for each topic discovered by CGTM and map
the corresponding word embeddings into a two-dimensional
space via Principal Component Analysis (PCA). The size of
each word varies with its relative frequency in the correspond-
ing topic. The different colors and shapes of words indicate
they are from 6 different topics. Each circle depicts the Gaus-
sian distribution for each topic. The detected topic correla-
tion is represented as a dashed line between topics. As one
can observe, all the newsgroups, Hockey (topic 1), Baseball
(topic 2), Mideast (topic 3), Guns (topic 4), Autos (topic 5)
and Motorcycles (topic 6), are successfully discovered with
reasonable topic words.

As the ground truth labels indicate, one can easily figure
that Autos is correlated with Motorcycles, Baseball is cor-
related with Hockey, and Guns is correlated with Mideast.
The dashed lines in the figure denote the automatically de-
tected topic correlations by CGTM. With the help of word
embeddings and Gaussian topics, topic correlations are also
correctly detected, as the dashed lines show. We can see that,
since word embeddings can capture the regularities in lan-
guage such as synonyms, two topics tend to be correlated if
their topic word embeddings overlap in the continuous vector
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and Correlations.

space. This demonstrates how the known word-level corre-
lation information can aid us in discovering the topic-level
correlations.

In this subsection, we qualitatively exhibit the effectiveness
of discovering topics and topic correlations of CGTM. In the
following subsections, we will quantitatively evaluate CGTM
on topic coherence and topic correlation discovery.

6.2 Topic Coherence

In order to quantitatively assess the topic coherence, we
adopt a metric called coherence score of topics proposed by
[Mimno et al., 2011] which is able to automatically evaluate
the coherence of each discovered topic. Given a topic z and
its top T' words V* = {vf,v3,...,v%}, the coherence score
of this topic is defined as:

z z

vi,vf) +1
g D(vi) (13)
where D(v7) is the document frequency of word vf and
D(vf,vf) is the number of documents in which words v7
and vj co-occurred. The coherence score follows the intu-
ition that words from the same topic tend to co-occur in doc-
uments. This topic coherence score has been proven to be
highly consistent with human coherence judgements [Mimno
etal.,2011].

The topic coherence result on the 20 Newsgroups dataset
is reported in Table 1. In order to investigate the overall qual-
ity of all the discovered topics, the average coherence score
is reported, which is calculated as C = %> C(z; V7).
To make this evaluation more comprehensive, the number
of topic words T' ranges from 5 to 50. For all the models,
the topic words are ordered by word counts in each topic.
Though for Gaussian-LDA and CGTM, topic words can also
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Top T words 5 10 20 50
LDA -13.86  -64.11 -322.07 -2384.68
CT™M -13.77 -64.49 -323.71 -2395.58

Gaussian-LDA  -14.83 -66.31 -32391 -2505.33

CGTM -12.37  -60.48 -317.43 -2362.75

Table 1: Comparison of topic coherence scores.

be ordered by word probabilities under each Gaussian topic,
we still order them by word counts, since first, the Gaussian
posterior probability information has already been fully uti-
lized in the training phase and second, this coherence score is
more appropriate to measure frequent words in a topic. The
result shows that the topic words discovered by our model are
more coherent than the topic words discovered by the base-
line models.

6.3 Document Topics and Topic Correlation

We see that the topics discovered by CGTM qualitatively
exhibit good topic words and reasonable correlations, and
CGTM also outperforms the baseline models in terms of co-
herence score. But are the topics discovered by our model
really corresponding to the coherent news categories? If
yes, it would be very convenient for us to assess the qual-
ity of the detected topic correlations, because the correla-
tions among the ground truth newsgroups labels are well de-
fined. For example, 20 Newsgroups categories “rec.autos”
and “rec.motorcycles” are clearly correlated, and Reuters cat-
egories “money” and “trade” should also exhibit correlations.
To answer this question, we compare the ground truth docu-
ment labels with the document-topic labels discovered by the
models to see if they are consistent. The label of each docu-
ment comes from the dataset and is used as the ground truth.
The document-topic label of each document is assigned by
the models. More specifically, for each model, we can assign
one single topic to document d according to:

za = argmaz,p(z|d).

So this is a clustering evaluation problem where each doc-
ument is a sample. To solve the cluster matching problem,
e.g., ground truth label 1 may correspond to topic 5 instead
of topic 1, we adopt pairwise comparison [Menestrina et al.,
2010] to measure the consistency between the ground truth
document labels and the learned topic representation of doc-
uments. The pairwise comparison is defined as:

. pairg N pairg
precision(E,G) = I Tpairsl I

||pairg N pairg||
recall(E,G) = Tpaira]

2 X precision X recall

F1(E,G) = —
precision + recall

where £ and G are two clustering solutions corresponding to

the document-topic clusters and the ground truth document

labels respectively in our case, and pairg denotes the set of
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Model Precision Recall F1
LDA 0.438 0.507 0.470
CTM 0.447 0.634 0.524

Gaussian-LDA 0.438 0.496 0.465

CGTM 0.523 0.623  0.568

Table 2: Comparison of document-topic distribution on the 20
Newsgroups dataset.

Model Precision Recall F1
LDA 0.844 0.392 0.535
CT™M 0.796 0.433 0.561
Gaussian-LDA 0.865 0.405 0.552
CGTM 0.870 0431 0.576

Table 3: Comparison of document-topic distribution on the Reuters
dataset.

pairs in clustering result F, and ||pair g|| represents the num-
ber of instances in pairg. The experimental results of docu-
ment clustering on 20 Newsgroups and Reuters are reported
in Table 2 and Table 3 respectively. We can see that, with
respect to the consistency between ground truth document
labels and discovered topics, CGTM outperforms the other
baselines on both datasets.

7 Conclusions

In this paper, we have proposed a correlated topic model us-
ing word embeddings. Word embeddings learnt from large,
unstructured corpora, such as Wikipedia, can aid us in mod-
eling topics and topic correlation by bringing in additional
useful semantics. The known word-level correlation infor-
mation in word embeddings is passed to topic-level corre-
lation discovery task via Gaussian topics. In our case, the
word embeddings are trained on the combined collections of
Wikipedia and the 20 newsgroups dataset. We model each
topic as a Gaussian distribution over word embeddings and
directly learn topic correlations in the vector space. The ex-
periments qualitatively show CGTM is able to learn meaning-
ful topics and topic correlation, and quantitatively validate the
effectiveness of our model in terms of topic coherence score
and document clustering on two real-world datasets.
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