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S U M M A R Y
Wave-equation traveltime tomography tries to obtain a subsurface velocity model from seismic
data, either passive or active, that explains their traveltimes. A key step is the extraction of trav-
eltime differences, or relative phase shifts, between observed and modelled finite-frequency
waveforms. A standard approach involves a correlation of the observed and measured wave-
forms. When the amplitude spectra of the waveforms are identical, the maximum of the
correlation is indicative of the relative phase shift. When the amplitude spectra are not identi-
cal, however, this argument is no longer valid. We propose an alternative criterion to measure
the relative phase shift. This misfit criterion is a weighted norm of the correlation and is
less sensitive to differences in the amplitude spectra. For practical application it is important
to use a sensitivity kernel that is consistent with the way the misfit is measured. We derive
this sensitivity kernel and show how it differs from the standard banana–doughnut sensitivity
kernel. We illustrate the approach on a cross-well data set.
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1 I N T RO D U C T I O N

In ray-based tomography, the aim is to construct a subsurface ve-
locity model that explains the picked traveltimes of the measured
data. Such a model can be obtained in an iterative manner by back
projecting the traveltime differences along rays in the current veloc-
ity model. This procedure will lead to satisfactory results when the
wave propagation is sufficiently well approximated by ray theory.
To extract more information from the data than just the travel-
times of a few selected arrivals, seismologists are moving towards
full-waveform processing and inversion of all available data. This
trend is driven by the availability of high-quality broad-band data
(earthquake data from USArray, for example) and a need to in-
corporate finite-frequency effects to process data from geologically
complex areas (sub-salt exploration for the detection of hydrocar-
bons, for example). Also, the computing resources needed to rou-
tinely model 3-D wave-propagation in complex media are becoming
a commodity. There have been two major developments regarding
finite-frequency or full-waveform inversion in the last decades. The
first is least-squares inversion—or waveform tomography—of seis-
mic data pioneered by Tarantola & Valette (1982) that was aimed
originally at inversion of active seismic reflection data. The sec-
ond is the development of a finite-frequency analogue of ray-based
traveltime tomography by Luo & Schuster (1991) (see also Tromp
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et al. 2005). Both aim at exploiting the full measured waveforms by
posing the inversion as an optimization problem:

Given observed data, d̄ , find a subsurface model for which the
modelled data, d, minimizes the misfit functional φ[d̄, d].

The typical size of such optimization problems dictates that we
employ an iterative, gradient-based optimization algorithm, such
as non-linear Conjugate Gradients or a (Quasi-) Newton method
(Vogel 2002), to solve the optimization problem. These methods
require that the misfit does not exhibit local minima and has a large
basin of attraction around the global minimum.

Whereas the least-squares misfit satisfies these criteria in some
cases, resolving velocity structures that vary on a scale larger than
the largest wavelength can be problematic. The basic rationale is
as follows. These large-scale velocity variations cause significant
phase shifts between the modelled and observed waveforms. This,
in turn, may cause local minima in the least-squares error through
loop-skipping. Because the traveltimes are more linearly related to
such velocity perturbations (Cara & Leveque 1987), one usually
resorts to (wave-equation) traveltime tomography to resolve these
structures. One way of measuring the misfit relies on picking the
traveltime difference from the correlation of the modelled and mea-
sured waveforms (Luo & Schuster 1991; de Hoop & van der Hilst
2005).

In this paper, we propose a new correlation-based misfit func-
tional that can be used for wave-equation traveltime tomography.
We show that the proposed misfit functional implicitly measures the
phase shift between the modelled and observed waveforms. Hence,
the procedure is in principle equivalent to the correlation-based ap-
proach proposed by Luo & Schuster (1991) where the phase shift
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is measured explicitly by picking the maximum of the correlation.
However, picking the maximum of the correlation will only reveal
the phase shift correctly if the source spectra of the modelled and
observed data are identical (Hörmann & de Hoop 2002; de Hoop
& van der Hilst 2005). Our alternative procedure is less sensitive to
errors in the estimated source spectrum.

As has been recognized by de Hoop & van der Hilst (2005),
such measures of misfit will only lead to meaningful updates of
the model if one uses a sensitivity kernel that is consistent with
the misfit. We derive the sensitivity kernel for the newly proposed
measure of misfit. The exposition and analysis closely follows de
Hoop & van der Hilst (2005), and we repeat some of the main points
and ideas of this work throughout the paper for completeness’ sake.

The outline of the paper is as follows. First, we briefly introduce
some notation and describe the mathematical modelling used for
the subsequent exposition and analysis. In Section 3, we introduce
the new correlation-based misfit functional, which is based on the
weighted norm of the correlation, and compare it with a commonly
used approach. We analyse them in some detail and show that the
weighted norm of the correlation also measures the traveltime differ-
ence and is less sensitive to errors in the estimated source spectrum.
The corresponding sensitivity kernels are derived and analysed in
Section 4. We calculate the kernels explicitly for a velocity that
increases linearly with depth and use these to illustrate their prop-
erties in Section 5. An inversion of real cross-well data using the
proposed correlation-based approach is presented in Section 6. Fi-
nally, we discuss the results and present the conclusions.

2 M O D E L L I N G

The displacement, u(t , x), is modelled by a linear elastic wave
equation of the form[
δil∂

2
t − ∂x j ci jkl∂xk

]
ul = fi , (1)

where cijkl is the stiffness tensor and fi is the source function. The
data consists of measurements of one or more components of the
displacement for several distinct source–receiver pairs. Generally,
waveform/traveltime tomography relies on solving the mentioned
wave equation by some numerical method (e.g. finite differences).
However, for the subsequent analysis we make a high-frequency
assumption. We are interested in high-frequency body waves that,
away from caustics, permit the following far-field representation of
the Green’s function

G( j)
i (t, xs, xr ) � (2π )−1a( j)

i (xs, xr )

×
∫

dω exp[ıω(t − T ( j)(xs, xr )) − nπ

2 ], (2)

where a is the amplitude, T is the traveltime, n is the KMAH in-
dex (indicating the number and type of caustics that the wave has
encountered along the way) and (j) enumerates the modes and travel-
time branches. For the analysis, we focus the exposition to one par-
ticular component, mode and branch. We will assume point sources
and denote the corresponding source spectrum by f , which we as-
sume to be hermitian (i.e. f (ω) = f ∗(−ω)) and square-integrable
(i.e. has finite energy). Also, we ignore the factor exp[ınπ/2] for
brevity of notation. Hence, we are considering data of the form

d(t, xs, xr ) � (2π )−1a(xs, xr )

×
∫

dω f (ω) exp[ıω(t − T (xs, xr )]. (3)

We will drop the dependence on the source–receiver coordinates,
denoting T = T (xs, xr), but Ts = (xs, x), etc. Also, we will not

distinguish between perturbations of different components of the
stiffness tensor, simply denoting the relevant (scalar) medium pa-
rameter by c. The measured or true quantities are denoted with a
bar. Hence, d̄ denotes the measured data, c̄ denotes the true velocity
model, etc.

Note that the earlier definitions imply the following conventions
for the Fourier transform

ĝ(ω) =
∫

dt g(t) exp[−ıωt], (4)

g(t) = 1

2π

∫
dω ĝ(ω) exp[ıωt], (5)

which is the conjugate of what is usually used in geophysics.

3 C O R R E L AT I O N - B A S E D C R I T E R I A

An important ingredient of a wave-equation traveltime tomography
scheme is the procedure to detect the relative phase shift between
two waveforms. A straight-forward approach relies on picking the
relevant arrivals in the waveforms. More sophisticated techniques
rely on correlating the waveforms before picking (e.g. Cara &
Leveque 1987). Because we are casting the tomography as an op-
timization problem, we seek to define a functional that attains a
minimum—or maximum—when the relative phase shift between
the observed and modelled data is zero. Next, we discuss two such
functionals that are based on the correlation of the measured and
observed data. Part of this exposition can also be found in Luo &
Schuster (1991) and de Hoop & van der Hilst (2005) and is repeated
here for sake of completeness.

The correlation of the observed and modelled data is given by

C[d̄, d](t) =
∫

dt ′ d̄(t ′ + t)d(t ′). (6)

Assuming the data are of the form presented in eq. (3) we have

C[d̄, d](t) � (2π )−1āa

∫
dω F̂(ω) exp[ıω(t − �T )]

= F(t − �T ), (7)

where �T = T̄ − T denotes the phase shift and F̂ = f̄ f ∗ is the
correlation of the source spectra. We will drop the amplitude factor
aā in the rest of the paper.

3.1 Picking approach

Luo & Schuster (1991) proposed to extract the relative phase shift
between the data by picking the maximum of the correlation:

�t = argmaxt C[d̄, d](t). (8)

The corresponding misfit functional is given by

φmax = (�t)2. (9)

However, as has been noted by Hörmann & de Hoop (2002) and de
Hoop & van der Hilst (2005), this approach is only strictly valid if
the source spectra of the observed and modelled data are identical.
Indeed, eq. (7) suggests that the correlation has a maximum at t =
�T when F(t) has its maximum at t = 0. If, for example, the source
spectra differ by a phase rotation over π/2, F is an odd function
with a zero crossing at t = 0. Different scenarios are illustrated in
Figs 1–3(a). To indicate the difference between the picked and true
traveltime difference explicitly, we introduce

εT = �T − �t. (10)
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Figure 1. Example of different correlation-based misfit criteria. (a, top panel) Shows two waveforms (Ricker wavelet with a 10 Hz peak frequency) that are
phase shifted by �T = 0.1 s. The correlation of the waveforms is depicted in (a, bottom panel). The maximum of the correlation coincides with the phase
shift. (b) Depicts the weighted norm of the correlation using the linear weight (solid), as a function of the phase shift. The weighed norm using the Gaussian
weight is depicted in (c) for t0 = 1 s (solid), t0 = 0.1 s (dash) and t0 = 0.01 s (dash-dot). The latter exhibits local maxima, indicating that t0 is too small. The
FBI transform of the correlation (a), E�t , as a function of t0 and �t and a fixed frequency of 10 Hz (cf. eq. 17) is depicted in (d). At �t = 0.1 s, E�t grows
fastest as t0 → 0, indicating the phase shift. For t0 chosen too small, local maxima occur. This indicates the transition between the picking approach and the
weighted norm with the Gaussian weight.

Hence, the misfit functional, as a function of the phase shift �T ,
behaves as

φmax � (�T + εT )2. (11)

Minimizing this will lead to an erroneous velocity when εT �= 0.

3.2 Weighted norm approach

We propose an alternative misfit criterion, based on the weighted
norm of the correlation

φW = ||W · C ||22. (12)

This approach was introduced by the authors in the context of re-
flection tomography, or velocity analysis, of active seismic data (van
Leeuwen & Mulder 2008, 2010). In Appendix A, we show that the
weighted norm can be seen as a correlation of the squared weight
with a regularizing kernel that depends on the source spectra:

φW (�T ) �
∫

dt W (t)2χ (t − �T ), (13)

where χ (t) = F(t)2. So, the location of the minimum, or maxi-
mum, of the functional does not depend directly on the behaviour
of F anymore, as it did for the picking approach. This resembles
techniques were the envelope of the correlation is used for picking,
instead of the correlation itself (Gee & Jordan 1992).

We investigate the behaviour of the misfit functional as a function
of the phase shift, �T , in more detail for two specific choices of the
weighting function

W (1)
t0 (t) = 
t0 (t0)t, (14)

W (2)
t0 (t) = exp[−(t/t0)2], (15)

where the rectangle function 
t0 (t) = 1 when |t/t0| ≤ 1 and zero
otherwise. The parameter t0 controls the width of the weighting
function and hence the maximal distance over which events are
allowed to interact in the correlation.

3.2.1 Linear weight

The linear weighting function, W (1)
t0 , may be interpreted as an an-

nihilator. It is readily verified that when the correlation can be rep-
resented as a shifted delta pulse, C(t) � δ(t − �T ), the weighted
norm is zero at �T = 0. The idea is to penalize energy at non-zero
shift. By minimizing, we are selecting a velocity that will focus the
energy in the correlation around zero shift. This leads to an approach
that is conceptually the same as the annihilator-based approach to
velocity analysis that has found widespread use among exploration
geophysicists. We refer to Symes (2008) for an excellent overview
of these concepts.
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Figure 2. Example of different correlation-based misfit criteria. (a, top panel) Shows two waveforms (Ricker wavelet with a 10 Hz peak frequency) that are
phase shifted by �T = 0.1 s and one of them has its phase rotated by π/2. The correlation of the waveforms is depicted in (a, bottom). The maximum of the
correlation does not coincide with the phase shift. Instead, the correlation has a zero-crossing at t = 0.1 s. (b) Depicts the weighted norm of the correlation (cf.
eq. 17) using the linear weight (solid), as a function of the phase shift. The weighed norm using the Gaussian weight is depicted in (c) for t0 = 1 s (solid), t0 =
0.1 s (dash) and t0 = 0.01 s (dash-dot). Again, the correlation and exhibits local maxima, indicating that t0 is too small. The FBI transform of the correlation
(a), E�t , as a function of t0 and �t and a fixed frequency of 10 Hz (cf. eq. 17) is depicted in (d). At �T = 0.1 s, E�t grows fastest as t0 → 0, indicating the
phase shift. For t0 chosen too small local maxima occur. This indicates the transition between the picking approach and the weighted norm with the Gaussian
weight.

Figs 1–3(b) illustrate the properties of the misfit functional as a
function of the phase shift, �T , for three different scenarios: the
source spectra are identical, phase rotated over π/2 or phase rotated
over π/3. In all cases, the misfit attains a minimum at �T = 0 and
is quadratic in �T .

Under the assumption that χ is even (this includes phase rotation
over π/2 or a factor ıω between the source spectra), we show in
Appendix A that

φ
W

(1)
t0

(�T ) � ||W (1)
t0 · F ||22 + (�T )2||F ||22, (16)

which confirms the quadratic dependency of the misfit on �T . This
indicates that there may be more to this approach than is suggested
in the annihilator framework, which deals with the propagation of
singularities rather than finite-frequency waveforms (cf. Stolk &
de Hoop 2006). Having made this remark, we leave the matter for
further research.

3.2.2 Gaussian weight

The Gaussian weighting function does not act as an annihila-
tor. Instead, the misfit functional attains a maximum at �T = 0
(Appendix A). Figs 1–3(c) illustrate this. The picking approach, as
explained in Section 3.1, may be derived from this approach by let-
ting t0 ↓ 0. The Gaussian weight then collapses to a delta function
and maximizing the weighted norm is equivalent to maximizing the

correlation at zero shift. This can be seen from Figs 1–3(c,d), where
the Gaussian-weighted norm develops local maxima for very small
t0.

A tentative link may be made with an approach discussed by
Hörmann & de Hoop (2002) (see also de Hoop & van der Hilst
2005). They propose to detect the phase shift by a time–frequency
analysis of the correlation as follows. Consider the windowed
Fourier transform of the correlation:

E�t (t0, ω) =
∫

dt W (2)
t0 (t − �t)C(t) exp[−ıωt]. (17)

This is also known as the FBI (Fourier-Bros-Iagolnitzer) or Gabor
transform (cf. Folland 1989; Strichartz 2003). The singular support
of the correlation (i.e. the location of the singularity) may be de-
tected by inspecting the growth properties of E�t(t0, ω) as t0 ↓
0. More precisely, when �t is not in the singular support of the
correlation we have, for any N ∈ N,

|E�t (t0, ω)| ≤ cN (t0)N . (18)

(cf. Hörmann & de Hoop 2002). So when �t does not coincide with
the singular support of the correlation, E�t(t0, ω) should be rapidly
decreasing as t0 ↓ 0. By inspecting the graph of E�t(t0, ω) as a
function of t0 for each �t and a fixed ω we should select the �t for
which E�t(t0, ω) grows fastest as t0 ↓ 0. This is clearly illustrated
in Figs 1–3(d). Again, for very small t0 this approach reduces to the
picking approach.
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Figure 3. Example of different correlation-based misfit criteria. (a, top panel) Shows two waveforms (Ricker wavelet with a 10 Hz peak frequency) that are
phase shifted by �T = 0.1 s and one of them has its phase rotated by π/3. The correlation of the waveforms is depicted in (a, bottom panel). The maximum of
the correlation does not coincide with the phase shift. (b) The weighted norm of the correlation (cf. eq. 17) using the linear weight (solid), as a function of the
phase shift. The weighed norm using the Gaussian weight is depicted in (c) for t0 = 1 s (solid), t0 = 0.1 s (dash) and t0 = 0.01 s (dash-dot). Again, the latter
exhibits local maxima, indicating that t0 is too small. The FBI transform of the correlation, E�t , as a function of t0 and �t and a fixed frequency of 10 Hz (cf.
eq. 17) is depicted in (d). At �T = 0.1 s, E�t grows fastest as t0 → 0, indicating the phase shift. For t0 chosen too small local maxima occur. This indicates
the transition between the picking approach and the weighted norm with the Gaussian weight.

The weighted norm approach arises when we consider E�t for a
fixed t0 and all frequencies. In fact, it is readily verified that

||E0(t0, ·)||22 = ||W (2)
t0 C ||22, (19)

which in light of the above seems a reasonable way to measure the
shift of the singular support.

4 S E N S I T I V I T Y K E R N E L S

The sensitivity kernel relates perturbations in the medium parame-
ters to changes in the misfit. It should be noted that the sensitivity
kernel only gives a meaningful update of the model if it is consis-
tent with the misfit (de Hoop & van der Hilst 2005). Although the
derivation of such kernels is rather straightforward we include it for
completeness’ sake.

Via a Taylor-series argument we have

φ[c0 + δc] − φ[c0] =
∫

dx ∂cφ(x)δc(x) + O(||δc||22), (20)

where ∂cφ (x) is the sensitivity kernel, or the Fréchet derivative of
the misfit functional w.r.t. to the medium parameters. In the context
of transmitted body waves, one usually employs the Born approxi-
mation to derive this kernel, which can then be efficiently computed
by correlating a forward and adjoint wavefield (see, e.g. Tarantola
1984). We briefly illustrate this procedure with an example. Con-
centrating on a single component, one source–receiver pair and a

scalar medium perturbation, we assume that the wavefield obeys a
scalar wave equation[
c−2∂2

t − ∇2
]

︸ ︷︷ ︸
L[c]

u = f δ(· − xs). (21)

We apply a Born approximation, writing c = c0 + δc, u = u0 + δu

L[c0]u0(t, x) = f (t)δ(x − xs), (22)

L[c0]δu(t, x) = 2
δc(x)

c0(x)3
∂2

t u0(t, x). (23)

We also introduce the wavefield v0 satisfying

L∗[c0]v0 = ∂dφ(t)δ(x − xr ), (24)

where ∂dφ is the Fréchet derivative of the misfit functional w.r.t. to
the data, or the adjoint source. The sensitivity kernel is then given
by

∂cφ(x) = 2

c0(x)3

∫
dt v0(t, x)∂2

t u0(t, x). (25)

For more details concerning the adjoint-state technique, we refer to
Plessix (2006).

Asymptotically, the kernel is then given by (dropping the factor
2c−3

0 ):

∂cφ(x) � asar

∫
dω ∂̂dφ(ω)ω2 f ∗(ω) exp[ıω(Ts + Tr )]. (26)
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We derive the adjoint sources for the different correlation-based
approaches in Appendix B. This yields the following expressions
for the sensitivity kernels:

∂cφ(x) = asar

∫
dω ω2 F̂(ω)Ĥ (ω) exp[ıω(Ts + Tr − T )]. (27)

The factor Ĥ depends on the misfit criterion, which for source
signatures that are band-limited delta functions is given by

Ĥ max(ω) � (amplitude terms) × ıω�T exp[ıωεT ], (28)

Ĥ W (ω) � (amplitude terms) × W (�T )2. (29)

When F̂ is real and the velocity varies only mildly, eq. (27) leads
to the famous banana–doughnut shaped kernel with zero sensitivity
along the central ray (Marquering et al. 1999). When F̂ is not real,
which happens in general when the source spectra are not identical,
the shape of the kernel changes and loses the zero-sensitivity along
the ray. This is a subtle, but important, point first made by de Hoop
& van der Hilst (2005).

The kernel for the weighted norm approach does not have zero-
sensitivity along the ray. For general source spectra, we find that
the factor Ĥ W contains a factor F̂∗. Under the assumption that χ

is an even function, the factor F̂ Ĥ W (cf. eq. 27) is real and even
and defines an even function around the central ray. Therefore,
the sensitivity kernel for the weighted norm approach has non-
zero sensitivity along the central ray, as long as χ is even. We
might call these kernels bananas instead of banana–doughnuts. This
confirms our earlier assertion that the weighted-norm approach is
less sensitive to differences in the source spectra. A similar, more
detailed multiresolution analysis of the sensitivity kernel for the
picking approach is given by de Hoop & van der Hilst (2005).

To illustrate the above-mentioned properties, we calculate the
adjoint sources for the different approaches for two different sce-
narios: (1) the source spectra are identical and (2) the source spectra
are phase rotated over π/2 w.r.t. each other. The different adjoint
sources are depicted in Fig. 4. As predicted, the phase rotation leads
to a phase shift in the adjoint source for the picking approach.
The adjoint sources for the weighted-norm approach respond to the
phase rotation of the source spectrum by phase rotation, as argued
earlier.

5 E X A M P L E : D I V I N G WAV E
T O M O G R A P H Y

We illustrate the properties of the sensitivity kernels derived in the
previous section for constant-density acoustic velocity models that
increase linearly with depth

c(x3) = c0 + αx3. (30)

The 3-D Green’s function for such models can be expressed ana-
lytically (Pekeris 1946; Kuvshinov & Mulder 2006) and is given
by

G(ω, x, x′) = (4π
√

cc0(ρ2 − 1)/α)−1

× exp[ı
√

(ω/α)2 − 1/4 arccosh(ρ)], (31)

where

ρ = 1 + 1

2

||x − x′||2
(x3 + c0/α)(x ′

3 + c0/α)
. (32)

Figure 4. Example of adjoint sources for the different correlation-based
approaches: (a) picking, (b) linear weight and (c) Gaussian weight for t0 =
1. The waveforms are phase-shifted by 0.1 s and their spectra are either the
same (solid) or phase-rotated over π/2 (dash) w.r.t. each other. The shift of
the adjoint sources for the picking approach depends on the source spectra.
For the weighted norm approach, the phase rotation of the source spectrum
causes a phase rotation of the adjoint source.

The kernel is explicitly given by

∂cφ(x, xs, xr )

=
∫

dω ω2 f ∗(ω)∂̂dφ(ω, xs, xr )G(ω, xs, x)∗G(ω, x, xr )∗. (33)

Figs 5–7 illustrate the different kernels for c0 = c̄0 = 1500 and
α = 0.7 s−1, ᾱ = 0.5 s−1, again for identical and phase-rotated
source spectra. The central ray is also indicated. The kernel for the
picking approach is affected by the phase rotation of the source
spectra, while the weighted norm kernels are visibly indiscernible,
confirming our earlier assertion.

6 A P P L I C AT I O N : C RO S S - W E L L
T O M O G R A P H Y

We use the weighted norm of the correlation with the Gaussian
weight as a misfit criterion for cross-well tomography. That is, we
solve the optimization problem

coptimal = argmaxc φ
W

(2)
t0

[c]. (34)

The data are modelled with a frequency-domain finite-difference
code (Mulder & Plessix 2002). We employ a limited-memory BFGS
(Broyden–Fletcher–Shanno–Goldfarb) method to solve the opti-
mization problem. As regularization, we represent the model on
linear splines on a coarse grid. The gradient is calculated with
the adjoint-state technique. More details on how to implement the
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Correlation-based traveltime tomography 1389

Figure 5. Example of sensitivity kernels for the picking approach for a velocity that increases linearly with depth. [a, c(solid)] Depicts the kernel where the
source spectra are identical, whereas (b) and (c, dash) depicts a situation where the source spectra are phase rotated over π/2. The slice through the kernels at
x = 2500 m shows that kernel has zero sensitivity on the central ray when the source spectra are identical and non-zero sensitivity when the source spectra are
not identical.

Figure 6. Example of sensitivity kernels for the weighted norm approach with the linear weight. [a, (c, solid)] Depicts the kernel where the source spectra are
identical, whereas (b) and (c, dash) depicts a situation where the source spectra are phase rotated over π/2. The kernel is not affected by the phase-rotation.
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1390 T. van Leeuwen and W. A. Mulder

Figure 7. Example of sensitivity kernels for the weighted norm approach with the Gaussian weight. [a, (c, solid)] Depicts the kernel where the source spectra
are identical, whereas (b) and (c, dash) depicts a situation where the source spectra are phase rotated over π/2. The kernel is not affected by the phase-rotation.

adjoint calculations can be found in (e.g. Tromp et al. 2005; Plessix
2006).

The cross-well data set, which was also use for a virtual source
study (Mehta et al. 2008), contains 147 shot positions in the well at
x = 205.74 m between 7.19 and 567.9 m depth at a 3.84 m inter-
val and 150 receiver positions at x = 26.82 m between 6.63 and
578.86 m depth at the same depth interval. The source and 3C geo-
phones were clamped to the casing.

We used the x-component of the data for an x-source to estimate
the P velocity and the y-component of the data for a y-source to
estimate the S velocity separately. We assumed that the separate
components were not too different from acoustic pressure data from
an explosive source. The data where damped to emphasize the
first arrival by multiplication with e−γ (t−tr ). This translates into
a complex angular frequency with γ as its imaginary part. We
inverted frequencies from 70 to 160 Hz with an interval of 2 Hz.
Attenuation is taken into account: c̃ = c/

√
1 + (ı − a)/Q, a =

(2/π ) log( f/ fr ). The free surface was also modelled by imposing
a zero-pressure boundary condition at the top of the model. As a
wavelet we used a band-limited delta function.

The inversion was done in several stages. First, an optimal (i.e.
resulting in the lowest misfit) linear velocity c = c0 + αx3 was
sought at a fixed quality factor Q = Qr. Then, we inverted for a
layered model, represented by linear splines at a 15.24 m interval,
again at a fixed Q = Qr. Finally, we allowed Q to vary and used a
finer spline grid to represent the velocity. The inversion parameters
for the P and S velocities are given in Table 1.

The final results are shown in Figs 8 and 9. We compare the final
models with the interpolated well-logs. This shows that the general
trend of the velocity matches pretty well. Also, the traveltimes
are reasonably well explained, as can be seen from the correlation
panels. To allow for visual inspection of the correlation panels we

Table 1. Inversion parameters for P
and S velocities.

γ tr Qr fr c0

P 8 0.05 80 100 1551
S 4 0.1 80 100 430

normalized the correlation by dividing by the absolute value of the
spectrum.

A perfect match, in terms of velocity and traveltime, is not be
expected because important effects such as anisotropy have not been
taken into account. Also, the damping parameters used do probably
not reflect the reality, which may seriously effect the result. We
have generated synthetic data for the interpolated well-logs and
these data did not give a significantly better traveltime match than
our inverted model. This indicates that the resulting traveltime and
velocity errors are most probably caused by systematic modelling
errors. We did not try to adjust the damping parameters or introduce
anisotropy to improve the results, as this example serves as a proof
of concept of the method.

7 D I S C U S S I O N

The weighted norm of the correlation can be seen as a regularized
version of the correlation and resembles techniques that use the
envelope or a time–frequency analysis of the correlation to pick the
phase shift. The main difference with such approaches is that the
weighted norm can be used directly as an optimization criterion,
without picking. In particular, this makes it easier to derive the
corresponding sensitivity kernels, as we do not need to use implicit
relations between the maximum of the correlation and the phase
shift.
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Figure 8. Inversion of the x-component of cross-well data for an x-source using the weighted norm of the correlation as optimization criterion. We used the
Gaussian as weighting function. (a) Depicts the final velocity, (b) depicts the interpolated and smoothed well-logs. (c) Depicts a central slice through the final
(solid) and well-log (dash) models. (d,e) Show a shotgather at 387.4 m of the modelled and observed data. The correlation of the latter two is depicted in (f).
To allow for visual inspection, the correlation is normalized by dividing by the spectrum.

The behaviour of the sensitivity kernel for the picking ap-
proach is determined by the correlation of the source spectra,
F̂(ω) = f̄ (ω) f ∗(ω). If, for example, the source spectra differ by a
phase rotation, this will show up in F̂ and hence directly in the ker-
nel, causing the zero-sensitivity along the central ray to disappear.
In the sensitivity kernels for the weighted norm approach an extra
factor F̂∗ appears, making these kernels less sensitive to errors in
the source spectra. For example, phase rotation or differentiation
of the source spectrum will not dramatically affect the weighted
norm approach. The link to the time–frequency analysis, presented
in Section 3, suggests that the weighting function plays a vital role
in mitigating this sensitivity. If we choose the width of the Gaussian
weight too small, the weighted norm degrades to the picking ap-
proach. If we choose it too large, we might not be sensitive enough
to time shifts. The width of the Gaussian should somehow reflect the
frequency content of the data. One might even envision a scheme
were different frequency bands of the data are treated separately
with an optimal width of the Gaussian.

Intuitively, the weighted norm approach should be able to handle
multiple arrivals at the same time, as long as each arrival in the

observed data has a corresponding arrival in the modelled data. An
issue that arises here is the cross-talk between different arrivals.
Moreover, the correlation could be extended to measure phase dif-
ferences of whole wavefields. Then, not only the shift of the singu-
lar support but also the slowness difference between the wavefields
can be measured. This would allow for a wave-equation stereo-
tomography approach.

8 C O N C LU S I O N

We have reviewed several correlation-based misfit functionals that
are sensitive to the time shift between complex waveforms. Such
misfit functionals are used to cast wave-equation traveltime tomog-
raphy as a PDE-constrained optimization problem. Ideally, the mis-
fit functional attains a minimum—or maximum—if the phase shift
between the measured and observed data is zero. The commonly
used procedure that relies on picking the maximum of the cor-
relation has the drawback that it is very sensitive to errors in the
estimated source signature. When the modelled and observed source
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Figure 9. Inversion of the y-component of cross-well data for a y-source using the weighted norm of the correlation as optimization criterion. We used the
Gaussian as weighting function. (a) Depicts the final velocity, (b) depicts the interpolated and smoothed well-logs. (c) Depicts a central slice through the final
(solid) and well-log (dash) models. (d,e) Show a shotgather at 387.4 m of the modelled and observed data. The correlation of the latter two is depicted in (f).
To allow for visual inspection, the correlation is normalized by dividing by the spectrum.

spectra are not identical, the corresponding misfit functional may
attain its minimum at non-zero phase shift. As an alternative to
the picking approach, we propose to use a weighted norm of the
correlation as misfit functional. We discuss two particular instances
of this approach, using a linear and a Gaussian weighting function.
For the linear weighting function, we may view the procedure as an
annihilator-based criterion which attains a minimum when the phase
shift is zero. Using the Gaussian weight, the weighted norm attains
a maximum. We show that this approach is intimately connect to
techniques from time–frequency analysis.

The sensitivity kernels corresponding to the weighted norm ap-
proach do not exhibit the characteristic hole in the centre and are less
sensitive to errors in the source spectra. One might say that these ker-
nels look more like regular bananas instead of banana–doughnuts.
We illustrate the properties of the sensitivity kernels for a velocity
model that increase linearly with depth, using an analytic solution
of the constant-density acoustic wave-equation.

The cross-well examples illustrate that the weighted norm ap-
proach is a viable alternative to the picking approach which is more
robust w.r.t. errors in the estimated source spectrum.
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A P P E N D I X A : W E I G H T E D N O R M
O F T H E C O R R E L AT I O N

In the following we will drop the amplitude and source–receiver
dependence from the notation, expressing the data as

d(t) = (2π )−1

∫
dω f (ω) exp[ıω(t − T )]. (A1)

The correlation is then given by

C(t) = (2π )−1

∫
dω F̂(ω) exp[ıω(t − �T )] (A2)

= F(t − �T ), (A3)

where F̂ = f̄ f ∗ is the correlation of the source spectra. The
weighted norm of the correlation, as a function of the phase shift,
is then given by

φW (�T ) =
∫

dt (W (t)F(t − �T ))2

=
∫

dt B(t + �T )χ (t), (A4)

where B = W 2 and χ = F2. The behaviour of the functional, as
a function of �T depends intricately on the interplay between the

weighting function and the correlation of the source spectra. In the
following, we assume that χ is an even function. This restricts the
validity of the analysis to cases where F̂ is either purely real or
purely imaginary (this includes the source spectra differing by a
phase rotation over π/2 degrees or a factor ıω). The example in
Fig. 3 suggests, however, that the validity of the approach is not
restricted to this case. Also, the more general result on the detection
of wavefront sets by using the Gaussian weight (Hörmann & de
Hoop 2002) suggests a more general validity. The following analysis
is meant to illustrate why the weighted norm approach might work.

We investigate the behaviour of the misfit functional as a function
of �T . The first derivate is given by

φ′
W (�T ) =

∫
dt B ′(t + �T )χ (t). (A5)

Since χ is even and B ′ is odd, φ′
W (0) = 0. For the specific cases

B(t) = t2 (linear weight) and B(t) = e−2t2
(Gaussian weight), it is

readily verified that �T = 0 is the only stationary point of φ′
W . The

second derivative is given by

φ′′
W (�T ) =

∫
dt B ′′(t + �T )χ (t). (A6)

For the linear weight, B ′ ′ (0) = 2, so φ′ ′
W (0) > 0, i.e. the misfit

functional has a minimum at �T = 0. Likewise, we find that the
misfit functional has a maximum for the Gaussian weight.

For the linear weight, we can derive an even more explicit ex-
pression

φW (1) (�T ) =
∫

dt (t + �T )2χ (t)

= (�T )2||F ||22 + 2�T

∫
dt t χ (t) + ||W (1) · F ||22.

(A7)

The second term vanishes because the integrand is odd.

A P P E N D I X B : S E N S I T I V I T Y K E R N E L S

The sensitivity kernel is given by

∂cφ �
∫

dω ω2 f ∗(ω)∂̂dφ(ω) exp[ıω(Ts + Tr )]. (B1)

The adjoint sources for the different functionals are given by

∂dφmax(t) = −2�t
∂t d̄(t + �t)

C[∂2
t d̄, d](�t)

(B2)

∂dφW (t) =
∫

dt ′ W (t ′)2C(t ′)d̄(t ′ + t). (B3)

For a derivation of eq. (B2), we refer to (Luo & Schuster 1991).
Upon substituting the asymptotic expression for the data in

eq. (B2), we get

∂̂dφmax(ω) � 2(�T + εT )

C[∂2
t d̄, d](�t)

ıω f̄ (ω) exp[ıω(εT − T )]. (B4)

This leads to the kernel for the picking approach

∂cφmax = 2(�T + εT )

C[∂2
t d̄, d](�t)

×
∫

dω ıω3 F̂(ω) exp[ıω(Ts + Tr − T + εT )]. (B5)

For the weighted-norm approach we find, by inserting the asymp-
totic expressions for the data into eq. (B3) and taking the Fourier
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transform:

∂̂dφW (ω) �∫
dt

∫
dt ′

∫
dω′

∫
dω′′ F̂(ω′) f̄ (ω′′)B(t ′)

× exp[−ıωt + ıω′(t ′ − �T ) + ıω′′(t ′ + t − T̄ )]. (B6)

In case the source spectra are band-limited delta functions, the
integrals can be collapsed directly to yield

∂̂dφW (ω) � B(�T ) exp[−ıωT ], (B7)

which leads to

∂cφW � B(�T )
∫

dω exp[ıω(Ts + Tr − T )]. (B8)

For general source spectra, we may insert the expression into
eq. (B1). Rewriting in terms of the Fourier transform of B, we
get

∂cφW �
∫

dω

∫
dω′ ω2 F̂(ω)F̂∗(ω′)B̂(ω′ − ω)

× exp[ıω(Ts + Tr − T ) + ı(ω′ − ω)(�T )]. (B9)
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