
METHODOLOGY Open Access

A correlative approach for combining microCT,
light and transmission electron microscopy
in a single 3D scenario
Stephan Handschuh1,2,3*, Natalie Baeumler4, Thomas Schwaha5 and Bernhard Ruthensteiner4

Abstract

Background: In biomedical research, a huge variety of different techniques is currently available for the structural
examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy
(TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many
others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary
methods often yields a significant broader range of information. Here we demonstrate the advantages of the
correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small
biological samples.

Results: We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to
demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-
sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D
scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron
microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was
imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since
the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM
investigation. The serial section images were aligned and specific organ systems were reconstructed based on
manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were
detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data
from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were
able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small
geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the
excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure
as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures
typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the
pericardium towards the kidneys, which exhibit a typical basal infolding system.
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Conclusions: The presented approach allows a comprehensive analysis and presentation of small objects regarding
both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of
different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of
datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new
opportunities for understanding and communicating structural relationships within organisms and tissues. In
general, the correlative use of different microscopic imaging techniques will continue to become more widespread
in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time
consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very
small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination
substantially, while microCT could become a key-method for complementing ultrastructural examinations.

Background
In biomedical research, a huge variety of different tech-

niques is currently available for the structural examination

of small specimens. In small invertebrate animals, cellular

details and overall organization are often examined by con-

ventional brightfield light microscopy (LM), which can also

be extended to a three-dimensional analysis by the examin-

ation of section series (e.g. [1-3]). While conventional LM

is limited in resolution to approximately 0.2 μm, transmis-

sion electron microscopy (TEM) provides much higher

resolutions allowing the investigation of subcellular details

(e.g. [4]). The use of specific markers and fluorescent dyes

in combination with conventional fluorescence microscopy

or confocal laser scanning microscopy (CLSM) allows

for assessment of specific tissues or cellular components

(e.g. [5]), and microscopic X-ray computed tomography

(microCT) allows imaging of the X-ray dense structures of

entire specimens (e.g. [6]).

It is becoming increasingly popular to combine some

of these and other imaging methods for specific research

questions. This combined approach for examination of a

single specimen is usually termed correlative microscopy

(e.g. [7,8]). A variety of combinations such as CLSM

with TEM (e.g. [9,10]), LM with scanning electron mi-

croscopy (SEM) and TEM (e.g. [11]), microCT with LM

(e.g. [12]), or microCT with CLSM [13] have been ap-

plied so far. Recently, an approach was presented that

correlates LM and TEM images to single microCT sec-

tions [14]. The most common combination is LM with

TEM, which has received its own acronym, correlative

light and electron microscopy (CLEM) (e.g. [8,15]).

CLEM includes all attempts of re-sectioning LM sec-

tions for TEM investigations that use LM sections for

tracking down ROIs for further investigation. The merits

of all these methodological combinations come from a

broadening of the range of information and a reduction

of the total workload.

Small specimens routinely processed for TEM are

ideally suited for correlative approaches. Such specimens

are typically post-fixed with osmium tetroxide, which in-

creases electron density of soft tissues and thus contrast

for both TEM examination and X-ray microCT scanning

[14,16]. Hence, specimens prepared for TEM can be ex-

amined directly by microCT without further treatment

[17,18]. Specimens treated with osmium tetroxide

postfixation are also routinely used for LM serial section

analysis (e.g. [19]) and re-sectioning of LM sections for

TEM is an established technique (e.g. [20]). Accordingly,

no specific preparatory processes are required for a com-

bined examination by microCT, LM serial sections and

TEM of the same specimen. Such a threefold approach

seems highly promising because it provides information

of different kinds and at different spatial scales, substan-

tially increasing the information gained on the

organization of the specimen in general.

Most recent studies with a correlative approach apply 3D

analysis and visualization. The datasets of the individual

methods are usually treated separately [11,21]. However,

datasets can be connected to each other directly in a single

scene. State-of-the-art commercial 3D software enables a

co-registration of datasets, i.e. aligning size and position in

one 3D coordinate system for simultaneous display. For ex-

ample, Lucas et al. [22] show perfectly co-registered CLSM

and TEM datasets. In this example co-registration proce-

dures are relatively simple, because the axes of the datasets

are orthogonal. As we will illustrate, more complex pro-

cesses for co-registration, including the rotation of datasets,

work well too.

To illustrate the merits of co-registration of microCT,

LM, and TEM data we use a juvenile bivalve mollusc.

Our analysis includes the microCT volume dataset, the

volume dataset and segmentation-based surface models

of the serial LM section images, and selected TEM sec-

tion images. The muscular, vascular, excretory, and di-

gestive systems were chosen for segmentation and

surface rendering. The excretory organs were selected

for the TEM investigation because their size relative to

the entire specimen is typical for fine structural investi-

gations, they bear complex ultrastructural details, and

their detailed organization contributes information to

ongoing studies on the nephrogenesis of molluscs

[23,24].
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Methods
Overview of the methods applied

The specimen was fixed and embedded using standard pro-

cedures for transmission electron microscopy (TEM) inves-

tigation. Subsequently it was scanned by microCT. This was

followed by sectioning for light microscopical (LM) investi-

gation. Based on serial LM images and image segmentation,

a 3D surface model of organ systems was generated. This

permitted precisely tracking down ROIs and thus individual

LM sections for fine structural investigation. Selected sec-

tions were re-sectioned for TEM. The datasets gained from

microCT (volume dataset), LM (volume dataset, surface

model) and TEM (individual sections) were co-registered

and combined to a single visualization using AMIRA®

(version 5.3.3, Visage Imaging, Berlin, Germany) (Figure 1).

Sample treatment and laboratory procedures

Collection, fixation, embedding

The juvenile specimen of Mytilus galloprovincialis La-

marck, 1819 was collected on the shore near the Observa-

toire Océanologique de Banyuls-sur-Mer, France, in spring

2009. It was anesthetized with magnesium chloride and

fixed for several days in 4% glutaraldehyde in 0.2 mol l-1

cacodylate buffer, followed by 2 h postfixation in 1% os-

mium tetroxide in 0.2 mol l-1 cacodylate buffer. After

decalcification in 1% ascorbic acid, the specimen was

dehydrated in an ascending acetone series (further details

given in [25]) and embedded in an epoxy resin (Agar Low

Viscosity Resin Kit, Agar Scientific, Stansted, England).

MicroCT

Prior to microCT scanning the resin block was trimmed

to a shape as required for sectioning. Subsequently a

part of the block was removed to facilitate mounting in

the microCT scanner (Figure 2C,D). Scanning was

performed with a Nanotom (GE Sensing & Inspection

Technologies GmbH, Wunstorf, Germany) at 50 kV for

4.3 hours. 1,440 projection images yielded a volume

dataset with the dimensions of 650×638×838 with

1.2 μm (isotropic) voxel size. By the CT scanning process

Figure 1 General workflow for combining microCT, LM and TEM. Red arrows, volume data from microCT; blue arrows, LM section data;
green arrows, TEM section data; green encircled, material and (interim) results; orange encircled, microscopic equipment; black encircled, software
systems. A. EM fixed specimen embedded in epoxy resin block, anterior one used in study. B. Block trimmed and anterior portion detached, after

microCT scan. C. MicroCT. D. Volume rendering with Drishti. E. Volume rendering with AMIRA®. F. Microtome for LM sectioning. G. LM section
series. H. Light microscope. I. Surface rendering with AMIRA®. J. Remounting of LM sections for ultrathin sectioning. K. Ultramicrotome. L. TEM.

M. 2D alignment for figure plates. N. 3D registration with AMIRA®. O. Combined 3D visualization of all datasets.
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the resin of the block was considerably darkened

(Figure 2C). However, this had no the effect on the fol-

lowing TEM sectioning and examination procedures.

Sectioning

The specimen was initially sectioned for LM (“semithin”)

at a thickness of 1.5 μm using a Histo Jumbo diamond

knife (Diatome AG, Biel, Switzerland) and with ribbon

formation of sections (see [25] for protocol). The section

ribbons were applied to conventional (un-pretreated)

microscope slides that were cleaned as described by [25].

Since some sections later had to be detached for TEM

investigation, the series was left uncovered with no

mounting medium and no coverslip applied. Re-sectioning

of LM sections for TEM (Figure 3) followed the method

described by Campbell & Hermans [26]. An empty resin

block was trimmed so that it had a cutting surface as large

as the LM section to be re-mounted. The empty block was

sectioned on an ultramicrotome with a diamond knife to

obtain a smooth surface (Figure 3E). The holder with the

block was then removed from the microtome and placed

with the cutting surface facing up and a drop of distilled

water was placed on it (Figure 3F). Subsequently the LM

sections selected for re-sectioning were removed from the

microscope slide by placing a drop of distilled water at the

edge of the section (Figure 3B). The section then was re-

moved from the slide by gently detaching it from the side

with the tip of a fine needle and simultaneously dragging

the water underneath the section (Figure 3C). This resul-

ted in the section floating on the surface of the drop.

From here sections were picked up with tip of a needle

(Figure 3D) and transferred to the drop on top of the cut-

ting surface of the block (Figure 3G). Excess water was re-

moved with the help of filter paper to prevent wrinkles in

the sections. Thereafter the block was placed in an oven at

40°C for at least 30 minutes to increase adhesion of the

section to the block (Figure 3H). Prior to TEM sectioning

the block was trimmed until the cutting face was smaller

than the LM section before re-mounting (Figure 3I); every

edge of the LM section was cropped.

For ultrathin sectioning only slight re-adjustment of

the cutting angle was required, since settings were

retained from smooth sectioning of the empty block be-

fore mounting the LM section. Ultrathin sectioning was

performed with a diamond knife. Each LM section

yielded up to 13 TEM sections of 50–70 nm thickness

and reasonable quality.

The TEM sections were mounted on formvar coated

slot grids. They were stained with uranyl acetate and

lead citrate solutions with the help of a grid staining

matrix system (Ted Pella, Inc., Redding, CA, USA), and

examined using an FEI Morgagni 268 TEM (FEI Com-

pany, Eindhoven, Netherlands) equipped with an Olym-

pus MegaView III digital camera (Olympus Soft Imaging

Solutions GmbH, Münster, Germany) at 80kV and a

resolution of 1.3 megapixels. Individual exposures were

automatically stitched; every image used for figures of

this study consists of at least four exposures.

Image processing and 3D visualization

MicroCT dataset

The microCT dataset was visualized by volume render-

ing with AMIRA® (see also below) and DRISHTI 2.x [27]

(Figure 2D–G) software. In DRISHTI we applied transfer

functions in the 2D histogram. Individual color and

transparency settings for multiple transfer functions per-

mitted discerning tissues with different density attri-

butes. With the help of ClipPlanes individual parts were

selectively hidden (Figure 2G, Additional file 1).

LM image acquisition, segmentation and surface rendering

Images of the 585 sections of the LM series were taken with

a Spot Insight camera (Diagnostic instruments Inc., Sterling

Heights, USA) mounted on a Leica (Leica Microsystems,

Wetzlar, Germany) DMB-RBE microscope at a resolution

of 1,600×1,200 pixels. The images were set to 8-bit gray-

scale and enhanced with Photoshop CS5 (Adobe Systems

Incorporated, 345 Park Avenue, San Jose, CA 95110–2704).

Slice alignment, segmentation and generation of surface

meshes were performed with the software AMIRA®, mostly

following the procedures outlined by Ruthensteiner [25].

Figure 2 Specimen embedded in block and volume rendering.

A. Anterior part of block, anterior (upwards) specimen used for

study. B. Photograph of specimen in block. C. Block trimmed and
anterior portion detached, after microCT scan. D–G. Volume
rendering with Drishti software. D. Transfer functions set to view

embedding resin, facing bottom of block. E, F. Different transfer
function settings. G. Several independent transfer function setting

optimized for specific specimen structures with clipping part of the
transfer function results. f, foot; g, gill; gv, gill vessels; mu, muscle;
ol, oral lappets; sr, shell resilium.
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Since no cropping was required, the dimensions of the final

LM section image stack remained at 1,200×1,600×585

(voxel size: 0.413×0.413×1.5 μm). The renopericardial sys-

tem, the nervous system, the digestive system, muscles, and

the gill vessels were segmented.

Affine co-registration of image stacks

For co-registration of image stack data from two differ-

ent sources (microCT and LM serial section images,

Figure 4A,B) both stacks were loaded into the AMIRA®

Pool and saved in amira mesh (AM) format. The

Figure 3 Re-sectioning of LM sections for TEM. A. Excerpt of the LM section series on slide. B. Drop of distilled water is placed atop the
section to be lifted. C. Section detached. D. Section is picked up with the tip of a needle. E. Block that has been perfectly smoothened by

sectioning. F. Drop of distilled water placed atop the block. G. Section placed in drop. H. Section dried on block surface. I. Block trimmed for
TEM re-sectioning.
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microCT stack was used as reference dataset, as it is free

from both geometric distortions and misalignments. The

LM stack (the same as previously processed for segmen-

tation – see above) was then inverted using the Arith-

metic module (expr: A*–1+255) and filtered using

Gauss-Smoothing (3D, Kernel: 3/3/3) (Figure 4C). These

steps enhanced similarity to the CT dataset and thereby

facilitated co-registration based on correlation metrics

for use with the AffineRegistration module. Subsequently

the LM image stack was coarsely aligned with the refer-

ence (microCT) stack by hand (while displaying both

stacks with a Voltex module) using the Transform Editor.

This was followed by fine co-registration, which was

performed automatically with the AffineRegistration

module (Additional file 2). This module was connected

to the LM stack and the Reference port was connected

to the microCT stack. The only parameter changed from

the default settings was Correlation (at metric). Thus,

the registration process was rigid and included subse-

quent steps of rotation and translation. After registra-

tion, the transformed section image stack was saved.

The same transformation parameters were subsequently

applied (copy/paste in the Transform Editor dialog)

to the original (non-inverted, unfiltered) LM stack

(Figure 4D) and to the segmentation stack. Accordingly,

both LM stacks, the segmentation stack as well as the

surfaces resulting from the segmentation dataset became

co-registered with the microCT stack in the 3D scene.

Registration of TEM images

Prior to the registration of a TEM image into the 3D

network, we created templates from the LM sections that

were actually used for TEM re-sectioning (Figure 4F).

To achieve this, the selected LM section image was iso-

lated from the already registered LM stack with the Crop

Editor and saved as separate AM file in AMIRA®. For

each TEM image to be registered, the LM section was

cropped to the specific region of interest (Figure 5A)

again with the Crop Editor. Subsequently the resolution

of the dataset (crop of a single slice) was strongly in-

creased (Compute, Resample) to reach the voxel (pixel)

size of the respective TEM image (calculated from TEM

scale bar) (Figure 5D and 5E). After resampling of the

template, the transformation details had to be restored

from the original cropped image using the copy/paste

function of the Transform Editor, and the resampled and

transformed template was saved in AM format. The

template was then exported in 2D TIFF format and

loaded into Photoshop CS5. Thereafter the TEM image

was loaded into the same Photoshop document into a

new layer and aligned to the LM template using the

Auto-Align-Layers function. To check the quality of

alignment, the TEM image layer was inspected with 50%

opacity (Figure 5B). Distortion of TEM images relative

to the LM images was mostly negligible and no elastic

registration appeared necessary. In a few cases the size

of TEM images had to be slightly rescaled (isotropically)

to match the LM image exactly. A black background

layer was inserted below the TEM image layer, and the

8-bit histogram of the TEM image was modified to 10–

255 using a Levels layer to provide that all areas of the

TEM image remain visible at visualization in AMIRA®

(see below). Eventually the registered TEM image was

combined with the fully black background and saved as

TIFF file (Figure 5C; note that it is crucial that the can-

vas size in the Photoshop document remains unchanged

during this procedure). This image was then re-

imported into AMIRA®. The position coordinates within

the scenery were restored from the resampled template

with the Crop Editor, and transformation coordinates

were reused from the resampled template again using

the copy/paste function of the Transform Editor. Finally

the TEM image was saved in Amira mesh (AM) format.

Visualization of the 3D scene in AMIRA®

MicroCT, LM, and TEM data were displayed simultan-

eously in a single AMIRA® 3D scene (Network) (Figures 6,

7, 8) using a combination of different standard visualiza-

tion devices for viewing volume data, polygonal surfaces,

and individual slices. For volume data from microCT and

Figure 4 Workflow of TEM section 3D registration. A. MicroCT
stack. B. LM image stack. C. LM image stack inverted and Gaussian

filtered to enhance similarity with the microCT stack. D. Untreated
LM stack with co-registration parameters adopted from the
previously co-registered LM stack that was inverted and filtered.

E. TEM section. F. Template of LM section that was re-sectioned for
TEM. G. TEM section with 3D co-registration parameters. H. Final 3D

scenario with co-registered data of microCT, LM and TEM. Processes:
1, co-registration of the modified LM image stack with the microCT
stack; 2, adoption of the co-registration parameters to the untreated

LM stack; 3, 2D registration of TEM images in LM image templates
with the help of Photoshop. 4, adoption of the of the 3D co-
registration parameters to the 2D registered TEM image. Blue

background: 2D environment; peach colored background:
3D environment.
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Figure 6 Validation of co-registration by volume rendering and ortho slices. LM serial section (registration adjusted) and microCT data

(original registration retained) sets displayed by volume rendering (A, B) and slices (C) in AMIRA® A. View from posterior, left side (greenish) LM
serial section data, right side (brownish) microCT data, both datasets visualized with the volren module and opposite side clipped. B. View from
the left side. Datasets like in A but in full, transparency intensified by lowering alphascale values. Note deviation of foot tips. C. View from

posterior, left side orthoslice of LM serial section data, right side obliqueslice of microCT data aligned with LM orthoslice. bo, border between
orthoslices; em, external plus pallial cavity epithelium; f, foot; g, gill; i, intestine; me, mantle edge; mu, muscle; ol, oral lappets; os, organic shell

layers; ph, periostracal hairs; po, periostracum and periostracal structures.

Figure 5 TEM section 3D registration. A. Template from an LM section that was used for TEM re-sectioning. B. TEM image co-registered to the

LM template in Photoshop. TEM image layer set to 50% opacity. C. Registered TEM image with (nearly) black background as re-imported into
AMIRA®. D. Voxel dimensions (0.413×0.413 μm in X and Y axes) of the cropped LM template before resampling to TEM resolution. E. Voxel
dimensions (0.025×0.025 μm) of the cropped LM template after resampling to TEM resolution (same as in 3D registered TEM image).
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Figure 7 MicroCT data (volume rendering) and LM data (surface rendering and orthoslices) combined. AMIRA® software visualization.
A. View from the left side, microCT data (volren module). B. MicroCT data with high transparency and transparent orthoslices of both LM sections

used for TEM re-sectioning with TEM sections. C, D. Right half of microCT data, surfaces of various organs and orthoslices of LM sections used for
TEM re-sectioning. C. View from left side. D. View from posterior. F–G. Same as C, D but without orthoslices. E. View from anterior. F. View from
obliquely left. G. View from posterior. cg, cerebral ganglion; dg, digestive gland; f, foot; g, gill; gv, gill vessels; i, intestine; me, mantle edge; mu,

muscle tissue; oe, oesphagus; ol, oral lappets; pe, pericardium; po, periostracum and periostracal structures; re, rectum; vn, visceral nerve.
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LM sections both the Voltex (volume rendering via texture

mapping) and the Volren module (volume rendering via

ray casting) was used. Surface mesh files were rendered

with the SurfaceView tool in Direct Normals mode. For

visualizing LM and TEM sections OrthoSlices were used.

In the case of TEM sections, the OrthoSlice was combined

with a specifically adapted grayscale colormap with stand-

ard gray values and a transparency function where opacity

for input gray values 0–9 is set to 0, and opacity in gray

values 10–255 is set to 255. This yielded complete

transparency in the surrounding area (black background,

Figure 5C) and total visibility of the aligned TEM images.

Results

Technical – visualization

For the specimen treated in the present study, osmium

tetroxide as routinely applied for TEM studies provides

sufficient contrast for microCT investigation. By volume

rendering with the Drishti software (Figure 2E–G) many

structures of the specimen could be visualized

Figure 8 MicroCT data (volume rendering), LM data (surface rendering), and TEM images (orthoslices) combined focusing on excretory

system. Volren plus voltex modules used microCT data at high transparency (low alphascale values) in AMIRA®. A–C. MicroCT data, renopericardial

complex and TEM sections A. View from the left side. B. Detail of A. C. View from dorsal (anterior is to the left). D. Same as B but without
renopericardial complex. E, F. MicroCT data, various organs and TEM sections. F. Detailed view from posterior. dg, digestive gland;f, foot; g, gill; gv,
gill vessels; i, intestine; lk, left kidney; me, mantle edge; mu, muscle tissue; pe, pericardium; rd, renopericardial duct; rk, right kidney; rpc,

renopericardial complex; vg, visceral ganglion.
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Figure 9 LM and TEM re-sectioning results in conventional figure plate. A, B. LM cross sections that were re-sectioned. C–F. TEM details of
A. G, H. TEM details of B. Transparent yellowish rectangles with green edge show area enlarged in successive (green arrow) image with higher

magnification. C. Detail of pericardial wall with ultrafiltration slits (arrow heads). D. Cross section through left kidney. E. Wall of kidney. F. Opening
of renopericardial duct into kidney. G. Right kidney with most ventral end of renopericardial duct before opening into kidney. H. Most ventral
end of renopericardial duct. bb, basal body; bi, basal infoldings; bm basal membrane; ci, cilia; dg, digestive gland; g, gill; i, intestine; k, kidney; me,

mantle edge; mi, mitochondrium; mu, muscle tissue; mv, microvilli; nu, nucleus; os, organic shell layers; pc, pallial cavity; pe, pericardium; vg,
visceral ganglion.
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adequately. This particularly concerns external structures,

such as details of the shell periostracum (Figure 2E) and

epithelial surface structures (e.g. the gills, Figure 2F). In

addition some internal structures bearing specific density

properties (e.g. shell resilium, shell muscles) could also be

depicted. Even extremely delicate structures, such as the

gill vessels (Figure 2G), could be rendered. Furthermore

the embedding resin could by depicted, showing the trim-

ming condition of the block at microCT scanning

(Figure 2D).

All the different datasets (microCT, LM section series,

TEM sections) could be aligned (co-registered) with the

AMIRA® software (Figures 6, 7, 8). Both volumetric

datasets (microCT and LM section stack) were neatly

matched with regard to the main parts of the specimen

after affine co-registration (Figure 6). Deviations were

found to increase with distance to the specimen centre.

These are most obvious at the periostracum hairs of the

shell in the posterior area and anteriorly at the tip of the

foot (Figure 6B).

In the viewer of the AMIRA® software all co-registered

datasets can be viewed simultaneously. Here, a variety of

settings allow changing or improvement of visual ap-

pearance of different components for better understand-

ing and communication. These include adjustment of

transparency (Figures 7, 8) of surface meshes, volumes

or OrthoSlices, selective imaging of individual compo-

nents (organs by surface meshes or section OrthoSlices)

or clipping off parts of volumes or surface meshes

(Figures 6, 7).

For all TEM images, the precise position within the

corresponding LM images could be assessed (Figure 8).

This enables preparation of conventional (2D) figure

plates with interleaving these two image types (Figure 9).

Thus fine structural details including their position

within the organism can be provided simultaneously,

which facilitates perception and presentation of struc-

tural relationships (Additional file 3).

An example from morphology – the renopericardial complex

The renopericardial complex in the specimen investigated

consists of a pericardium (Figures 7C–G, 8A–F, 9A,B)

with anlagen of the internal heart components, and

renopericardial ducts (Figures 8A,B, 9G,H) and kidneys

(Figures 8A–F, 9A,D–H). The pericardium sits dorso-

anteriorly adjacent to the posterior shell muscle in the

posterior part of the animal (Figures 7C–G, 8A,E). It con-

sists of a delicate endothelium (Figure 9G) that encloses a

cavity. Laterally it exhibits conspicuous inward-directed

pouches, which represent the anlagen of the internal heart

components (atria, ventriculum). On both sides the peri-

cardium bears latero-ventrally directed blind-ending ex-

tensions. Their most distal endings sit directly above the

kidneys (Figure 8A–C).

The pericardial and kidney lumina are connected by

the renopericardial ducts (Figure 8A,B, 9F-H). These are

very delicate and descend from the median sides of lateral

pericardial extensions. From the site of their emergence

from the pericardial extensions the renopericardial ducts

extend postero-ventrally, running medially adjacent to the

kidneys (Figure 8B). The kidney walls are pressed inwards

below the ducts (Figure 9G). They run ventrally until the

ventral third of the kidneys, where they enter the kidneys.

On the inside the renopericardial ducts are ciliated over

their entire length until their opening into the kidneys

(Figure 9F,H). The ducts are directed towards the kidneys

with some of them protruding into the kidney lumina

(Figure 9F).

The kidneys represent compact organs with relatively

thick walls. In cross sections they are circular and they

are somewhat elongated in the antero-posterior direc-

tion. On the ventral side they open via a porus into the

mantle cavity.

The sites of ultrafiltration are large and located at

the pericardial walls next to the inward-directed pouches

(anlagen of heart components) of the pericardium

(Figure 9A,C). These ultrafiltration sites are composed of

slit-shaped openings separated by pedicles (Figure 9A). In

overall shape the sites are folded and their basal side

(external surface) is coated with a distinct basal membrane

(extracellular matrix).

The cells of the kidney walls exhibit electron-dense

cytoplasm with numerous mitochondria. Basally these

cells bear a very dense infolding system (Figure 9E). The

apical side (towards the lumen) has numerous partly

branched microvilli (Figure 9D–H).

Discussion
Merits of the workflow

The correlative examination of a small biological speci-

men offers a number of advantages in the analysis,

visualization, and validation of results. The option of

topographical correlation of high resolution areas to the

morphology of the whole specimen provides significant

benefits. In many TEM investigations only isolated sec-

tions instead of complete series are examined in order to

avoid excessive effort. This may lead to serious misinter-

pretations, because of missing information on the sur-

rounding tissue. Furthermore, problems frequently occur

during TEM sectioning resulting from, for example, in-

homogeneous polymerization of the resin or non-

cuttable contents, such as sand grains. These may lead

to the loss of portions of the sample. In such cases the

CT data are a highly valuable backup containing the in-

formation for recovering the overall organization of the

specimen. As demonstrated by the excretory organs of

our specimen, fine structural details of isolated TEM

areas can be combined with other datasets to achieve an
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overview of the organ complex without missing signifi-

cant information. Correlative morphology is also of great

advantage for effectively communicating results with the

help of 3D visualization. In our example the display of

(TEM) sections in the form of OrthoSlices within a com-

bination of volume and surface renderings of other

datasets are highly efficient for explaining the position of

minute structures within the entire organism. Finally,

datasets may be important for validating other datasets.

For example, aligning images of LM sections is usually

performed on a section-to-section basis. Since informa-

tion used for alignment is only from adjacent sections,

the overall shape may become inaccurate with distor-

tions or dislocations propagated and amplified over the

length of the specimen. Since microCT datasets do not

contain inaccuracies of that kind, they can be utilized for

validation and improvement of serial section alignment.

In general, microCT information is extremely valuable

for all types of specimens to be sectioned. This also in-

cludes larger specimens, which are routinely embedded

in e.g. paraffin or methyl methacrylate. Since such sam-

ples are too large for osmium tetroxide postfixation, they

have to be stained using an alternate contrast agent such

as elemental iodine or phosphotungstic acid [17]. In

these cases knowledge of internal morphology can be

used for identifying regions of interests (ROI), to which

the specimen can be trimmed prior to sectioning.

Among the most important merits of our combined

approach is the reduction in labor and general effort re-

quired for fine structural analysis. At present there is a

considerable range of methods for structural (3D) exam-

ination at the (sub-)cellular level. These include electron

tomography, serial block face scanning electron micros-

copy (SBF-SEM) (3View), focused ion bean scanning

electron microscopy (FIB-SEM), and serial section TEM

(see e.g. [28] for a review). However, all these techniques

are very costly in labor or equipment. Examination of a

specimen of the size used in the present study purely by

TEM examination would take many weeks of painstak-

ing sectioning and many longTEM sessions. SBF-SE und

FIB-SEM are very expensive to operate and the volumes

that can be examined by FIB-SEM and electron tomog-

raphy are very small (see e.g. [28]). Thus no entire organ

system of our example specimen could be assessed by

these methods. Although our approach involves a variety

of different equipment and procedures, we maintain that

it is actually quite economical with regard to both man-

power and cost.

Merits of the analysis of the present example – the juvenile

Mytilus galloprovincialis

Based on co-registered datasatets, we could analyze the

fine structure of the major components of the

renopericardial system and the general morphology of the

renopericardial and other organ systems and combine this

with a data set showing the entire organism of a juvenile

Mytilus galloprovincialis. The level of detail/resolution

corresponds to the method of analysis (Additional file 4).

The fine structural data was gained by subsequent TEM

examination of LM sections; the general morphology of

the renopericardial and other organ systems was obtained

by segmentation of the LM section series with surface ren-

dering. The arrangement of the different organ systems in

respect to the entire specimen was visualized by microCT

data. Accordingly, the spatial relations among the major

components of the specimen are clearly recognizable.

Although this is not the primary purpose of the present

study, the results on the renopericardial system can be

discussed by comparing them to previous studies on

Mytilus and data on other bivalve molluscs: the fine struc-

tural details regarding the kidney epithelium or pericardial

ultrafiltration sites correspond well to previous data for

adult Mytilus (e.g. [29,30]) and also to data on other mol-

luscs (e.g. [31,32]). In contrast, there is a major difference

in our results concerning the renopericardial duct: while

previous investigations [29,33]) show a broad connection

entering the kidney dorsally, we found that this duct is deli-

cate, runs adjacent to the kidney wall and opens into the

kidney at a medioventral position. At present it is unclear

whether this difference is due to the different age of the

specimen (0.8 mm juvenile in the present study vs a several

cm adult in previous studies) or to faulty observations of

White [33], which also served as basis for the description of

Pirie & George [29]. It appears possible that they mistook a

lateral branch of the pericardium reaching towards the kid-

ney – a structure that is present in our specimen – as

renopericardial duct and overlooked the actual duct which

was too delicate to be resolved by dissection. This should to

be clarified by a further study on adult Mytilus specimens.

TEM-processed samples and microCT

X-ray absorption of animal soft tissues is very poor. Ac-

cordingly, if the specimen is not stained with a contrast-

enhancing substance it can hardly be visualized in con-

ventional computer tomography, though it could be im-

aged with phase contrast synchrotron microCT [34,35].

Initial attempts for contrasting soft tissues for conven-

tional microCT concentrated on heavy metals stains

such as osmium tetroxide (e.g. [16,36,37]). More re-

cently, other less toxic substances like iodine-based con-

trast media, were found to provide very good contrast as

well ([12,17,38]) equal to that of osmium tetroxide [39].

For our approach it is highly convenient that osmium

tetroxide is routinely applied for postfixation of material

for TEM: this postfixation provides reasonable contrast

for microCT while the X-ray absorbance of epoxy resins

used as embedding media in electron microscopy is gen-

erally low [17,18,40]. Thus microCT scanning could be
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considered as a routine procedure before TEM investiga-

tion, because it provides valuable additional information

and compared to the TEM procedures it causes little

extra time effort at tolerable operating costs (during the

last years microCT scanners became much more fre-

quent in labs and thus broadly available to researchers).

This is also true for methods such as SBF-SEM (3View)

[41] and FIB-SEM [42], where samples are stained en

bloc prior to embedding in resin. This differs slightly

from conventional TEM procedures prior to embedding

in that the osmium tetroxide treatment is usually inten-

sified and additional metal compounds are applied to

enhance contrast. This treatment very likely also in-

creases X-ray absorption. Consequently, such specimens

appear particularly suitable for initial X-ray tomographic

examination.

TEM re-sectioning of resin LM sections

Re-sectioning of LM sections has been attempted since

the early days of TEM [43], as it permits precisely track-

ing down the position of the structures to be examined

and thus reduces the amount of work. There are numer-

ous protocols for re-sectioning (e.g. [20,26,44-46] and

references therein) available. These differ with regard to

(a) the detaching of the LM section from the slide and

(b) the way of attaching the section to the new empty

block. (a) Detachment of the section was performed by

either polymerizing the new block directly to the section,

which was still attached to the slide (e.g. [20,43,47]), or

in some cases by flash-freezing the slide (e.g. [20,45]).

(b) Bonding the section to the new block was reinforced

by applying adhesives like epoxy resins [43,48] or spe-

cific glues [20,46,49]. In the present study we applied the

simplest procedures for detaching sections and re-

attaching them by simply drying the section. This is es-

sentially the procedure suggested by Campbell &

Hermans [26]. The only difference concerns lifting and

transferring of the sections. We carried this out even

more simply than Campbell & Hermans [26], with the

tip of a preparation needle (which fulfils this function

perfectly) instead of a wire loop or TEM grid. The use of

adhesives for bonding LM sections to the new block did

not seem advantageous to us, since sections might not

become tightly adjacent to the surface of the empty

block. By applying adhesives the previously sectioned

plane could possibly become lost, which might not be a

problem for relative thick sections (e.g. [20]: 10 μm).

However, for 1.5 μm sections as used in the present

study, ultrathin section output would probably worsen.

We suspect the use of adhesives would lead to fewer us-

able TEM sections per LM section or that only parts of

LMs would get sectioned.

Re-sectioning of LM sections for TEM has only rarely

been applied for zoological-morphological purposes,

which seems remarkable since numerous protocols sug-

gest this. Nevertheless, it should be particularly useful

for small invertebrates since individual structures and

regions of interest can be selected precisely, and the ef-

fort in both sectioning and TEM examination can be

kept very low. Another frequently applied method of

combining LM with TEM in the same specimen is alter-

nating LM and TEM sectioning. Our own experience

[23,24] has shown that LM re-sectioning is much more

efficient, because alternating sectioning requires re-

peated changes of the equipment (e.g. knife, microtome)

during sectioning and the number of sections to be ex-

amined with the TEM is significantly higher. It should

be mentioned that our re-sectioning strategy has one

significant limitation: 3D reconstruction at the fine

structural level (such as performed by e.g. Cardona et al.

[50]) is nearly impossible. This is because the maximum

z-depth of individual TEM section stacks is limited to

the thickness of LM section (1.5 μm for the present ex-

ample) and most structures of interest are larger than

that. Another shortcoming is that the LM section series

has to be left uncovered until selected sections become

removed for TEM re-sectioning. However, this problem

should not be overestimated: overall images of sections

are of reasonable quality (Figure 9A,B) and details are

analyzed by TEM examination anyway.

AMIRA®s affine registration module

The Affine registration module of AMIRA® accomplishes

stack-to-stack registration only. Hence, it cannot com-

pensate for misalignments within the LM stack originat-

ing from the previous serial section alignment. Since our

results (comparison of the LM stack with the reference

microCT stack) experience mainly peripheral misalign-

ments (Figure 6B), this method of registration is suffi-

cient for our example. If misalignments were to exceed a

tolerable amount, it would be required to step back in

the procedure and repeat or refine the serial section

alignment in affected regions of the image stack. The Af-

fine registration module offers a range of different metric

options to perform registration (for information on

multimodal image registration see e.g. [51,52]). For the

presented specimen all available metrics worked equally

well. Transformation may also involve isotropic or aniso-

tropic scaling; anisotropic scaling might be especially

beneficial for the alignment of LM sections, because it

could balance an inaccurate section thickness provided

by the microtome (e.g. 0.95 μm instead of 1 μm) by re-

scaling only the z-dimension of the image stack. In the

presented example, section thickness appeared to be ac-

curate, so anisotropic scaling was not required.

The quality of image registration depends very much

on the properties of the image data. The Affine registra-

tion tool was designed to handle data from different
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imaging sources such as CT or MR. Nevertheless, we

found that the degree of similarity between datasets has

a major effect on registration results. MicroCT images

show bright objects on dark background, while LM sec-

tions show dark objects on bright background. To

maximize similarity we (1) inverted the LM section stack

and (2) used a Gaussian blurring filter to decrease the

level of detail of LM images [3]. Applying these adjust-

ments, we achieved the best results.

Identical objects or sub-regions for co-registration

The current workflow is designed for datasets that both

show exactly the same specimen (reference stack and

stack to be registered), as was the case in the presented

specimen for which the microCT and LM dataset

contained the same sample with identical boundaries. In

contrast, there can be datasets that cover different

amounts of a specimen. For example, there might be a

microCT scan of an entire specimen, and based on the

information of microCT data the block is trimmed to a

specific ROI before sectioning. Thus the LM data vol-

ume represents a sub-region of the original microCT-

scanned object, and automatic registration with the

Affine registration might fail even after thorough manual

pre-alignment. In that case, cropping the reference vol-

ume to a similar region as the physically restricted LM

dataset might solve problems for co-registration.

Rigid or elastic registration

In the presented workflow, both the 3D stack-to-stack

registration (microCT and LM) and the 2D section-to-sec-

tion registration (EM and LM) is done by using rigid regis-

tration and scaling, leading to adequate results showing

little impairment from geometric distortions. However, in

principle it would be possible to include elastic registra-

tion algorithms for both procedures. Epoxy resin sections

at LM thickness usually show very little geometric distor-

tion in terms of stretching or shrinkage, which allows rigid

registration for the stack-to-stack registration. Geometric

deformations are a more serious problem for TEM sec-

tions where elastic registration for volume generation is

required (e.g. [53,54]). This type of elastic registration

could be also beneficial for the refinement of TEM to LM

sections.

Conclusions
The procedure of co-registration of datasets from differ-

ent imaging modalities offers new opportunities for un-

derstanding and communicating structural relationships

within organisms and tissues. Thus the correlative use of

different microscopic imaging techniques will likely be-

come more widespread in morphological and structural

research in zoology. Classical TEM serial section investi-

gations are extremely time consuming and hence cannot

keep up with modern 3D methods such as CLSM where

results are achieved much faster. Re-sectioning of LM sec-

tions seems suitable for speeding up TEM-based examin-

ation substantially. At the same time, microCT stands to

become a key method for complementing ultrastructural

examinations. Scanning specimens is relatively straightfor-

ward and lab-based (as opposed to synchrotron) X-ray mi-

croscopy systems are now available to most research

institutions. It seems promising to apply microCT in

addition to block face scanning methods (SBF-SEM, FIB-

SEM) for the option to view the limited area captures by

these methods in wider context.

Additional files

Additional file 1: Specimen embedded in block, visualized via

volume rendering with DRISHTI. The microCT dataset was visualized by
volume rendering in DRISHTI applying transfer functions in the 2D

histogram. Individual color and transparency settings for multiple transfer
functions permitted discerning tissues with different density attributes.
Cropping of the specimen was done using ClipPlanes.

Additional file 2: Automatic affine registration in AMIRA®. Fine
co-registration performed automatically by the AffineRegistration module,
followed by a rotation of the object to show the quality of alignment.

Additional file 3: MicroCT data, LM data, and TEM images

combined in an AMIRA® animation sequence. In the viewer of the
AMIRA® software all co-registered datasets can be viewed simultaneously.
Different settings allow changing or improvement of visual appearance
of different components for better understanding.

Additional file 4: Different levels of resolution achieved by

combination of microCT, LM, and TEM. This AMIRA® zoom-in
animation shows the different levels of resolution achieved by our
correlative approach.
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