
A Correspondence between Continuation Passing Style
and Static Single Assignment Form

Richard A. Kelsey
N EC Research Ins t i tu te

kelseyQresearch.nj .nec.eom

A b s t r a c t

We define syntactic transformations that con-
vert continuation passing style (CPS) programs
into static single assignment form (SSA) and vice
versa. Some CPS programs cannot be converted
to SSA, but these are not produced by the usual
CPS transformation. The CPS-+SSA transforma-
tion is especially helpful for compiling functional
programs. Many optimizations that normally re-
quire flow analysis can be performed directly on
functional CPS programs by viewing them as SSA
programs. We also present a simple program
transformation that merges CPS procedures to-
gether and by doing so greatly increases the scope
of the SSA flow information. This transformation
is useful for analyzing loops expressed as recursive
procedures.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

IR'95-1/95 San Francisco, California USA
@1995 ACM 0-89791-754-5/95/0001 ...$3.50

1 I n t r o d u c t i o n

Continuation-passing style has been used as an
intermediate language in a number of compilers
for functional languages [1, 8, 12]. Static single
assignment form has been used in optimizations
targeted towards imperative languages, for exam-
ple eliminating induction variables [13] and par-
tim redundancies [2]. In this paper we define syn-
tactic transformations for converting continuation
passing style (CPS) programs into static single as-
signment form (SSA) and vice versa.

The similarities between CPS and SSA have
been noted by others [1, 9]. In CPS there is
exactly one binding form for every variable and
variable uses are lexically scoped. In SSA there is
exactly one assignment s tatement for every vari-
able, and that s tatement dominates all uses of the
variable. This is also the main difference between
the two: the restriction on variable references in
CPS is lexical, while in SSA it is dynamic.

The two forms have generally been used in very
different contexts. CPS has been used in com-
pilers for functional languages, and SSA for ira-
perative ones. As a result, the problem of flow
analysis has come to be viewed as more difficult

13

in CPS. This is really an artifact of the programs
being compiled and not a problem with the CPS
intermediate language. Functional programs ex-
press control flow through the use of procedures,
resulting in large collections of small procedures,
as opposed to small collections of large procedures
in imperat ive languages (by 'large' procedure we
mean one large enough to contain a loop). The
writers of compilers for imperative languages have
been quite successful with using SSA to express
the results of intraprocedural flow-analysis and
then analyzing the SSA program. CPS uses pro-
cedures to express practically everything, so any-
thing but the most local optimization appears to
require interprocedural analysis, which is hard in
any language.

In this paper we are not going to concern our-
selves with interprocedural flow analysis. What
we will do is restrict our notion of what consti-
tutes a procedure in CPS. The A forms in CPS
programs will be annota ted to indicate which rep-
resent full procedures and which are continua-
tions. This reduces the number of full procedures
and greatly simplifies analyzing the program.

Throughout the paper we will assume that any
use of lexical scoping in the source program has
been implemented by the introducing explicit en-
vironments, as described in [1, 7]. We further
assume that in the CPS programs continuations
are created and used in a last-in/first-out man-
ner (see section 6 for a discussion). The lat-
ter restriction only affects the way in which non-
local returns, such as longjumps in C or call-with-
current-cont inuat ion in Scheme, are expressed in
CPS.

The paper proceeds as follows. Section 2 con-
tains the definition of an SSA language. Section 3
defines a source language, an annotated CPS lan-
guage, and an algorithm for converting source
programs into CPS programs. The following two
sections define functions tha t convert CPS proce-
dures into SSA procedures and vice versa. The
remainder of the paper is a discussion of practical

differences between SSA and CPS, followed by a
comparison to previous work.

2 Static Single Ass ignment

SSA is an imperative form in which there is ex-
actly one assignment for every variable and that
assignment dominates all uses of the variable (see
[4] for a good overview of SSA).

To make the control-flow graph explicit, control
flow is expressed entirely in terms of i f and goto.
We allow expressions in some nons tandard places,
for example as the arguments to the C-functions;
removing these only requires introducing a few
additional assignment s tatements . The syntax of
expressions does not m a t t e r and is left unspeci-
fied, with the restriction that they may not con-
tain procedure calls (and they typically don' t in
SSA languages).

The g rammar for a procedure in our SSA lan-
guage is:

P ::= p roc (x*) { B L* }
L ::= I : I * B
I ::= x ~- ¢ (E *) ;
B ::= x ~ - E ; B] z ~ - E (E *) ; B]

goto l~; I
r e t u r n E; I r e t u r n E (E *) ; I
if E then B else B

E ::= x l E + E [. . .
where x E variables

l E labels

The semantics is the 'obvious' one. ~-~ is as-
signment, E(E, . . .) is a procedure call, and
r e t u r n returns from the current procedure. The
C-functions at the beginning of a block each take
one argument for each of the goto ' s tha t j ump to
that block. The i ' th a rgument is re turned when
control reaches the block from goto l~.

Cytron et al. [4] describe a t ranslat ion al-
gorithm that efficiently converts programs into
SSA while introducing the min imum number of

14

C-functions.
Because every variable has a unique assign-

ment, de f in i t ion~use chains are trivial to com-
pute. Many analyses and optimizations are sim-
pler when applied to a program in SSA form than
to the original source program.

Below is an example SSA procedure that counts
the number of t imes zero appears in the sequence
f (0) . . . f (l i m i t - i) for some function f and in-

teger l i m i t . Note that some of the computat ion
occurs in the C-functions. In particular the sec-
ond i f makes sense only in the context of the
C-function for c' at label j . We will be using this
example th roughout the paper.

proc (f limit) {

goto I0 ;

l:i *-¢(0, i+1);

c ~-¢(0, c ');
if i = limit then

return c ;

else

x ~-f (i) ;
if x = 0 then

goto j0 ;
e l s e

goto j l ; }
j : c ' ~--¢(c+1, c) ;

goto 11 ; }

3 A n n o t a t e d C P S

In continuation passing style procedures do not
return. Instead they are passed an additional ar-
gument, a continuation, which is applied to the
procedure 's return value (see chapter 8 of [5] for

a full discussion).
The correspondence between CPS and SSA re-

quires a slightly modified algorithm for converting
programs into CPS. The modified algorithm an-
notates the A forms in the CPS code to show how
they are used. The annotations have no semantic
content and, if not introduced by the CPS algo-
rithm, could be added to the program via some

suitable analysis (assuming the CPS program is
in a suitable form; see section 6 below).

Our source language is a subset of Scheme [3],
with the subset chosen as a compromise between
simplicity and realism. For simplicity we will as-
sume that the source and CPS languages use the
same expressions as in the SSA language of the
previous section. In the context of Scheme pro-
grams we will refer to the equivalents of the SSA
expressions as trivial expressions, to keep from
confusing them with other Scheme expressions.
As described above, the main restriction on (triv-
ial) expressions is that they cannot contain pro-
cedure calls.

To simplify the CPS algorithm the source lan-
guage is restricted to allow non-trivial expressions
only in tail position or as the bound value in a
let. In an actual compiler the source program
could be put in this form either by a pre-pass or
as part of a more complex CPS algorithm. We
also assume that every identifier is unique.

A loop expression is a version of Scheme's
n a m e d - l e t with the restriction that calls to the
label may only occur in tail position. It is in-
cluded to show how iterative constructs, such as
f o r and w h i l e loops, may be converted into CPS.

The grammar for this Scheme subset is:

M ::= E I (E E*) I (i f E M M) I
(l e t ((x M)) M) [
(l o o p l ((x E)*) M) I
(I E *)

E ::= z I (+ E E) I . . .
P ::= (A (x*) M)
where x C variables

l E labels

The semantics of the source language is that
of Scheme. This subset is sufficient to implement
most of Scheme, with explicit cells added for any
variables that are the targets of s e t ! expressions

in the source program.
As was done in the Rabb i t compiler [12] our

15

,7": M x C ~ M '

m([E, kl) = (k E)
3F([E, (.~cont(X) M ')]) = (l e t ((xZ)) M')
F (I (E . . .) , C]) = (l e t ((v (E . . .))) (j r)) if C = x and x is bound by l e t r e c

= (E . . . C) otherwise

3K'([(let ((X M1)) M2) , e l) = .7([M1, (~(X) ~([M2, C~))~)
~7([(ie E ~/[1 M2), ~1) -~ (i f E ~7([M1, ~1) ~7([M2, ~))
F ([(± f E M1 M2), (~cont(Z) M')]) =

(letrec ((x (Ajump (X) M '))) (i f E S([M1, z]) Y([M2, z~)))

Jr([(loop l ((x ginitial) . . .)M), CI) =
(letrec ((I (Ajump (x . . .) 5r([M, C~)))) (l Einitial . . .))

CD =

F : P ~ P '

v([(A(, . . .) M)])= 7(Iv, k]))

Figure 1: Conversion to CPS

conversion to CPS will treat trivial expressions as
values and not introduce continuations for them.

In the CPS grammar all A's are annotated as
being either proc, cont, or jump. The annotat ions
indicate how the A's are used, and, equivalently,
how they can be compiled.

Proc is used as the translation of the A forms
in the source program. These are full procedures
that eventually re turn a value and for this reason
take a continuation as an argument. The cont
and jump forms are continuations that are used
in slightly different ways. The cont continuations
are re turn points for calls to proc's. Jump indi-
cates tha t the continuation is called within the

current procedure instead of being passed to an-
other one. The CPS algorithm introduces ,Xjump
continuations when the two arms of a conditional
have to rejoin at a common point and for the bod-

ies of loop 's .
In terms of compilat ion strategy, cont A's are re-

turn points, jump's can be compiled as gotos, and
prods require a complete procedure-call mecha-

nism.

The grammar for the CPS language is as fol-

lows:

M' ::= (E E* C) I

(k E) I
(i f E M ' M ')]

(l e t ((x E)) M') I
(letrec ((x P')) g')

C ::= k I (Aco~t (z) M')
p/ ::= (Ap~oc (z* k) M/)[

(Aj~p (x*) M')
where x,k E variables

The semantics is the obvious call-by-value se-
mantics. The annota ted A's are all jus t A, l e t is

syntactic sugar for A, and so on.
The identifiers x and k used in the grammar

are members of the same syntact ic class. Mak-
ing them syntactically distinct, as is sometimes
done [8], restricts how continuations are used and
makes CPS and SSA entirely equivalent (see Sec-

tion 6).
The function ~ defined in Figure 1 translates

source expressions M to CPS expressions M'. It

............... 16

(Aproc (f limit k)
(letrec ((i (Ajump

(if

(i o o)))

(i c)
(= i limit)
(k c)

(f i (A~ont (x)
(l e t r e c

(if

((j (Aj~mp (c')
(1 (+ i 1) c '))))

(= x 0)

(j (+ c 1))
(j c)))))))))

Figure 2: Example program in CPS

takes a continuation C, which is either an identi-

fier or a A~ont, as its second argument.
F has two rules for applications. The first rule

is used when the continuation argument is an
identifier bound by a l e t r e c in the rule for i f
and ensures that all uses of such identifiers are
called directly. The second is used in all other
cases. For l e t a new continuation is created for
the value. Identifier continuations are propagated
through i f ' s ; to avoid code expansion A continu-
ations (as opposed to continuations that are just
an identifier) are marked as jump and bound to
an identifier. Loop is t ranslated into a recursive
continuation. The loop begins by calling the con-
t inuation on the initial values of the iterative vari-
ables. Calls to the loop's label become calls to the
recursive continuation, ignoring the current con-

tinuation.
As we are not interested in interprocedural

analysis we will treat each Apro~ as a separate pro-
gram (here we depend on the assumption that ex-
plicit environments have been introduced to take

care of lexical scoping for any nested Aproc'S). Be-
cause they are called at the point they are created,
A~o~t's can be considered as inlined procedures.
The call sites of Ajump's are easily found: the
/~jurnp'S only occur as the bound value in l e t r e c ' s .
Furthermore, all references to the variables to

which the Aj~mp's are bound are calls to those
variables.

The following is the sample SSA procedure from
above written in the source language for the CPS
transformation:

(l (f limit)
(loop 1 ((i O) (c 0))

(if (= i limit)
c

(let ((x (f i)))
(let ((c I (if (= x O)

(+ c I)
c)))

(1 (+ i i) c '))))))

Figure 2 presents the CPS version of the same
procedure. A Acont is introduced as the continu-
ation for the call to f and Aj~r~p'S are used as the
join point for the i f and for the loop.

4 C o n v e r t i n g C P S to S S A

In this section we define a syntactic translation
that converts CPS procedures into SSA proce-

dures.
The function G in Figure 3 translates non-

trivial CPS expressions to SSA statements. The

17

g : M / - + B
 (I(let M ')]) = • E ;

g ([(S . . . (Aco (x) M '))]) = x E (. . .) ;

O([(E ...It)I) ---- returnE(...);
~([(k E)]) = return E;
O([(j Eo,i El,i . . .)]) = goto ji;
g([(i f E M i MS)I) = if E then g([Mi]) else G([M%_I)
O([(letrec (. . .) M')]) = O([M'])
Opro~ : P ' ~ P
gproc([(Aproc (x . . .) M')]) = proc(x. . , k){ Q([M']) Ojump([(Ajump . . .)]) . . . }
gjump : J x (ljump (x . . .) M') --~ L
Gjump([j, (Ajurnp (x . . .) M')]) = j : x+--¢(E0,0, E 0 , 1 , . . .) ; . . . Q([M']))

Figure 3: Translat ion of CPS to SSA. The Ei,j on the right-hand side of the definition of gjump are

those from the left-hand side of the definition of g ([(j . . .)]).

simple binding forms, l e t and /~cont, become as-
signments. I f is essentially the same in both syn-
taxes. Uses of a Apron'S continuation variable be-
come r e t u r n ' s while calls to l e t r e c - b o u n d con-
t inuation variables are t ranslated as gotos.

The ,~jump'S in the program are ignored when
found by g. Each /~jump is instead lifted up to be-
come a labeled block in the SSA procedure. The
arguments to the ,~jump'S, which are also ignored
by ~, become the arguments to the C-function
that defines the value of the corresponding vari-
able in the SSA program. In the definition of
6 j ~ p , E0,1 is the first a rgument to the second
call (in some arbi t rary ordering) to j, the vari-
able bound to (Aj~mp (X . . .) M') . Tha t call is

t ranslated as go to Jl.
The translated program is syntactically correct,

and it obeys the SSA restriction that there is
exactly one assignment per variable (since each
variable is bound exactly once in the CPS pro-
gram). Variables in the translated program are
assigned the values of the same expressions they
were bound to in the CPS program, and evalua-
tion order is preserved, so the two programs pro-
duce identical results.

Applying Opro~ to the CPS example produces

the original SSA example from above.

5 C o n v e r t i n g S S A to C P S

We would like to produce an inverse of g to con-
vert SSA programs to CPS. The function 'H in
Figure 4, produced by a simple editing of the def-
inition of g, is almost an inverse of 0. The diffi-
culty is the rule for the l e t r e c ' s tha t bind Aj~mp's.
In translating /~jurnp'S to labeled blocks g ignores
their position in the CPS program. Translat ing a
labeled block back into a ,~jump is straightforward,
but we need to bind the Ajump with a l e t r e c
somewhere in the newly created CPS program.
The ,~jump'S need to be placed such tha t no vari-
able is referred to outside the form that binds it.

Our placement algorithm uses the dominator
tree of the SSA program. S ta tement M0 is said
to dominate M1 if M0 appears in every execution
path between the start of the program and M1. If
M2 also dominates M1 then either M2 dominates
M0 or vice versa. The dominator relation thus
organizes a program's s ta tements into a tree. The
immediate dominator of M is M's parent in tile
dominator tree.

Given a labeled block, d : I* B, in the SSA

18

7-f : B--~ M'
~ ([z ~ E; M]) = (l e t ((z E)) ~ ([M]))

E(...);D = (E. . . k)
= (k E)

71([goto ,Ii;l) = (j E0,i ELi . . .)
"Hp~o~ : P -~ P'
7l~proc([proc(x . . . k){B L*}~)= (Ap~oc (x . . .) g (l B l))
"]-~jltmp : L ~ (Aju,7.p (Z . . .) M')
~jump([j : x ~ ¢ (E 0 , 0 , E o , 1 , . . .) ; . . . B]) = (Aj~mp (z . .) H([B]))

Figure 4: Translation of SSA to CPS. The E~,j on the right-hand side of the definition of "H([goto g~ ;])

are those from the left-hand side of the definition of 7-fjump.

program, with M the immediate dominator of I*
B, we will replace "H(IM~) with

in the CPS procedure. If two or more labels have
the same immediate dominator their Aj~p ' s are
placed in a single l e t r e c .

T h e o r e m : all uses of variables in the CPS pro-
gram produced by 'H are properly in scope.

P r o o f i We know that every use of a variable in
the SSA program is dominated by the variable's
assignment statement. Assignment s tatements in
the SSA program correspond to binding forms in
the CPS program. By inspection H preserves the
dominator tree, so it is sufficient to show that
every s ta tement in the CPS program is lexically
inferior to its immediate dominator, and thus to
all its dominators, including the binding forms for

any referenced variables.
Again inspecting the definition of "H, we can

see that when the M' produced by "]f is the body
of either a LET, a Aproc, or a Acont, or if it is ei-
ther arm of an i f , then it is lexically inferior to
its immediate dominator. The remaining possible
location for an M' is as the body of a Ajump, and
each Aj,mp is by construction lexically inferior to
the dominators of its immediate dominator. This
would lead to a problem if the immediate domina-

tot were a binding form, but this cannot happen.
If (l e t ((z E)) M') or (E . . . (Aco~t (x) M'))
dominates a ~jump, then M / does as well.

The arguments to tile C-functions are also
placed so as to be lexically inferior to their dom-

inators. QED.

Using 7-/ to convert the original SSA example
to CPS produces a program identical to the CPS
program shown in Figure 2.

6 W h y C P S a n d S S A A r e N o t

I d e n t i c a l

The function g cannot be applied to all CPS pro-
grams. It depends on the A's being correctly an-
notated, which in turn depends on continuations
being used in a somewhat restricted fashion. If
non-local returns, such as longjumps in C o r call-
with-current-continuation in Scheme, are trans-
lated into uses of continuations in the CPS pro-
gram there is no way to label the continuations so
used. They are neither simply passed as a proce-
dure's continuation, nor are all of their calls tail-
recursive calls within the procedure in which they
were created, so neither A~.o~t or Aj~mp is appro-
priate. A fourth annotat ion could be introduced

19

(Aproc (f limit k)
(letrec ((i (Aproc (i c k')

(if (= i limit)
(k' c)

(f i (~cont (X)
(l e t r e c ((j

(i 0 0 k)))

(A/~p (c')
(i (+ i i) c' k'))))

(if (= x O)
(j (+ c i))
(j c)))))))))

Figure 5: Example program using Scheme's n a m e d - l e t t ranslated into CPS.

for continuations that are created in one proce-
dure and called in another. There would still be
no direct way to represent the program in SSA.

7 Compiling Imperative Pro-
grams

We have shown that programs can be translated
into CPS and from there to SSA programs by
a series of syntactic transformations. Producing
an SSA program normally requires flow-analysis,
as the program directly expresses use~def in i t ion
chaining. Where is the flow information in the
CPS program coming from?

The source program for the CPS transforma-
tion is a functional program, and as such con-
tained the required flow information. If we had
s tar ted with an imperative program, meaning one
using s e t ! to modify the values of variables,
t ranslat ion into our CPS source language would
have required adding explicit cells to hold the val-
ues of all variables tha t were the targets of set!
expressions. The Aj~mp'S in the resulting CPS pro-
gram would take no arguments and there would
be no C-functions in the corresponding SSA pro-
gram, only a lot of stores and fetches. Transform-
ing such a program into a more useful form would
require doing some flow-analysis, similar to that
done in translating imperat ive programs to SSA.

8 Compiling (Mostly) Func-
tional Programs

For programs that do not side-affect the values
of variables, viewing CPS procedures as SSA pro-
cedures shows that CPS nicely reflects intrapro-
cedural definition~-~use associations wi thout any
need for flow analysis. There is still a problem.
Programs wri t ten in languages such as ML and
Scheme tend to have few side-affected variables,
making dataflow visible as discussed above. The
difficulty is that these same languages use recur-
sion to express iteration. They do not use itera-
tive constructs like l oop in the CPS source lan-
guage used above. So while we get intraprocedu-
ral flow information more or less for free, what we
really want is interprocedural information.

Interprocedural analysis is difficult, bu t we can
instead take the approach of increasing the size of
the procedures. The idea is to find a set of proce-
dures all of which are always called with the same
continuation, and then to subst i tu te tha t contin-
uation for the procedures ' continuation variables.
The procedures are then themselves continuations
nested within a single large procedure, removing
any need for interprocedural information.

More precisely, given a set procedures P0 . . . Pn
bound by one or more l e t r e c forms to identifiers
fo . . . fn and a continuation C such tha t every use
of f i is either a tail-recursive call from within P j o r

20

a non-tail-recursive call being passed continuation
C, we can perform the following transformation.

Let Pi = (Aproc (. . . ki) Mi). I fC is (Acon t . . .) ,

let j be a new identifier; if C is an identifier, let j
be that identifier.

1. Replace all references to the ki with j and
remove them from the variable lists of the
Pi, changing the Pi t¥om Aproc'S to /~jump'S.

2. Remove the continuation from all calls to the

3. Let M be the smallest form containing every
non-tail-recursive call to the fi. Replace M
with (l e t r e c (. . .) M) where (. . .) binds j
to C if C = (A~o~t . . .) and also binds fi to
Pi for every fi whose original binding form is
lexically apparent at M.

Because we restricted ourselves to having the fi
be bound by l e t r e c and being called directly (as
opposed to being passed to another procedure and
then being called, for example), this is a purely
syntactic transformation. More sophisticated ver-
sions are clearly possible. The simple syntactic
version presented here applies to many common
uses of recursive procedures.

If our CPS source program used Scheme's
n a m e d - l e t syntax instead of the restricted loop
version used above, applying ~ to it would pro-
duce the program shown in Figure 5. The recur-
sive procedure is now a full procedure. Applying
the above t ransformation to this program, with
P0 = (Aproc (i c k/) . . .) and C = j = 1, pro-
duces the procedure shown in Figure 2.

We need to show that the transformation is
correct and preserves the map to SSA. Subst i tut-
ing the value C (or an identifier bound to C) for
the variables ki is safe, because the ki are always
bound to tha t value. Scoping is preserved, be-
cause any free identifiers in C are in scope at M,
otherwise they would be out of scope at some oc-
currence of C in the original program. Moving
the Pi to a lexically inferior form also preserves

~ c ~ ¸¸

scoping, and all uses of the fi are at or below the
inserted l e t r e c that now binds them.

The function G can be applied to the trans-
formed program to produce an equivalent SSA
version. We have created more Aj~mp's, but they
obey the same restrictions as the ones created
by the CPS algorithm: the .Xj.,mp's are bound by
l e t r e c , all uses of the variables to which they are
bound are tail calls, and the bindings and uses all
lie within a single Ap~oc (because any outlying Pi
were moved in step 3 of the transformation).

9 R e l a t e d W o r k a n d C o n c l u -
s ion

The similarity between CPS and SSA has been
noted by others. Appel [1] and O'Donnell [9]
both briefly describe the relationship between C-
functions and parameters to procedures whose
call sites are known. Here we have shown that the
correspondence is exact, and, more importantly,
goes both ways. The main difference between a
CPS procedure and an SSA procedure is the syn-
tax. Compiler writers can use a single represen-
tat ion and take advantage of both the work on
intraprocedural optimizations that has been done
using SSA and the work on interprocedural opti-
mizations done using CPS.

The other contribution of this paper is that the
correspondence can be made to be useful. As long
as procedures are too small to contain loops, con-
sidering them as SSA procedures does not help
much. We have shown how to merge looping pro-
cedures together such that the result can t reated
as a single procedure (a restricted and somewhat
more complex version of this t ransformation is
mentioned in two of our earlier papers, [6, 7], but
without any discussion of the implications for pro-
gram analysis). Wi thout this t ransformation ana-
lyzing loops that are expressed as recursive proce-
dures requires interprocedural analysis, as in [11],
and in this case using CPS may be more difficult

than necessary [10].

21

R e f e r e n c e s

[1]

[2]

[3]

Andrew W. Appel. Compiling with
Continuations. Cambridge University Press,
Cambridge, 1992.

Preston Briggs and Keith D. Cooper.
Effective partial redundancy elimination. In
Proceedings A CM SIGPLAN '9~ Conference
on Programming Language Design and
Implementation, pages 159-170, 1994.

William Clinger and Jonathan Rees.
Revised 4 report on the algorithmic language
Scheme. ACM Lisp Pointers, 4(3):1-55,
1991.

[4]

[5]

[6]

[7]

[8]

Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single
assignment form and the control
dependence graph. A CM Transactions on
Programming Languages and Systems,
13(4):451-490, 1991.

Daniel P. Friedman, Mitchell Wand, and
Christopher T. Haynes. Essentials of
Programming Languages. MIT Press,
Cambridge, MA, 1992. Also McGraw-Hill,
Chicago, 1992.

Richard Kelsey. Compilation by program
transformation. Technical Report
YALEU/DCS/TR-702, Department of
Computer Science, Yale University, New
Haven, CT, 1989.

Richard Kelsey and Paul Hudak. Realistic
compilation by program transformation. In
Co@ Rec. 16 A CM Symposium on
Principles of Programming Languages,
pages 281-292, 1989.

David A. Kranz, Richard Kelsey,
Jonathan A. Rees, Paul Hudak, James
Philbin, and Norman I. Adams. Orbit: An

[9]

[10]

[11]

[12]

[13]

optimizing compiler for scheme. In
Proceedings SIGPLAN '86 Symposium on
Compiler Construction, 1986. S[CPLAN
Notices 2i(7), July, 1986, 219-223.

Ciaran O'Donnell. High level compiling for
low level machines. PhD thesis, Ecole
Nationale Supfirieure des
Tfil~communications, 1994.

Amr Sabry and Matthias Felleisen. Is
continutation-passing useful for data flow
analysis? In Proceedings of the A CM
SIGPLAN '94 Conference on Programming
Language Design and Implementation,
pages 1-12, 1994.

Olin Shivers. Control-Flow Analysis of
Higher-Order Languages or Taming
Lambda. PhD thesis, School of Computer
Science, Carnegie-Mellon University, 1991.

Guy L. Steele. Rabbit: A compiler for
Scheme. Technical Report 474,
Massachusetts Institute of Technology,
Cambridge, MA, May 1978.

Michael Wolfe. Beyond induction variables.
In Proceedings of the A CM SIGPLAN '92
Conference on Programming Language
Design and Implementation, pages 162-174,
1992.

............ 22

