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A b s t r a c t  

We define syntactic transformations that  con- 
vert continuation passing style (CPS) programs 
into static single assignment form (SSA) and vice 
versa. Some CPS programs cannot be converted 
to SSA, but these are not produced by the usual 
CPS transformation. The CPS-+SSA transforma- 
tion is especially helpful for compiling functional 
programs. Many optimizations that  normally re- 
quire flow analysis can be performed directly on 
functional CPS programs by viewing them as SSA 
programs. We also present a simple program 
transformation that  merges CPS procedures to- 
gether and by doing so greatly increases the scope 
of the SSA flow information. This transformation 
is useful for analyzing loops expressed as recursive 
procedures. 
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1 I n t r o d u c t i o n  

Continuation-passing style has been used as an 
intermediate language in a number  of compilers 
for functional languages [1, 8, 12]. Static single 
assignment form has been used in optimizations 
targeted towards imperative languages, for exam- 
ple eliminating induction variables [13] and par- 
tim redundancies [2]. In this paper we define syn- 
tactic transformations for converting continuation 
passing style (CPS) programs into static single as- 
signment form (SSA) and vice versa. 

The similarities between CPS and SSA have 
been noted by others [1, 9]. In CPS there is 
exactly one binding form for every variable and 
variable uses are lexically scoped. In SSA there is 
exactly one assignment s tatement for every vari- 
able, and that  s tatement  dominates all uses of the 
variable. This is also the main difference between 
the two: the restriction on variable references in 
CPS is lexical, while in SSA it is dynamic. 

The two forms have generally been used in very 
different contexts. CPS has been used in com- 
pilers for functional languages, and SSA for ira- 
perative ones. As a result, the problem of flow 
analysis has come to be viewed as more difficult 
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in CPS. This is really an artifact of the programs 
being compiled and not a problem with the CPS 
intermediate  language. Functional programs ex- 
press control flow through the use of procedures, 
resulting in large collections of small procedures, 
as opposed to small collections of large procedures 
in imperat ive languages (by 'large' procedure we 
mean one large enough to contain a loop). The 
writers of compilers for imperative languages have 
been quite successful with using SSA to express 
the results of intraprocedural  flow-analysis and 
then analyzing the SSA program. CPS uses pro- 
cedures to express practically everything, so any- 
thing but the most local optimization appears to 
require interprocedural  analysis, which is hard in 
any language. 

In this paper  we are not going to concern our- 
selves with interprocedural  flow analysis. What  
we will do is restrict  our notion of what consti- 
tutes a procedure in CPS. The A forms in CPS 
programs will be annota ted  to indicate which rep- 
resent full procedures and which are continua- 
tions. This reduces the number  of full procedures 
and greatly simplifies analyzing the program. 

Throughout  the paper  we will assume that  any 
use of lexical scoping in the source program has 
been implemented by the introducing explicit en- 
vironments,  as described in [1, 7]. We further 
assume that  in the CPS programs continuations 
are created and used in a last-in/first-out man- 
ner (see section 6 for a discussion). The lat- 
ter restriction only affects the way in which non- 
local returns,  such as longjumps in C or call-with- 
current-cont inuat ion in Scheme, are expressed in 
CPS. 

The paper  proceeds as follows. Section 2 con- 
tains the definition of an SSA language. Section 3 
defines a source language, an annotated CPS lan- 
guage, and an algorithm for converting source 
programs into CPS programs. The  following two 
sections define functions tha t  convert CPS proce- 
dures into SSA procedures and vice versa. The 
remainder  of the paper  is a discussion of practical 

differences between SSA and CPS, followed by a 
comparison to previous work. 

2 Static Single Ass ignment  

SSA is an imperative form in which there is ex- 
actly one assignment for every variable and that  
assignment dominates all uses of the variable (see 
[4] for a good overview of SSA). 

To make the control-flow graph explicit, control 
flow is expressed entirely in terms of i f  and goto.  
We allow expressions in some nons tandard  places, 
for example as the arguments  to the C-functions; 
removing these only requires introducing a few 
additional assignment s tatements .  The  syntax of 
expressions does not m a t t e r  and is left unspeci- 
fied, with the restriction that  they may not con- 
tain procedure calls (and they typically don' t  in 
SSA languages). 

The g rammar  for a procedure in our SSA lan- 
guage is: 

P ::= p roc (x*)  { B L* } 
L ::= I : I * B  
I ::= x ~- ¢ ( E * ) ;  
B ::= x ~ - E ;  B ] z ~ - E ( E * ) ;  B ]  

goto l~; I 
r e t u r n  E; I r e t u r n  E ( E * )  ; I 
if E then B else B 

E ::= x l E + E [ . . .  
where x E variables 

l E labels 

The semantics is the 'obvious' one. ~-~ is as- 
signment, E(E,  . . . )  is a procedure call, and 
r e t u r n  returns from the current  procedure.  The 
C-functions at the beginning of a block each take 
one argument  for each of the goto ' s  tha t  j ump  to 
that  block. The i ' th a rgument  is re turned  when 
control reaches the block from goto  l~. 

Cytron et al. [4] describe a t ranslat ion al- 
gorithm that  efficiently converts programs into 
SSA while introducing the min imum number  of 
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C-functions. 
Because every variable has a unique assign- 

ment, de f in i t ion~use  chains are trivial to com- 
pute. Many analyses and optimizations are sim- 
pler when applied to a program in SSA form than 
to the original source program. 

Below is an example SSA procedure that  counts 
the number  of t imes zero appears in the sequence 
f ( 0 )  . . .  f ( l i m i t - i )  for some function f and in- 

teger l i m i t .  Note that  some of the computat ion 
occurs in the  C-functions. In particular the sec- 
ond i f  makes sense only in the context of the 
C-function for c' at label j .  We will be using this 
example th roughout  the paper. 

proc (f limit) { 

goto I0 ; 

l:i *-¢(0, i+1); 

c ~-¢(0,  c ');  
if i = limit then 

return c ; 

else 

x ~-f (i) ; 
if x = 0 then 

goto j0 ; 
e l s e  

goto j l ;  } 
j : c '  ~--¢(c+1, c ) ;  

goto 11 ; } 

3 A n n o t a t e d  C P S  

In continuation passing style procedures do not 
return. Instead they are passed an additional ar- 
gument,  a continuation, which is applied to the 
procedure 's  return value (see chapter 8 of [5] for 

a full discussion). 
The correspondence between CPS and SSA re- 

quires a slightly modified algorithm for converting 
programs into CPS. The modified algorithm an- 
notates  the A forms in the CPS code to show how 
they are used. The annotations have no semantic 
content and, if not introduced by the CPS algo- 
rithm, could be added to the program via some 

suitable analysis (assuming the CPS program is 
in a suitable form; see section 6 below). 

Our source language is a subset  of Scheme [3], 
with the subset  chosen as a compromise between 
simplicity and realism. For simplicity we will as- 
sume that the source and CPS languages use the 
same expressions as in the SSA language of the 
previous section. In the context of Scheme pro- 
grams we will refer to the equivalents of the SSA 
expressions as trivial expressions, to keep from 
confusing them with other Scheme expressions. 
As described above, the main restriction on (triv- 
ial) expressions is that  they cannot contain pro- 
cedure calls. 

To simplify the CPS algorithm the source lan- 
guage is restricted to allow non-trivial expressions 
only in tail position or as the bound value in a 
let. In an actual  compiler the source program 
could be put  in this form either by a pre-pass or 
as part  of a more complex CPS algorithm. We 
also assume that  every identifier is unique. 

A loop  expression is a version of Scheme's 
n a m e d - l e t  with the restriction that  calls to the 
label may only occur in tail position. It is in- 
cluded to show how iterative constructs,  such as 
f o r  and w h i l e  loops, may be converted into CPS. 

The grammar for this Scheme subset  is: 

M ::= E I (E E*) I ( i f  E M M) I 
( l e t  ( ( x M ) )  M) [ 
( l o o p  l ( (x  E)*)  M) I 
( I E * )  

E ::= z I ( + E E )  I . . .  
P ::= (A (x*) M) 
where x C variables 

l E labels 

The semantics of the source language is that  
of Scheme. This subset  is sufficient to implement 
most of Scheme, with explicit cells added for any 
variables that  are the targets of s e t  ! expressions 

in the source program. 
As was done in the Rabb i t  compiler [12] our 
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,7": M x C ~ M '  

m([E, kl) = (k E) 
3F([E, (.~cont(X) M ' ) ] ) =  ( l e t  ( (xZ) )  M') 
F ( I ( E . . . ) ,  C]) = ( l e t  ( (v  ( E . . . ) ) )  ( j r ) )  if C = x and x is bound  by l e t r e c  

= ( E . . .  C) otherwise 

3K'([(let ((X M1)) M2) , e l ) =  .7([M1, (~(X) ~([M2, C~))~) 
~7([(ie E ~/[1 M2), ~1) -~ ( i f  E ~7([M1, ~1) ~7([M2, ~)) 
F ( [ ( ± f  E M1 M2), (~cont(Z) M')] )  = 

(letrec ((x (Ajump (X) M ' ) ) )  ( i f  E S([M1, z]) Y([M2, z~))) 

Jr([(loop l ( (x  ginitial) . . .  )M), CI) = 
(letrec ((I (Ajump (x  . . .  ) 5r([M, C~)) ) )  ( l  Einitial . . .  ) )  

CD = 

F :  P ~ P '  

v([(A( , . . . )  M)])= 7(Iv,  k])) 

Figure 1: Conversion to CPS 

conversion to CPS will treat  trivial expressions as 
values and not introduce continuations for them. 

In the CPS grammar  all A's are annotated as 
being either proc, cont, or jump. The annotat ions 
indicate how the A's are used, and, equivalently, 
how they  can be compiled. 

Proc is used as the translation of the A forms 
in the source program. These are full procedures 
that  eventually re turn a value and for this reason 
take a continuation as an argument.  The cont 
and jump forms are continuations that  are used 
in slightly different ways. The cont continuations 
are re turn  points for calls to proc's. Jump indi- 
cates tha t  the continuation is called within the 

current procedure  instead of being passed to an- 
other one. The CPS algorithm introduces ,Xjump 
continuations when the two arms of a conditional 
have to rejoin at a common point and for the bod- 

ies of loop 's .  
In terms of compilat ion strategy, cont A's are re- 

turn  points, jump's can be compiled as gotos, and 
prods require a complete procedure-call  mecha- 

nism. 

The grammar  for the CPS language is as fol- 

lows: 

M' ::= (E E* C) I 

(k E) I 
( i f  E M ' M ' )  ] 

( l e t  ( (x  E ) )  M') I 
(letrec ((x P')) g') 

C ::= k I (Aco~t (z) M') 
p/ ::= (Ap~oc (z* k) M/)[ 

(Aj~p  (x*) M')  
where x,k E variables 

The semantics is the obvious call-by-value se- 
mantics. The annota ted  A's are all jus t  A, l e t  is 

syntactic sugar for A, and so on. 
The identifiers x and k used in the  grammar  

are members  of the same syntact ic  class. Mak- 
ing them syntactically distinct, as is sometimes 
done [8], restricts how continuations are used and 
makes CPS and SSA entirely equivalent (see Sec- 

tion 6). 
The function ~ defined in Figure 1 translates 

source expressions M to CPS expressions M'. It 
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(Aproc (f limit k) 
(letrec ((i (Ajump 

(if 

(i o o))) 

(i c) 
(= i limit) 
(k c) 

(f i (A~ont (x) 
( l e t r e c  

(if 

( ( j  (Aj~mp (c') 
(1 (+ i 1) c ' ) ) ) )  

( = x 0 )  

(j (+ c 1)) 
(j c ) ) ) ) ) ) ) ) )  

Figure 2: Example program in CPS 

takes a continuation C, which is either an identi- 

fier or a A~ont, as its second argument. 
F has two rules for applications. The first rule 

is used when the continuation argument is an 
identifier bound by a l e t r e c  in the rule for i f  
and ensures that  all uses of such identifiers are 
called directly. The second is used in all other 
cases. For l e t  a new continuation is created for 
the value. Identifier continuations are propagated 
through i f ' s ;  to avoid code expansion A continu- 
ations (as opposed to continuations that  are just 
an identifier) are marked as jump and bound to 
an identifier. Loop is t ranslated into a recursive 
continuation. The loop begins by calling the con- 
t inuation on the initial values of the iterative vari- 
ables. Calls to the loop's label become calls to the 
recursive continuation, ignoring the current con- 

tinuation. 
As we are not interested in interprocedural 

analysis we will treat  each Apro~ as a separate pro- 
gram (here we depend on the assumption that  ex- 
plicit environments have been introduced to take 

care of lexical scoping for any nested Aproc'S). Be- 
cause they are called at the point they are created, 
A~o~t's can be considered as inlined procedures. 
The call sites of Ajump's are easily found: the 
/~jurnp'S only occur as the bound value in l e t r e c ' s .  
Furthermore,  all references to the variables to 

which the Aj~mp's are bound are calls to those 
variables. 

The following is the sample SSA procedure from 
above written in the source language for the CPS 
transformation: 

(l (f limit) 
(loop 1 ((i O) (c 0)) 

(if (= i limit) 
c 

(let ((x (f i))) 
(let ((c I (if (= x O) 

(+ c I) 
c ) ) )  

(1 (+ i i) c ' ) ) ) ) ) )  

Figure 2 presents the CPS version of the same 
procedure. A Acont is introduced as the continu- 
ation for the call to f and Aj~r~p'S are used as the 
join point for the i f  and for the loop. 

4 C o n v e r t i n g  C P S  to S S A  

In this section we define a syntactic translation 
that  converts CPS procedures into SSA proce- 

dures. 
The function G in Figure 3 translates non- 

trivial CPS expressions to SSA statements.  The 
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g :  M / - + B  
 (I(let M ' ) ] )  = • E ;  

g ( [ ( S  . . .  (Aco   (x) M ' ) ) ] )  = x E (  . . .  ) ;  

O([(E ...It)I) ---- returnE(...); 
~([(k E)]) = return E; 
O([( j  Eo,i El,i . . .  )]) = goto ji; 
g( [ ( i f  E M i MS)I) = if E then g([Mi] ) else G([M%_I ) 
O([(letrec ( . . . )  M')]) = O([M']) 
Opro~ : P '  ~ P  
gproc([(Aproc (x  . . .  ) M')]) = proc(x. . ,  k){ Q([M']) Ojump([(Ajump . . .  )]) . . . }  
gjump : J x (ljump ( x . . . )  M') --~ L 
Gjump([j, (Ajurnp ( x . . . )  M')])  = j :  x+--¢(E0,0, E 0 , 1 , . . . ) ;  . . .  Q([M']))  

Figure 3: Translat ion of CPS to SSA. The Ei,j on the right-hand side of the definition of gjump are 

those from the left-hand side of the definition of g ( [ ( j  . . .  )]).  

simple binding forms, l e t  and /~cont, become as- 
signments. I f  is essentially the same in both syn- 
taxes. Uses of a Apron'S continuation variable be- 
come r e t u r n ' s  while calls to l e t r e c - b o u n d  con- 
t inuation variables are t ranslated as gotos.  

The  ,~jump'S in the program are ignored when 
found by g. Each /~jump is instead lifted up to be- 
come a labeled block in the SSA procedure. The 
arguments  to the ,~jump'S, which are also ignored 
by ~, become the arguments  to the C-function 
that  defines the value of the corresponding vari- 
able in the SSA program. In the definition of 
6 j ~ p ,  E0,1 is the first a rgument  to the second 
call (in some arbi t rary  ordering) to j, the vari- 
able bound to (Aj~mp ( X . . . )  M') .  Tha t  call is 

t ranslated as go to  Jl. 
The  translated program is syntactically correct, 

and it obeys the SSA restriction that  there is 
exactly one assignment per variable (since each 
variable is bound exactly once in the CPS pro- 
gram). Variables in the translated program are 
assigned the values of the same expressions they 
were bound to in the  CPS program, and evalua- 
tion order is preserved, so the two programs pro- 
duce identical results. 

Applying Opro~ to the CPS example produces 

the original SSA example from above. 

5 C o n v e r t i n g  S S A  to C P S  

We would like to produce an inverse of g to con- 
vert SSA programs to CPS. The function 'H in 
Figure 4, produced by a simple editing of the def- 
inition of g, is almost an inverse of 0. The  diffi- 
culty is the rule for the l e t r e c ' s  tha t  bind Aj~mp's. 
In translating /~jurnp'S to labeled blocks g ignores 
their position in the CPS program. Translat ing a 
labeled block back into a ,~jump is straightforward, 
but  we need to bind the Ajump with a l e t r e c  
somewhere in the newly created CPS program. 
The ,~jump'S need to be placed such tha t  no vari- 
able is referred to outside the form that  binds it. 

Our placement algorithm uses the dominator  
tree of the SSA program. S ta tement  M0 is said 
to dominate M1 if M0 appears in every execution 
path  between the start  of the program and M1. If 
M2 also dominates M1 then either M2 dominates  
M0 or vice versa. The  dominator  relation thus 
organizes a program's  s ta tements  into a tree. The 
immediate  dominator  of M is M's parent  in tile 
dominator  tree. 

Given a labeled block, d : I* B, in the  SSA 
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7-f : B--~ M' 
~ ( [ z  ~ E; M ] ) =  ( l e t  ( (z  E) )  ~ ( [ M ] ) )  

E(...  );D = (E. . .  k) 
= (k E) 

71([goto ,Ii;l) = (j E0,i ELi . . . )  
"Hp~o~ : P -~ P' 
7l~proc([proc(x . . .  k){B L*}~)=  (Ap~oc (x . . .  ) g ( l B l ) )  
"]-~jltmp : L ~ (Aju,7.p ( Z . . . )  M')  
~jump([ j :  x ~ ¢ ( E 0 , 0 ,  E o , 1 , . . . ) ;  . . .  B]) = (Aj~mp ( z . . )  H( [B ] ) )  

Figure 4: Translation of SSA to CPS. The E~,j on the right-hand side of the definition of "H([goto g~ ;]) 

are those from the left-hand side of the definition of 7-fjump. 

program, with M the immediate dominator of I* 
B, we will replace "H(IM~) with 

in the CPS procedure. If two or more labels have 
the same immediate  dominator  their Aj~p ' s  are 
placed in a single l e t r e c .  

T h e o r e m :  all uses of variables in the CPS pro- 
gram produced by 'H are properly in scope. 

P r o o f i  We know that  every use of a variable in 
the SSA program is dominated by the variable's 
assignment statement.  Assignment s tatements in 
the SSA program correspond to binding forms in 
the CPS program. By inspection H preserves the 
dominator  tree, so it is sufficient to show that  
every s ta tement  in the CPS program is lexically 
inferior to its immediate  dominator,  and thus to 
all its dominators,  including the binding forms for 

any referenced variables. 
Again inspecting the definition of "H, we can 

see that  when the M' produced by "]f is the body 
of either a LET, a Aproc, or a Acont, or if it is ei- 
ther arm of an i f ,  then it is lexically inferior to 
its immediate  dominator.  The remaining possible 
location for an M' is as the body  of a Ajump, and 
each Aj,mp is by construction lexically inferior to 
the dominators  of its immediate dominator. This 
would lead to a problem if the immediate domina- 

tot  were a binding form, but  this cannot happen. 
If ( l e t  ( ( z  E ) )  M') or (E . . .  (Aco~t (x) M') )  
dominates a ~jump, then M / does as well. 

The arguments to tile C-functions are also 
placed so as to be lexically inferior to their dom- 

inators. QED. 

Using 7-/ to convert the original SSA example 
to CPS produces a program identical to the CPS 
program shown in Figure 2. 

6 W h y  C P S  a n d  S S A  A r e  N o t  

I d e n t i c a l  

The function g cannot be applied to all CPS pro- 
grams. It depends on the A's being correctly an- 
notated,  which in turn  depends on continuations 
being used in a somewhat  restricted fashion. If 
non-local returns, such as longjumps in C o r  call- 
with-current-continuation in Scheme, are trans- 
lated into uses of continuations in the CPS pro- 
gram there is no way to label the continuations so 
used. They are neither simply passed as a proce- 
dure's continuation, nor are all of their calls tail- 
recursive calls within the procedure in which they 
were created, so neither A~.o~t or Aj~mp is appro- 
priate. A fourth annotat ion could be introduced 
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(Aproc (f limit k) 
(letrec ((i (Aproc (i c k') 

(if (= i limit) 
(k' c) 

(f i (~cont (X) 
( l e t r e c  ( ( j  

(i 0 0 k))) 

(A/~p (c') 
(i (+ i i) c' k')))) 

(if (= x O) 
(j (+ c i)) 
(j  c ) ) ) ) ) ) ) ) )  

Figure 5: Example program using Scheme's n a m e d - l e t  t ranslated into CPS. 

for continuations that  are created in one proce- 
dure and called in another. There would still be 
no direct way to represent the program in SSA. 

7 Compiling Imperative Pro- 
grams 

We have shown that  programs can be translated 
into CPS  and from there to SSA programs by 
a series of syntactic transformations.  Producing 
an SSA program normally requires flow-analysis, 
as the program directly expresses use~def in i t ion  
chaining. Where  is the flow information in the 
CPS program coming from? 

The source program for the CPS transforma- 
tion is a functional program, and as such con- 
tained the required flow information. If we had 
s tar ted with an imperative program, meaning one 
using s e t !  to modify the values of variables, 
t ranslat ion into our CPS source language would 
have required adding explicit cells to hold the val- 
ues of all variables tha t  were the targets of set! 
expressions. The Aj~mp'S in the resulting CPS pro- 
gram would take no arguments  and there would 
be  no C-functions in the corresponding SSA pro- 
gram, only a lot of stores and fetches. Transform- 
ing such a program into a more useful form would 
require doing some flow-analysis, similar to that  
done in translating imperat ive programs to SSA. 

8 Compiling (Mostly) Func- 
tional Programs 

For programs that  do not side-affect the values 
of variables, viewing CPS procedures as SSA pro- 
cedures shows that  CPS nicely reflects intrapro- 
cedural definition~-~use associations wi thout  any 
need for flow analysis. There is still a problem. 
Programs wri t ten in languages such as ML and 
Scheme tend to have few side-affected variables, 
making dataflow visible as discussed above. The 
difficulty is that  these same languages use recur- 
sion to express iteration. They  do not use itera- 
tive constructs like l oop  in the CPS source lan- 
guage used above. So while we get intraprocedu- 
ral flow information more or less for free, what  we 
really want is interprocedural  information. 

Interprocedural  analysis is difficult, bu t  we can 
instead take the approach of increasing the size of 
the procedures. The idea is to find a set of proce- 
dures all of which are always called with the same 
continuation, and then to subst i tu te  tha t  contin- 
uation for the procedures '  continuation variables. 
The procedures are then themselves continuations 
nested within a single large procedure,  removing 
any need for interprocedural  information. 

More precisely, given a set procedures  P0 . . .  Pn 
bound by one or more l e t r e c  forms to identifiers 
fo . . .  fn and a continuation C such tha t  every use 
of f i  is either a tail-recursive call from within P j  o r  
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a non-tail-recursive call being passed continuation 
C, we can perform the following transformation. 

Let Pi = (Aproc ( . . .  ki) Mi).  I fC  is (Acon t  . . .  ) ,  

let j be a new identifier; if C is an identifier, let j 
be that  identifier. 

1. Replace all references to the ki with j and 
remove them from the variable lists of the 
Pi, changing the Pi t¥om Aproc'S to /~jump'S. 

2. Remove the continuation from all calls to the 

3. Let M be the smallest form containing every 
non-tail-recursive call to the fi. Replace M 
with ( l e t r e c  ( . . . )  M) where ( . . . )  binds j 
to C if C = (A~o~t . . .  ) and also binds fi to 
Pi for every fi whose original binding form is 
lexically apparent  at M. 

Because we restricted ourselves to having the fi 
be bound by l e t r e c  and being called directly (as 
opposed to being passed to another procedure and 
then being called, for example), this is a purely 
syntactic transformation.  More sophisticated ver- 
sions are clearly possible. The simple syntactic 
version presented here applies to many common 
uses of recursive procedures.  

If our CPS source program used Scheme's 
n a m e d - l e t  syntax instead of the restricted loop  
version used above, applying ~ to it would pro- 
duce the program shown in Figure 5. The recur- 
sive procedure  is now a full procedure. Applying 
the above t ransformation to this program, with 
P0 = (Aproc ( i  c k/) . . . )  and C = j =  1, pro- 
duces the procedure  shown in Figure 2. 

We need to show that  the transformation is 
correct and preserves the map to SSA. Subst i tut-  
ing the value C (or an identifier bound to C) for 
the variables ki is safe, because the ki are always 
bound  to tha t  value. Scoping is preserved, be- 
cause any free identifiers in C are in scope at M, 
otherwise they  would be out  of scope at some oc- 
currence of C in the original program. Moving 
the Pi to a lexically inferior form also preserves 

~ c ~  ¸¸ 

scoping, and all uses of the fi are at or below the 
inserted l e t r e c  that  now binds them. 

The function G can be applied to the trans- 
formed program to produce an equivalent SSA 
version. We have created more Aj~mp's, but  they 
obey the same restrictions as the ones created 
by the CPS algorithm: the .Xj.,mp's are bound by 
l e t r e c ,  all uses of the variables to which they are 
bound are tail calls, and the bindings and uses all 
lie within a single Ap~oc (because any outlying Pi 
were moved in step 3 of the transformation).  

9 R e l a t e d  W o r k  a n d  C o n c l u -  
s ion 

The similarity between CPS and SSA has been 
noted by others. Appel [1] and O'Donnell  [9] 
both  briefly describe the relationship between C- 
functions and parameters  to procedures whose 
call sites are known. Here we have shown that  the 
correspondence is exact, and, more importantly,  
goes both  ways. The main difference between a 
CPS procedure and an SSA procedure is the syn- 
tax. Compiler writers can use a single represen- 
tat ion and take advantage of both  the work on 
intraprocedural  optimizations that  has been done 
using SSA and the work on interprocedural  opti- 
mizations done using CPS. 

The other contribution of this paper is that  the 
correspondence can be made to be useful. As long 
as procedures are too small to contain loops, con- 
sidering them as SSA procedures does not help 
much. We have shown how to merge looping pro- 
cedures together such that  the result can t reated 
as a single procedure (a restricted and somewhat  
more complex version of this t ransformation is 
mentioned in two of our earlier papers, [6, 7], but  
without  any discussion of the implications for pro- 
gram analysis). Wi thout  this t ransformation ana- 
lyzing loops that  are expressed as recursive proce- 
dures requires interprocedural  analysis, as in [11], 
and in this case using CPS may be more difficult 

than necessary [10]. 
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