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Abstract

Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional

magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood

flow when the subject views images of faces, compared with images of objects. However, the stimulus

selectivity of single neurons within these fMRI-identified regions has not been studied. We used

fMRI to identify and target the largest face-selective region in two macaques for single-unit

recording. Almost all (97%) of the visually responsive neurons in this region were strongly face

selective, indicating that a dedicated cortical area exists to support face processing in the macaque.

Lesion studies show that object recognition depends on the temporal lobe (1), but the principles

of temporal lobe organization underlying the representation of objects remain uncertain. In

particular, the question of how face processing is functionally organized has been a focus of

intense debate (2–4). In humans, several cortical regions have consistently been found in fMRI

studies to be more responsive to faces than to other objects, and it has been suggested that the

fusiform face area (FFA) is exclusively dedicated to face processing (5). However,

physiologists who are recording from the macaque temporal lobe have never found any entirely

face-selective region; instead, they have reported scattered clusters of face-selective cells,

especially prevalent in the upper and lower banks of the superior temporal sulcus (STS), with,

at most, 20 to 30% of the cells in any region being face selective (6–9).

It is possible that an area consisting entirely of face-selective cells exists in the macaque and

has simply been missed because of single-unit sampling limitations. Alternatively, no such
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area may exist, and regions of the macaque brain identified by fMRI as face-selective (10,

11) may actually contain a mixture of cells selective for both faces and nonface objects. fMRI

measures average blood flow within sampling units containing hundreds of thousands of cells,

and therefore it cannot directly address the selectivity of single units. To clarify the neural

organization of face processing, we used fMRI to target single-unit recordings to the middle

macaque face patch. Our goal was to understand the selectivity of single neurons within this

specific ~16-mm2 (12) region of the temporal lobe, which appears to be topographically

homologous to the human FFA (10).

Single-unit recordings targeted to fMRI-identified face-selective regions were performed in

two monkeys, M1 and M2, in a standard electrophysiology setup outside the scanner. We first

localized the face-selective regions in both monkeys with fMRI (Fig. 1, A and B), and we then

implanted a recording cylinder roughly over the targeted region. A second anatomical scan

with magnetic resonance (MR)–visible markers in a grid inside the recording cylinder showed

precisely which grid holes in the chamber targeted the center of the face patch (Fig. 1C).

Recordings were made from three adjacent grid-hole positions in both monkeys. A guide tube

was placed in the grid hole to allow reliable access to the face patch.

We used fMRI to identify face patches. Ninety-six images of faces, bodies, fruits, technological

gadgets, hands, and grid scrambled patterns (16 images per category, one category per block;

see fig. S1 for example stimuli) were presented to the monkey during continuous central

fixation. To optimize the signal-to-noise ratio, we used the exogenous iron oxide contrast agent

MION (monocrystalline iron oxide nanoparticle) (13). Consistent with previous results (10,

11), in both monkeys several discrete regions (face patches) responded significantly more to

faces than to five other object categories. The most prominent face patch in both monkeys was

the one located at A6 (i.e., 6 mm anterior to the interaural line) (Fig. 1, A and B). In addition,

monkey M1 had a more posterior face patch located at A0, and both monkeys had anterior face

patches located between A15 and A22 (fig. S2). We designate the patch located at A6 the

“middle face patch” throughout this paper, to distinguish it from the anterior face patches and

from the region posterior to A6, which showed variable face selectivity across monkeys.

Figure 1A shows a semisagittal section from monkey M1 in which all three face patches are

visible. We targeted the middle face patch for single-unit recordings because it was the most

prominent in both monkeys (and in all the monkeys we have scanned so far, n = 7 monkeys)

and because of its possible homology to the human FFA (10). In monkey M1, this patch was

located on the lip of the lower bank of the STS; whereas in monkey M2, it was located in the

fundus of the STS (Fig. 1B). This individual difference underscores the importance of using

fMRI to target single-unit recordings in the same animal. The lesion left by the recording guide

tube in monkey M1 is visible in Fig. 1, A and C, and confirms, in three dimensions, that our

single-unit recordings accurately and precisely targeted the middle face patch.

We tested the face selectivity of 405 single units (241 in the right hemisphere of monkey M1

and 164 in the left hemisphere of monkey M2) in the middle face patch with the same 96 images

used to localize the face patches with fMRI. The stimuli were presented foveally every 400 ms

(200 ms on and 200 ms off) in random order for 4 to 10 repetitions while the monkey fixated.

We recorded responses from all single units encountered, regardless of visual responsiveness

or face selectivity. Across the population of recorded cells, 182 of 241 (76%) cells in monkey

M1 and 138 of 164 cells (84%) in monkey M2 gave significant responses (14) to at least one

of the 96 images and were therefore classed as visually responsive.

Figure 2A shows the normalized response selectivity of all visually responsive cells recorded

from the two monkeys (15). Each of the faces (images 1 to 16) elicited stronger responses

across the population than did any of the 80 nonface objects (images 17 to 96). Figure 2B shows
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bar graphs of the average responses to each of the 96 images across the population of visually

responsive cells. In monkey M1, the ratio of face to nonface object response was –74 (negative,

due to a small suppression to the nonface objects on average); in monkey M2, this ratio was

21.

In addition to the overwhelming bias for face stimuli, many cells gave significant responses to

a few particular nonface objects (the faint orange lines in Fig. 2A to the right of the first 16

columns). In monkey M1, the two nonface objects that gave mean responses across the

population exceeding six average standard errors (SEs) were a clock and an apple (Fig. 2C).

In monkey M2, the only nonface objects that elicited significant responses across the population

were also round. The small but significant responses to round stimuli suggest that the coding

of faces in the middle face patch is based on analysis of visual shape.

To quantify the face selectivity of individual cells, we defined a face-selectivity index as FSI

= (mean responsefaces – mean responsenonface objects)/(mean responsefaces + mean

responsenonface objects). Figure 2D shows population histograms of the FSI in both monkeys.

The distributions are strongly skewed toward high FSI values. The mean absolute magnitude

of the FSI was 0.90 in monkey M1 and 0.87 in monkey M2, which correspond, respectively,

to a 19:1 and a 14:1 ratio of face-to-nonface object response. In the single-unit literature, cells

are typically classified as face selective if they respond at least twice as strongly to faces as to

nonface objects (16, 17). By this criterion, all but 8 out of 310 total visually responsive cells,

or 97%, were face selective (we considered cells that were selectively inhibited by faces to be

face selective as well; if we required an excitatory response to faces, then 280/310 = 90% of

cells were face selective).

Because the monkeys were highly familiar with the 16 screening faces, one could hypothesize

that exposure to these specific faces contributed to the cells’ selectivity. This appears unlikely

for two reasons. First, we found that the face selectivity of units in the middle face patch did

not depend on the particular set of images tested. Although some cells responded best to only

one or a few faces (Fig. 2A, left, cell 40), many cells were responsive to a wide variety of face

images, including familiar and unfamiliar faces, human and macaque faces, and even cartoon

faces (fig. S3). Cells maintained their face selectivity when tested with a wide variety of novel

face and nonface images, including monkey headless bodies and body parts, as well as hundreds

of natural images. Second, because each of the 96 images in the screening set was shown

equally often, we do not believe that selectivity for one particular subset of images (faces)

could emerge from repetitive passive viewing of the whole set of images.

What was the selectivity of units that did not give a clear response to any of the 96 screening

stimuli? When we encountered such a unit, in most cases we documented the

nonresponsiveness and then advanced the electrode in search of the next unit. However, in

cases where we were recording from a pair of units simultaneously and only one was visually

responsive, we tested a battery of additional face stimuli (18) on the nonresponsive unit as well.

We found that out of 14 initially non–visually-responsive units tested in this way, 9 actually

were responsive to face stimuli but were selective for nonfrontal views, different expressions,

or monkey faces. None of the remaining five units showed a significant response to any nonface

object. It is therefore likely that many, if not all, non–visually-responsive units were similarly

selective for face characteristics not included in the set of screening stimuli.

The local field potential (LFP) represents summated excitatory and inhibitory synaptic

potentials in thousands of neurons around the electrode tip. It has been reported that the LFP

correlates better than single units with the fMRI signal (19). Evoked LFPs recorded from

monkeys M1 and M2 are shown in fig. S4. In both monkeys, two large face-selective troughs

with peak magnitudes at 130 ms and 200 ms were evident in the LFP. We observed these face-
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selective LFP troughs at almost all recording sites in the middle face patch, providing further

evidence that population activity within this face patch was strongly face selective. The

existence of two face-selective troughs suggests two discrete stages of face processing, possibly

triggered by the arrival of feedforward and feedback/recurrent inputs, respectively.

One fundamental function of face processing is to identify individuals. Cells responding

sparsely and robustly can be used not just to detect the presence of a face, but to discriminate

the identity of a particular face. To measure how much information these face-selective cells

carried about face identity (i.e., differences between different face images), we examined all

cells for which the 96 faces and objects had been presented at least five times (94 cells). The

response magnitude elicited by the 96 images in these 94 cells on four trials was averaged to

yield, for each image, a population vector (“template vector”). We then asked whether we could

predict the identity of an unknown image from the activity it elicited across the population of

94 cells on the remaining fifth trial (“test vector”). Identification was performed by determining

the template vector to which the test vector was closest in Euclidean distance (Fig. 3A). If the

population response correctly identified a particular image, then the 96 × 96 matrix of (test

vector, template vector) distances should have a minimum value on the diagonal in the row

corresponding to that image (chance = 1/96). We also examined categorization by using the

following test: If the population response correctly categorized a particular image as belonging

to one of the six stimulus categories, then the response to that image should be closest to the

mean of the 16 template vectors in the same category (chance = 1/6).

Figure 3B shows the percent correct identification and categorization obtained using this

algorithm. Mean individual face identification accuracy was 74%, and mean face

categorization accuracy was 100%. Thus, information about face category and identity is

available within this patch of cortex. Performance was significantly better for faces than for

nonface objects, for both individual identification (t test, P < 2 × 10−16) and categorization (t
test, P < 5 × 10−19).

Evidence from human psychophysics suggests that objects are identified at the category level

(e.g., face versus fruit) before they are identified at the individual level (20). A physiological

correlate of this is that information about face category precedes information about face identity

by an average of 51 ms in face-selective cells recorded from the anterior STS (21,22). To

examine the time course of identity and category information in single units in the middle face

patch, we computed time-varying test and template vectors from average responses within a

50-ms sliding window. Categorization performance reached its maximum earlier (133 ms) than

did identification performance (192 ms) (Fig. 3C).

Single units in the middle face patch of the macaque temporal lobe showed a remarkable

specificity for face processing and contained a much higher concentration of face-selective

cells than reported previously. Indeed, the only nonface images that elicited significant (albeit

small) responses across the population were clocks and round fruits, which share a common

shape attribute with faces. In agreement with previous single-unit studies of face-selective cells

in the temporal lobe, cells in the middle face patch carried information about the identity of

individual faces distributed across the population (23–25), and they showed a face-inversion

effect (17,26). The responses of cells in the middle face patch clearly tended toward distributed

coding within the domain of faces, because many cells were activated by a wide range of face

stimuli, and a stimulus set containing only 16 faces elicited significant activation in 80% of all

cells. The cells in this patch may be performing the “structural encoding stage” of face

processing (27); at this stage, faces are analyzed in terms of structural properties and semantic

identity has not yet been made explicit.
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Several previous single-unit studies have described a scattered clustering of face-selective cells

in the temporal lobe (8,17,28), suggesting an underlying architecture of clumps (29) or columns

(28), although these clusters may be larger (0.5 to 2 mm) than classical columns found in early

sensory areas (7,30). Furthermore, optical imaging studies have found ~1-mm spots in anterior

inferotemporal cortex that are selective for faces (31). Large parts of the temporal lobe may

indeed be tessellated by columns selective for different kinds of objects. However, because of

its reproducible anterior-posterior location and selectivity properties (both single-unit and LFP)

across animals and its relatively large size (~16 mm2), the middle face patch appears to

constitute a different level of functional organization: a discrete area dedicated to face

processing.

Why is it important that the brain contains an area consisting entirely of face-selective cells?

First, this indicates that the brain uses a specialized region to process faces. Second, no brain

region has previously been identified that is selective for a single visual form; in this sense,

the fMRI face patches are analogous to the widely studied areaMT/V5, which is specialized

for processing visual motion. Third, the finding that essentially all cells within this region were

face-selective implies that either all the inputs are already face-selective, or a face-selective

output can be generated from non– or partially face-selective inputs in just one step. Fourth,

the fact that fMRI and single units were both specific for the same visual features confirms and

extends previous evidence that the hemo-dynamic signal of fMRI can be highly correlated with

single-unit activity, in higher order regions (32) as well as in lower tier regions (33). Fifth, the

fact that many face-selective cells also showed a weak response to round clocks and fruits

indicates that domain-specific face processing emerges at an early stage in form processing.

And lastly, the grouping together of so many face-selective cells reiterates the advantages of

modular architecture: An area consisting entirely of face-selective cells could achieve the

richness of interconnections between large numbers of face-selective cells necessary to support

holistic face processing.
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Fig. 1. Targeting an fMRI-identified face patch for single-unit recording

(A) A semi-sagittal section through the right hemisphere of monkey M1 showing three face-

selective patches along the STS. Single-unit recordings in monkeys M1 and M2 were targeted

to the middle face patch, located ~6 mm anterior to the interaural line; the red rectangle indicates

a coronal slice passing through the middle face patch. The three white arrows point to the lesion

left by the recording guide tube. (B) Two coronal slices showing the middle face patch in

monkeys M1 (left) and M2 (right) (at A6.5 and A5.5, respectively). MION activation is overlaid

on raw functional echo planar (EPI) images. Arrows point to the specific region targeted for

electrophysiology in each monkey. In monkey M1, the targeted face patch was located on the

lower lip of the STS in the right hemisphere. In monkey M2, the targeted face patch was located

in the fundus of the STS in the left hemisphere. (C) Face patches and guide-tube track in three

dimensions, rotated into the coordinate system of the recording grid (monkey M1). After

chamber implantation, a high-resolution anatomical scan was obtained with six oil-filled

markers positioned inside a grid in the recording chamber. We determined which grid hole to

use by rotating the brain, together with registered face-selective fMRI activation, into the

coordinate system defined by these markers. This panel shows three orthogonal slices passing

through the point marked by the intersection of the red lines. Cells in this monkey were recorded

from the hole at the intersection of the red lines, and from two adjacent, more-medial holes in

the same row of the grid. The dark elongated lesion confirms that the guide tube passed through

this point to accurately and precisely target the middle face patch. We recorded from all cells

encountered between the start of the gray matter and the start of the white matter in the lower

bank of the STS. Scale bar, 1 cm. P < 10−4 for MION activations.
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Fig. 2. Face selectivity of single units in the middle face patch

(A) Selectivity profiles of all visually responsive cells in monkeys M1 (left) (182 cells) and

M2 (right) (138 cells) to 96 images of faces, bodies, fruits, gadgets, hands, and scrambled

patterns (16 images per category, see fig. S1 for stimuli). Each row represents one cell and

each column one image. The rows were sorted by the FSI, and the columns were sorted by

image category. To compute selectivity profiles for each cell, responses to the 96 images were

averaged over a 200-ms interval starting at the response latency, the baseline (the average

response from 0 to 50 ms) was subtracted, and the response normalized. The average response

time course to each of the 96 images is shown in fig. S6. (B) Average response to each of the

96 images across all visually responsive cells in monkeys M1 and M2. Error bars represent ±1
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SE. The black line indicates six average SEs. (C) Nonface images that elicited a response above
six average SEs in monkeys M1 and M2. Images are sorted from left to right by decreasing
elicited response magnitude. (D) Distribution of FSIs across all visually responsive cells.
Dotted lines indicate |FSI| = 0.33 (corresponding to a 2:1 ratio of face-to-nonface object
response).
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Fig. 3. Face identity and category information are carried by the population of face-selective cells

(A) Matrix of Euclidean distances between each of the 96 × 96 pairs of test and template
response vectors. The maximum possible distance between a test and a template vector is

. (B) The top row shows the percent correct identification and categorization for each
image, based on a nearest neighbor algorithm. The middle row shows the same data grouped
by category (F, faces; B, bodies; Fr, fruits; G, gadgets; H, hands; S, scrambled patterns). Error
bars represent ±1 SE. The bottom graphs are the percentages of correct identification and
categorization for six different categories as a function of time after stimulus presentation,
computed using a 50-ms sliding window. Chance performance would be 1/96 for identification
and 1/6 for categorization (indicated by the horizontal line in each graph). Data are from
monkey M1.
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