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This paper proposes a framework of waveform relaxation methods to simulate electromagnetic fields coupled to electric networks.
Within this framework, a guarantee for convergence and stability of Gauß–Seidel-type methods is found by partial differential algebraic
equation (PDAE) analysis. It is shown that different time step sizes in different parts of the model can be automatically chosen according
to the problem’s dynamics. A finite-element model of a transformer coupled to a circuit illustrates the efficiency of multirate methods.

Index Terms—Convergence of numerical methods, coupling circuits, differential equations, eddy currents, iterative methods.

I. INTRODUCTION

E LECTROMAGNETIC field effects are described by
Maxwell’s partial differential equations (PDEs). In many

applications, certain parts of the overall system can be mod-
eled by an electric circuit up to a sufficient accuracy. These
reduced model parts are stated as time-dependent differential
algebraic equations (DAEs). Coupling field PDEs and circuit
DAEs results in a system of partial differential algebraic equa-
tions (PDAEs) that avoids the computationally expensive field
simulation where possible, but allows particular parts to be
represented by field models which can be regarded as complex
network elements. Eventually, the spatial discretization of the
field yields a system of coupled DAEs.

We present in this paper an application of the so-called dy-
namic iteration or waveform relaxation methods (WR method).
They solve iteratively the field and circuit equations separately
and this approach allows for multirate time integration. Splitting
methods are well known for ordinary differential equations [1]
and also in this context the fractional step method [2] is known.
Generally, this is in contrast to the WR methods. For all splitting
methods, a generalization to the DAE case is not straightfor-
ward, since in general the iteration will diverge; see [3] and the
references therein. We present in Theorem 2 a criterion that as-
sures convergence for a large class of field-circuit coupled prob-
lems, on the basis of index analysis.

The paper is organized as follows: benefits of the mul-
tirate concept are discussed for the field/circuit coupling,
then different coupling conditions are defined and adapted to
WR-methods. A sketch of a convergence and stability proof is
given utilizing results from [3]. Then, a numerical example is
discussed for illustration and to prove the concept.

II. MULTIRATE PHENOMENON

The time discretization has to resolve the dynamics of a
system as a whole and thus yields a series of time steps that
match the dynamics of the most active component (i.e., the one
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working at the highest frequency). In coupled, multiphysical
systems (e.g., electromagnetics with heating effects) one can
easily split the equations corresponding to their time constants
on the basis of physical reasoning. In contrast to this, field and
circuit equations describe the same physical phenomena, hence
feature similar time constants. Nevertheless, due to switches,
filters, or high integration, there may only be a small number of
devices active at a time, while the others remain latent. In either
case, the time integrator will resolve parts of the model with
an unnecessarily high resolution causing an avoidable high
computational cost. Hence, different time discretizations are
specially beneficial if a field model is in a latent circuit branch.
When technically acceptable, this can be numerically enforced
by only feeding important frequencies to the field model as
in the configuration shown in Fig. 1(a). The voltage source
represents a pulse-width-modulated (PWM) signal generator
whereas the boxed transformer is given by a nonlinear 2-D
field model [Fig. 1(b)]. The application of an adaptive time
integrator yields time step sizes in the order of 10 s,
although step sizes of 10 s would be sufficient to
render the dynamics of the field model [Fig. 1(c)].

III. PDAE COUPLING

Here we summarize the mathematical models of the field
(Section III-A) and circuit subsystems (Section III-B) and their
coupling (Section III-C).

A. Electromagnetic Field

The magneto-dynamic part of the problem is described in
terms of the magnetic vector potential (MVP) by the
discrete curl–curl equation

(1a)

where and denote the singular conductivity matrix and
the nonlinear curl–curl matrix (due to BH characteristics), ac-
complished by gauging, boundary, and initial conditions.

The circuit coupling is given here by source terms for (1a)
within the computational domain. In the case of stranded and
solid conductor models [4]

(1b)
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Fig. 1. Nonlinear field/circuit configuration exhibiting different time constants
in the voltages � and � due to a fast switching PWM voltage source and an
RLC low-pass filter. (a) Circuit description. (b) 2-D field model. (c) Voltages at
nodes � and � . (d) Currents through inductors.

where the coupling matrices and distribute the cur-
rents and voltage drops on the spatial mesh, which de-
note the related branch voltages and currents from the circuit
defined below. The additional coupling equations are

(1c)

(1d)

with linear direct current (dc) conductances and resistances
and , additional voltage drops , and currents . Also
the lumped inductances can be extracted in a postprocessing
step, e.g.,

(2)

because corresponds to a set of 1-A excitations. Thus,
system (1) is a DAE initial value problem of the form

with (3a)

(3b)

(3c)

where is regular along the solution and thus are
the differential and and the algebraic unknowns of the
field problem. Here and are input functions from
the circuit containing the voltages and (this input is
the most suitable choice of several options [5]). The differential
unknowns are the degrees of freedom (DoFs) for the discrete
vector potential , located in conductive parts whereas the alge-
braic variables are the remaining DoFs for the MVP and addi-
tional coupling variables (e.g., the extracted inductances)

and

using a projector onto the kernel of and the complemen-
tary , [5].

The usage of other conductor models, or the full Maxwell
equation does not change the concept presented in this paper, as
long as the space discretization will result in a system of form
(3).

B. Electric Circuit

The electric circuit reads in the flux/charge oriented modified
nodal analysis [6]

(4)

where the network topology is given by incidence matrices
; unknowns are the node potentials , charges , fluxes ,

and currents , . We will address this whole system more
abstractly as a semiexplicit differential algebraic initial-value
problem (given no LI cutsets and CV loops [7])

with (5a)

(5b)

with differential unknowns and algebraic un-
knowns , and external input function
from the field system, which may include any circuit parameter,
e.g., current sources or inductances .

C. Coupling by Reduced-Order Models

The field PDE (1) defines the current/voltage relation [(1c)
plus (1d)]. Hence, stamping in a circuit simulation package is
straightforward. This monolithic (or strongly coupled) approach
will evaluate the field equations several (possibly unnecessarily)
times at each time step with all the other elements. In cosimula-
tion, when the coupling is weak, both subproblems are decou-
pled on time windows and the transient behavior of the other
problem is approximated by a reduced model. The better is the
quality of this model, the larger the time windows can be chosen.
Examples are as follows.

1) The excitation of (1) by voltage sources and reinsertion
of currents through the conductors as time-dependent
current sources into the network equations (4), i.e.,

This is how monolithic coupling is typically organized
[8].

2) Especially for stranded conductors: the excitation of (1)
by voltages to determine the saturation level and
then to extract the inductances (2) that are identified in
the network (4) as

(6)
This generalizes the window-wise constant model in
[9], [10]. In the special case that the curl–curl equation
is linear, the inductance is constant and the
on-the-fly parameter fitting becomes superfluous.

3) Any model order reduction applied to (1) if the reduced
model can be written as an explicit function in terms
of the MVP and the currents , .

All coupling conditions above meet the abstract framework [(3)
plus (5)], for which a WR method is derived in the next sections
and convergence and stability are shown.
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IV. WAVEFORM RELAXATION

The time interval is split in windows
of length with synchronization points , which
satisfy . The windows are treated
sequentially. Each subsystem is solved (for a given input) inde-
pendently by a problem-specific time integrator. This allows for
different time steps [Fig. 2(a)]. The iterative exchange of data
between the subsystems is either of Jacobi or Gauß–Seidel type
[1] where the better parallelizability of the first scheme com-
petes with the faster convergence of the second. We propose the
following Gauß–Seidel iteration for the system [(3) plus (5)]:

0) Initialization. Set first time window to with and
set .
1) Guess. Get a circuit solution on .
2) Solve the DAE initial value problems.

a) Adaptive time integration of the field on

with

b) Computing the reduced order model

c) Adaptive time-integration of the circuit on

with

3) Sweep Control. If
, then repeat the step, i.e., set

and go to Step 2), otherwise Step 4)
4) Next window. If , then set new initial values

and proceed to the next time window
, go to Step 1).

This scheme requires a guess in Step 1) for the first iteration of
a window. We suggest to solve the circuit equations

with

(7)

where the reduced-order model is extrapolated from the pre-
vious solution to the current window . For
reduced-order model (6), this is the extrapolation of the old in-
ductances . Then, Step 2a) obtains the saturation
level, Step 2b) extracts the new reduced model , and finally,
in Step 2c), the new circuit solution is computed using the latest
field extraction as defined by Gauß–Seidel’s scheme.

The number of necessary iterations depends on the chosen
window size and on the nonlinearity of the problem. Fig. 2(b)
shows the improvement by iterating on an exemplary time
window. Sometimes the WR method may be very fast conver-
gent (e.g., in linear regimes). But the sweep control gives an
information about the accuracy of the solution, especially when
both problems share the same state variables.

Fig. 2. Properties of WR methods. (a) Exemplary partitioning into three time
windows, synchronized at � , � , and � ; time step sizes are chosen accordingly
to the dynamics. (b) Additional iterations (1, 2, 3) of one window can signifi-
cantly improve the (linear) guess, when compared with the reference solution.

V. PDAE AND WAVEFORM ANALYSIS

A. DAE Index

The convergence of a WR method applied to a PDAE system
is closely related to the DAE index of the space-discrete sub-
problems. The index classifies the expected instabilities during
numerical time integration of a DAE; these may compromise
the convergence of the WR method.

Definition 1 (DAE Index): Considering a system
, the (differential) DAE index of this system is

the smallest number , such that from the time derivatives

up to order an explicit equation for can be extracted.
Given an index- DAE and using perturbation analysis, in

many cases (e.g., provided not arbitrary controlled sources are
given), one can show that the error of the perturbed DAE

with

depends on the th derivative of the perturbation

e.g., the small perturbation with and
of an index- system perturbs by [11].

If the field problem (1) is excited by voltages, the Jacobian
is regular and hence we have for the field system

index- [5]. It follows immediately that any additional explicit
algebraic equation, e.g., (2), will not affect the Jacobian and thus
cannot raise the DAE index. Furthermore, the index of the net-
work equations is well understood and we can assume index-
for a large class of circuits [7].

Theorem 1: The extended field problem [(1) plus (2)], the
circuit problem (4), and the overall coupled system are of DAE
index- [5].

B. Waveform Analysis

The conditions for convergence and stability of dynamic
iteration methods applied to index- systems coupled by La-
grangian multipliers derived in [3] can be generalized to an
arbitrary coupling. Although WR methods are not stable for
general PDAEs, the following criterion guarantees convergence
in this case [12].
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TABLE I
COMPUTATIONAL EFFORT

Fig. 3. Error and convergence. (a) Error with respect to reference solution.
(b) Convergence plot.

Theorem 2: If the extrapolation fulfills a uniform Lipschitz
condition and no algebraic constraint depends on an old alge-
braic variable, then the WR method is stable and converges.

Application of Theorem 2: The extrapolation (7) is given by
an index-1 DAE and we can assume for adequate step sizes Lip-
schitz continuity and approximation order ; furthermore,
only the conducting part of the field problem is excited by the
voltages and thus there is no algebraic dependence in the alge-
braic constraint in Step 2a), i.e., . Hence, The-
orem 2 guarantees general convergence of the WR method, in
particular for the circuit example in Fig. 1(a).

VI. NUMERICAL SIMULATION

To prove the feasibility of our concept, the proposed method
is implemented within the CoMSON demonstration platform,
using spatial discretizations from FEMM.1 The weak coupling
is given by inductance extraction, as defined in (6). Any time
integration has been computed by Euler–Backward: the circuit
[of Fig. 1(a)] is discretized by a fixed step size of 10 s, which
is reasonable because of the fast switching, while field-only sys-
tems are solved adaptively. This setting was chosen for compar-
ison, although high-order adaptive multimethod time integration
is available in the software.

The weak coupling is simulated with fixed window sizes from
10 s to 2 10 s with (less than or three sweeps) and without
sweep control (one sweep). Table I lists the computational ef-
fort, expressed in solved linear systems, where the first sum-
mand relates to the time integration and the second relates to the
inductance extraction. The costs of the monolithic integration
(step size 10 s) are included for comparison. The errors
in Fig. 3(a) are given with respect to the reference solution, ob-
tained by a monolithic computation with step size 10 s. The
relative errors in Table I and Fig. 3(b) are the maximal errors on
the time interval, scaled by the maximal current (15.3 A).

The weak coupling for 10 s gives the same level
of accuracy as the strong coupling, but requires less than half

1See http://www.comson.org and http://femm.foster-miller.net.

of the computational effort. The iterations improve the accu-
racy but also increase the computational costs. Larger windows,

2 10 s, yield errors larger than 12% with correspond-
ingly lower costs. The simulations for 5 10 s take
already 70% of the computational effort of the strong coupling
( 10 s), but are significantly more accurate [Fig. 3(b)].
For small window sizes, the sweep control does not require it-
erations, therefore both methods coincide.

VII. CONCLUSION

This paper proves convergence and stability of WR methods
for a field/circuit coupled problem. The applied method is of
Gauß–Seidel type and utilizes arbitrary reduced-order models
for decoupling in each time window. Iteration may allow for
enlarged window sizes with the drawback of increased compu-
tational costs. For optimal results, higher order time integration
and a combined window size and sweep control are necessary.
The time integration automatically exploits multirate techniques
due to the cosimulation approach, as shown in an example of a
PWM-fed transformer.
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