
A&A 519, A73 (2010)
DOI: 10.1051/0004-6361/201014522
c© ESO 2010

Astronomy
&

Astrophysics

A cosmographic calibration of the Ep,i – Eiso (Amati) relation
for GRBs

S. Capozziello1,2 and L. Izzo1,3,4

1 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Compl. Univ. Monte S. Angelo, Ed. N, via Cinthia,
80126 Napoli, Italy
e-mail: capozziello@na.infn.it

2 INFN Sez. di Napoli, Compl. Univ. Monte S. Angelo, Ed. N, via Cinthia, 80126 Napoli, Italy
3 ICRANet and ICRA, Piazzale della Repubblica 10, 65122 Pescara, Italy
4 Dip. di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received 27 March 2010 / Accepted 4 June 2010

ABSTRACT

Aims. The Amati relation, which connects the isotropic energy emitted and the rest-frame peak energy of the νFν spectra of GRBs, is
cosmology-dependent, so we need a method to obtain an independent calibration of the Amati relation.
Methods. Using the Union Supernovae Ia catalog, we obtain a cosmographic luminosity distance in the y-redshift and verify that
this parameterization very well approximates the fiducial standard cosmological model ΛCDM. Using this cosmographic luminosity
distance dl, we compute the Amati relation considering this cosmology-independent definition of dl.
Results. The cosmographic Amati relation we obtain agrees in the errors with other cosmology-independent calibrations proposed in
the literature.
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1. Introduction

It is widely known that Supernovae Ia (SNeIa) are very accu-
rate and reliable standard candles, (Phillips et al. 1993). In re-
cent years their use as cosmological distance indicators have
led to the discovery that the Universe is in a phase of acceler-
ated expansion (Riess et al. 1998; Perlmutter et al. 1999). This
feature has also led to a revision of the standard cosmological
model, leading to what is known today as the ΛCDM concor-
dance model, see e.g. Ostriker & Steinhardt (1995). However,
due to their brightness, it is not possible to observe these ob-
jects very far away in the Universe. The most distant Supernova
Ia was observed at a redshift of z ∼ 1.7, (Benitez et al. 2002).
For this reason, the several cosmological analysis made using
the various compiled sample of SNeIa, like the Union Catalog,
(Kowalski et al. 2008), are unable to investigate the high-redshift
region of the Universe. If we had a kind of distance indicators at
these redshifts, we could extend our knowledge in this yet unex-
plored region of the universe.

One of the possible solutions to this problem could be
gamma-ray bursts (GRBs) (Piran 2005; Meszaros 2006). The
GRBs are the most powerful explosions in the Universe, and
this makes them observable even at high redshift. The most
distant GRB observed up to now is at a redshift of ∼8.2
(Tanvir et al. 2009; Salvaterra et al. 2009). However, GRBs are
not standard candles, because they span several orders of magni-
tude in luminosity, so we have to find another way to use GRBs
as cosmological beacons. A possible solution could consist in
finding correlations between photometric and/or spectroscopic
properties of GRBs themselves. In the scientific literature there
are several of these relations, (Schaefer 2006). One of these is the
Amati relation (Amati et al. 2002; Amati 2006), which relates

the isotropic energy Eiso emitted by a GRB to the peak energy
in the rest-frame Ep,i of the νF(ν) electromagnetic spectrum of
a GRB. This relation has already been widely used to constrain
the cosmological density parameter (e.g. Amati et al. 2008), with
quite remarkable results. However, there is still no physical link
between this correlation and the mechanisms underlying the pro-
duction and the emission of a GRB. The basic emission process
of a GRB is very likely not unique, so it is not easy to explain
the Amati relation from a physical point of view. Recently it has
been suggested that the Amati relation could strongly depend on
the satellite used for detection and the observation of each GRB,
(Butler et al. 2007). But this hypothesis has been rejected re-
cently (Amati et al. 2008), because this relation seems to be ver-
ified regardless of the satellite considered for the observations
and detection.

Although not supported by physical reasoning, the Amati re-
lation is a phenomenological correlation which leads us to con-
sider it as real and valid for our cosmological purposes. A fur-
ther problem to use the Amati relation for cosmological purposes
is that it must be calibrated independently of the cosmological
model considered, because at present it lacks a very low red-
shift sample of GRBs. In order to compute the energy emitted
by an astrophysical object at a certain redshift z, we need in-
deed a measure of the bolometric flux and of the distance of the
same object. For the first quantity we can compute from the ob-
served fluence S the integrated flux in the observation time, and
using the spectral model that best fits the spectral energy distri-
bution of each GRB, we can obtain very precise measurements
of the bolometric fluence emitted by a GRB, as suggested in
Schaefer (2006). The distance indeed depends in a fundamental
way on the cosmological model considered. Cosmologists usu-
ally employ the standard cosmological modelΛCDM, with fixed

Article published by EDP Sciences Page 1 of 6

http://dx.doi.org/10.1051/0004-6361/201014522
http://www.aanda.org
http://www.edpsciences.org


A&A 519, A73 (2010)

values of the density parameter Ωi. But this procedure naturally
leads to the so-called circularity problem when the Amati re-
lation is used to standardize GRBs. For this reason we need a
cosmology-independent calibration of the Amati relation.

Recently, a calibration was performed a calibration with
data of SNeIa using different numerical interpolation methods,
(Liang et al. 2008; Kodama et al. 2008; Tsutsui et al. 2009),
and the results are very interesting. In this work we consider a
similar analysis: if we consider the supernovae data from the
cosmographic point of view, for a detailed description see e.g.
(Weinberg 1972; Visser 2004), it would be possible to obtain a
calibration of the Amati relation using the results obtained from
a cosmographic fit of a sample of Sn Ia extended up to very high
redshift with the GRBs. The use of the cosmography to deduce
the cosmological parameters from supernovae Ia was widely dis-
cussed in the literature (Visser 2007), and the results are very
close to those attained by other and more accurate analysis.
Recently an application of the cosmographic method using the
clusters, (Capozziello et al. 2009), and also GRB (Capozziello
& Izzo 2008) has led to serious doubt about the reliability of this
method at high redshift (Vitagliano et al. 2010). Indeed, the esti-
mates of the deceleration parameter q0 and of the jerk j0 gained
with this method are usually done at redshift zero and the trend
of the obtained theoretical luminosity distance is reliable only at
very low redshift. Instead we can circumvent the problem with
an appropriate parameterization of the redshift variable, by re-
ducing it to a new variable for the redshift that varies between 0
and 1 (Chevallier & Polarski 2001; Visser 2004).

If we consider the following quantity as the new redshift
variable,

y =
z

1 + z
(1)

we obtain that the range of variation of this “new” redshift ranges
between 0 and 1. In this way we can derive a cosmology-model
independent formula for the luminosity distance, so that we
could recalibrate and obtain a “cosmographic” Amati relation.

Our work is structured as follows: in Sect. 2 we will tackle
the cosmographic analysis done on the sample of SNeIa Union,
and the obtained results will be used to derive the luminosity
distance for each GRB that we will use to fill our cosmographic
Amati relation. Before calculating the parameters of this new
relation, we will discuss in Sect. 3 how we extend the same rela-
tion, adding another 13 GRBs (as of December 2009) to the sam-
ple described in Amati et al. (2009), computing the bolometric
fluence and the peak energy for each of them. At this point we
can calculate the isotropic energy for each GRB so that we can
compute the best fit for our sample data, which will be discussed
in Sect. 4.

2. Cosmographic analysis

The main purpose of this work consists in obtaining an Amati
relation independently of the dynamics of the Universe. For this
reason, we dropped the hypothesis of a ΛCDM Universe, re-
lying only on the starting assumption that the universe is ho-
mogeneous and isotropic. This naturally leads to a universe
of the Friedmann-Lemaitre-Robertson-Walker type (FRLW)
(Weinberg 1972), and we will operate in this context. All we
need is a formulation of the luminosity distance dl as a func-
tion of the redshift z. These two quantities are linked via the
scale factor a(t), which takes into account the expansion of the
Universe. It is well known that from the Friedmann equations we
can obtain the entire function a(t), but since these equations can

Table 1. Results obtained from the cosmographic fit of the SNeIa using
both the redshift variables z and y.

Parameter Value z-redshift Parameter Value y-redshift
a 4324 ± 176 a 4291.8 ± 72.9
b 0.6967 ± 0.2443 b 1.79 ± 0.015
c –0.2763 ± 0.4273 c 0.80 ± 0.029
d 0.2507 ± 0.2111 d 0.38 ± 0.031

be solved only if assumptions are made on the dynamics of the
Universe, we do not consider this possibility. However since the
evolution of the luminosity distance is well known for small val-
ues of the redshift, for our purposes we can consider the power
series expansion of the scale factor, which naturally leads to
an expression for the luminosity distance in power series terms
(Visser 2004)

dl(z) = dHz

⎧⎪⎪⎨⎪⎪⎩1 +
1
2
[
1 − q0

]
z − 1

6

⎡⎢⎢⎢⎢⎣1 − q0 − 3q2
0 + j0 +

k d2
H

a2
0

⎤⎥⎥⎥⎥⎦ z2

+
1

24
[2 − 2q0 − 15q2

0 − 15q3
0 + 5 j0(1 + 2q0) + s0

+
2 k d2

H (1 + 3q0)

a2
0

] z3 + O(z4)

⎫⎪⎪⎬⎪⎪⎭, (2)

where dH = c/H0 and H0, q0, j0, and s0 are known as the Hubble
constant, the deceleration parameter, the jerk and the snap pa-
rameter respectively. In order to obtain accurate measurements
for the cosmographic parameters, we need to go up to high val-
ues of the redshift. This was largely done for the data sample of
the SNeIa (Visser 2004).

However, we do not aim to estimate the cosmographic pa-
rameters; in a forthcoming paper we will address this problem.
In particular we are interested in reconstructing the curve dl(z)
using this cosmographic methodology. To do this, we used the
data sample of SNeIa Union, (Kowalski et al. 2008), which con-
sists of 307 supernovae up to redshift of ∼1.7. With this data
sample we performed a non-linear least-squares fit considering
the empirical equation given by the distance modulus obtained
from the expanded dl(z)

μ(z) = 25 +
5

log 10
log

⎧⎪⎪⎨⎪⎪⎩dH

[
z +

1
2

(1 − q0)z2

−1
6

⎛⎜⎜⎜⎜⎝1 + j0 +
c2k

a2H2
0

− q0 − 3q2
0

⎞⎟⎟⎟⎟⎠ z3

+
1

24

(
2 + 5 j0 − 2q0 − 15q2

0 +
2c2k(1 + 3q0)

a2H2
0

+10 j0q0 − 15q3
0 + s0

)
z4 + O(z4)

]⎫⎪⎪⎬⎪⎪⎭. (3)

Because we are not interested in the estimate of the cosmo-
graphic parameters, we will use a custom equation for the fit
of the type μ(z) = 25+ (5/ log 10) log(az+bz2+cz3+dz4), so we
will only compute the parameters a, b, c, d. Once we have an es-
timate of these parameters, we can easily obtain the values of the
cosmographic parameters related. To obtain a better analysis we
used a robust interpolation method of the Levenberg-Marquardt
type, and the results of our data fitting are shown in Table 1.

The reliability test of our fit was done with an R2-test,
(Bevington et al. 2002), whose value is 0.9914. But the extension
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Fig. 1. Trends of the reconstructed distance modulus using the z-redshift (left) and the y-redshift (right) applied to the UNION2 data sample.

up to high redshift of this function μ(z) shows a serious problem:
for redshifts higher than ∼2 the curve grows rapidly, see Fig. 1.
This steep departure is due to the higher-order terms, the term d,
which has a decisive influence at high redshift. This a priori rules
out a possible supernova-calibrated μ(z) at high redshift. But
these problems can be largely eliminated if we consider a new
variable for the redshift. It was shown (Visser 2007; Vitagliano
et al. 2010) that the coordinates transformation y = z/(1+ z) and
consequently the development in power series of the luminosity
distance provides a better extrapolation at high redshft, as well
as better results for the parameters of the fit. So we performed
a cosmographic analysis for the new distance modulus μ(y), in
analogy with what was already done for the μ(z). The new ex-
pression for the distance modulus, which takes into account the
new redshift parametrization, becomes (Vitagliano et al. 2010)

μ(y) = 25 +
5

log 10

⎧⎪⎪⎨⎪⎪⎩ log dH + log y − 1
2

(q0 − 3)y

+
1
24

[
21 − 4

⎛⎜⎜⎜⎜⎝ j0 + c2k

a2H2
0

⎞⎟⎟⎟⎟⎠ + q0(9q0 − 2)

]
y2

+
1
24

[
15 + 4

c2k

a2H2
0

(q0 − 1) + j0(8q0 − 1) − 5q0

+2q2
0 − 10q3

0 + s0

]
y3 + O

(
y4
) ]⎫⎪⎪⎬⎪⎪⎭, (4)

so we will consider a custom equation for the fit similar to the
previous one, used for the estimate of the μ(z) parameters. The
results obtained with a non-linear fit are shown in Table 1, while
in Fig. 1 we show the trend of the distance modulus for both
redshift variables considered.

Below, we will consider the formulation for the distance
modulus in terms of the y-redshift in order to derive a cosmo-
graphic Amati relation.

3. The data sample

In recent years the interest of astrophysicists and cosmologists
was attracted by the possibility of using GRBs as potential dis-
tance indicators. This interest arose because most of the GRBs
satisfy some correlations between photometrical and spectro-
scopical observable quantities of GRBs. Among the various ex-
isting correlations, for a review of these see e.g. Schaefer (2006),

the most famous is the Amati relation, (Amati et al. 2002). It re-
lates the cosmological rest-frame ν F(ν) spectrum peak energy
Ep,i with the equivalent isotropic radiated energy Eiso. It was dis-
covered by Amati et al. based on BeppoSAX data and then con-
firmed also for the X-ray flashes (XRFs), (Lamb et al. 2004),
but not for short GRBs. For this reason the Amati relation could
be used to distinguish between different classes of GRBs (Amati
2006).

Nevertheless the large scatter in the normalization and the
shift toward the Swift detection threshold observed for the Amati
relation, as well as for the other correlations (Butler et al. 2007),
raised serious doubts about the possible origin of this correlation
as due to detector selection effects. But a recent study, (Amati
et al. 2009), showed that the different Ep,i – Eiso correlations,
obtained independently from the detectors considered for the ob-
servations, are fully consistent each other, so the hypothesis of a
instrumental-dependent Amati relation seems to fail.

We expand the sample of 95 GRBs published in Amati et al.
(2009) adding 13 GRBs and obtaining a sample consisting of
108 GRBs. Mainly we need to know the redshift z, the observed
peak energy Ep,obs of the ν F(ν) spectrum, and an estimate of
the bolometric fluence S bolo for each GRB in the sample. To de-
rive the bolometric fluence S bol we used the method outlined in
(Schaefer 2006), where from the observed fluence and the spec-
tral model, which better fits the data, we could obtain an estima-
tion of S bol via the formula

S bol = S obs

∫ 104/(1+z)

1/(1+z)
EφdE∫ Emax

Emin
EφdE

, (5)

where φ is the spectral model considered for the spectral data
fit and S obs is the fluence observed for each GRB in a respec-
tive detection band (Emin, Emax). For the extra 13 GRBs, we
considered a Band spectral model (Band et al. 1993) but for
six of these 13 GRBs we do not know the value of β, because
their spectra are fitted with a cut-off power-law spectral model,
so for these six GRBs we considered a “typical” value for β
of –2.2± 0.4 (Schaefer 2006), while the α-index is the same
as the cut-off power-law index γ. In Table 2, the spectral data
for the considered 13 GRBs are shown. The Ep column refers
to the measured peak energy. To obtain the peak energy in the
rest frame, we have to take into account the redshift of the GRB,
then Ep,i = Ep(1 + z).

Once we have obtained the estimate of S bol for each GRB in
the sample, the next step is to estimate the isotropic energy from
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Table 2. Data for the 13 GRBs added to the old sample described in Amati et al. (2009).

GRB z Ep,o (keV) α (γ) β S obs (10−6 ergs cm−2) band (keV) GCN
(1) (2) (3) (4) (5) (6) (7) (8) (9)

090516 4.109 190 ± 65 –1.5 ± 0.3 [–2.2] ± [0.4] 15 ± 3 20–1200 9422
090715B 3.00 134 ± 56 –1.1 ± 0.4 [–2.2] ± [0.4] 9.3 ± 1.5 20–2000 9679
090812 2.452 586 ± 243 –1.03 ± 0.07 [–2.2] ± [0.4] 26.1 ± 3.4 15–1400 9821

090926B 1.24 91 ± 2 –0.13 ± 0.06 [–2.2] ± [0.4] 8.7 ± 0.3 10–1000 9957
091018 0.971 28 ± 16 –1.53 ± 0.59 [–2.2] ± [0.4] 1.44 ± 0.19 10–1000 10 045
091029 2.752 61.4 ± 17.5 –1.46 ± 0.27 [–2.2] ± [0.4] 2.4 ± 0.1 15–150 10 103
090618 0.54 155.5 ± 11 –1.26 ± 0.06 –2.50 ± 0.33 270 ± 6 8–1000 9535

090902B 1.822 775 ± 11 –0.696 ± 0.012 –3.85 ± 0.31 374 ± 3 50–10 000 9866
090926 2.1062 314 ± 4 –0.75 ± 0.01 –2.59 ± 0.05 145 ± 4 8–1000 9933
091003 0.8969 486.2 ± 23.6 –1.13 ± 0.01 –2.64 ± 0.24 37.6 ± 0.4 8–1000 9983
091020 1.71 103 ± 68 –0.93 ± 0.6 –1.9 ± 0.8 10.4 ± 2.1 20–2000 10 057
091127 0.49 36 ± 2 –1.27 ± 0.06 –2.20 ± 0.02 18.7 ± 0.2 8–1000 10 204

091208B 1.0633 124 ± 20.1 –1.44 ± 0.07 –2.32 ± 0.47 5.8 ± 0.2 8–1000 10 266

Notes. In this table we show (1) the name of GRB, (2) the spectral model used for the fitting of the spectra, (3) the redshift, (4) the peak energy
observed, (5) the softer spectral index, absent for the cut-off power law spectral model, (6) the higher spectral index, (7) the observed fluence and
(8) the detector band considered for the estimate of the fluence, (9) the GCN reference for the GRB, where we took the spectral data.
References. (Sakamoto et al. 2009a), (McBreen 2009a), (Golenetskii et al. 2009a), (Sakamoto et al. 2009b), (Bissaldi & Connaughton 2009),
(Bissaldi 2009), (Briggs 2009), (Rau 2009), (Golenetskii et al. 2009b), (Golenetskii 2009), (Barthelmy et al. 2009), (Wilson-Hodge & Preece
2009), (McBreen 2009b).
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Fig. 2. 68%, 95% and 98% constraints on the Amati correlation param-
eters A and γ.

the well-known formula which relates the luminosity distance
and the fluence

Eiso = 4πd2
l S bol(1 + z)−1. (6)

Note that the use of the quantity (1 + z) to obtain the analog
value of an observable quantity in the rest-frame is equivalent in
the new redshift parameterization to use instead the term 1/(1 −
y). The value of the luminosity distance which we must enter
in Eq. (6), is what we got previously from the cosmographic
fit of the SNeIa. From this fit we just obtained an estimate of
the function μ(y); to go back to the luminosity distance we used
the formula

dl(y) = 10
μ(y)−25

5 (7)

to compute the value of dl(y) for each GRB in our sample.
Note that for values of y higher than ∼2.5 the curve μ(y) be-

gins to increase slightly, see Fig. 1. This could lead to improper
estimates of the isotropic energies emitted by GRBs at high red-
shift. If we consider an analog curve referred to a fiducial stan-
dard ΛCDM cosmological model we can quantitatively evaluate
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Μ

Fig. 3. Plot of the μ(y) computed for a fiducial ΛCDM cosmological
model, the continuous line, and for the reconstructed μ(y) obtained from
the cosmographic fit of the Sn Ia, the dashed line, in function of the
z-redshift.

this deviation. In Fig. 4 we show the deviation of the curve μ(y)
obtained from the cosmographic fit of the SNeIa and the one
that is obtained by considering a ΛCDM model with values of
the density parameters given by Ωρ = 0.27 and ΩΛ = 0.73. The
discrepancy from the fiducial ΛCDM model seems quite small,
but should be taken into account when we compute the cosmo-
graphic Amati relation.

4. The cosmographic Amati relation

At this point we can calculate the parameters of the Amati rela-
tion for the sample that we previously constructed.

The Amati relation is a correlation of the type Eiso = aEγp,i,
which could be linearized in the form

log10
Eiso

erg
= A + γ log10

Ep,i

keV
, (8)
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Fig. 4. Plot of the cosmographic Amati relation in the Eiso − Ep,i plane (left) and in the mutual Ep,i − Eiso one. The line of prediction bounds
represents a deviation of 2σext from the best fit line, the thick one.

with A = log10 a. We have in this case

σ log Ep,i =
σEp,i

ln 10Ep,i
; σ log Eiso =

σEiso

ln 10Eiso
· (9)

Our procedure consists in the maximization of the likelihood L,
which is reduced to the χ2 minimization

χ2 =

108∑
n=i

yi − A − γxi

(σyi)2 + (γbest)2(σxi)2
, (10)

with γbest given by the best fit for the γ parameter. We use a grid-
search method in the parameter space (A, γ) in order to find the
parameters which minimize the χ2 (Bevington et al. 2002). If we
fit our data sample with a classical linear fit procedure, we obtain
an index γ = 1.44 ± 0.12 and a normalization A = 49.15 ± 0.31,
slightly consistent with previous analysis (Liang et al. 2008), but
with a low value for the R2 confidence parameter (0.77). For
this reason we have taken into account an extra variability of the
y data, due to some hidden variables that we cannot observe di-
rectly (D’Agostini 2005; see also Amati et al. 2008; Guidorzi
et al. 2006); what we observe is an overall effect integrated over
the complete variability of these hidden variables. If we call σext
the root mean square of this extra error, we should insert this
term in the source error for the y data: (σyi,new)2 = (σyi)2 +
(σext)2. The immediate consequence is that we have now an ex-
tra parameter in our parameter space. In order to estimate the
parameters of the Amati relation and this extra scatter parame-
ter we use a method delineated in (D’Agostini 2005), where the
optimal values of our parameters can be obtained by minimizing
the log-likelihood function

L(A, γ, σext|yi, xi) = (11)

1
2

108∑
n=1

⎧⎪⎪⎨⎪⎪⎩ log((σyi)2 + (σext)2 + (γbest)2(σxi)2) (12)

+
yi − A − γxi

(σyi)2 + (σext)2 + (γbest)2(σxi)2

⎫⎪⎪⎬⎪⎪⎭, (13)

where yi = log10 Eiso and x = log10 Ep,i. As a first analysis
we have found the value of the extra scatter parameter to be

σext = 0.37. Then we fixed this parameter and started a grid
search in order to find the best values for A and γ. Our fit results
are:

A = 49.17 ± 0.40 γ = 1.46 ± 0.29 (14){
0.332602 −0.0124367
−0.01243670.00484369,

slightly different from our previous results. In Fig. 2 we report
the confidence region which is in the parameter space (A, γ).
We also investigated the estimate of the correlation and the ex-
tra scatter parameters of the inverse relation log10

Ep,i

keV = q +
m log10

Eiso
erg . Using the same procedure we obtain q = −25.47 ±

1.88 and m = 0.53 ± 0.43 with the extra scatter parameter
σext = 0.22. Note that we put also the mixed covariance terms
σxiyi in the uncertainties obtained from the covariance matrix.
The plot of the distribution of data sample and the results of both
data fittings are shown in Fig. 4, where the best-fit power-law is
represented by the continuous line with ±2σext confidence limit.

An immediate comparison with the results obtained by dif-
ferent methods of interpolation (Liang et al. 2008) immediately
shows a slight discrepancy between the parameters of the rela-
tion. We think that this could be because the calibration done in
Liang et al. (2008) depends only on the trend traced by SNeIa,
while the cosmographic analysis takes into account the correc-
tions due to existing physical parameters, like q0, j0, and so on.
Still the reason could also be another: because the sample of su-
pernovae that we used to calibrate the Amati relation is different
from that used in Liang et al. (2008), where the authors used
the catalog of 192 supernovae explained in Wood-Vasey et al.
(2007), the slight difference in the results could be due to the
different sample used for the calibration.

5. Discussion and conclusions

The problem of extending existing cosmological models up to
medium-high redshift to force better results is one of the most
important questions in the modern cosmology. One possible way
to achieve this goal is through GRBs, the most powerful explo-
sions in the Universe, which however are not standard candles
in a proper sense, because the energy emitted by these objects
spans about six orders of magnitude. But several correlations
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between spectroscopic and photometric observable quantities of
GRBs allow us to partly solve this problem. The fundamental
prerequisite for obtaining such a relationship is to have some
estimate of the energy emitted by GRBs in a way independent
of the cosmology. We here considered a formula for the lumi-
nosity distance dl that is independent on the dynamics of the
Universe, but in principle it can be applied only to small red-
shift. Although we use a parameterization for the redshift which
allows us to transform the variable z in a new variable y, ranging
in a small and limited interval, we have seen that the obtained lu-
minosity distance slightly differs from the fiducial modelΛCDM
at high redshift, see Fig. 4. Nevertheless, because we obtained
the curve dl(y) by an analysis of the sample of SNeIa Union,
which extends up to a redshift of ∼1.7, an independent estimate
at slightly higher redshift, which may be a future estimate of the
BAO performed with the next survey of clusters at intermedi-
ate redshift (z ≈ 2.5–3.5), would give a better approximation for
the curve dl(y). Through using the dl(y) obtained with the cos-
mographic fit of the SNeIa, we obtained a sample of GRBs in a
cosmology-independent way so that we could obtain, using a fit
of the same GRB sample, a cosmographic Amati relation. The
results obtained are very similar to those obtained from other
analysis performed using other methods (Schaefer 2006; Liang
et al. 2008; Amati et al. 2002). This slight difference made us
go further and use this cosmology-independent, but we like to
call it supernova-dependent, Amati relation in the future in or-
der to constrain the various cosmological models existing in lit-
erature and maybe confirming the physical validity of this very
important relations, which can also be used to study the various
mechanisms of emission occurring in GRBs.
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