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Abstract—In this paper we present Kingfisher, a cost-aware
system that provides efficient support for elasticity in the
cloud by (i) leveraging multiple mechanisms to reduce the
time to transition to new configurations, and (ii) optimizing
the selection of a virtual server configuration that minimizes
the cost. We have implemented a prototype of Kingfisher and
have evaluated its efficacy on a laboratory cloud platform. Our
experiments with varying application workloads demonstrate
that Kingfisher is able to (i) decrease the cost of virtual server
resources by as much as 24% compared to the current cost-
unaware approach, (ii) reduce by an order of magnitude the
time to transition to a new configuration through multiple
elasticity mechanisms in the cloud, and (iii), illustrate the
opportunity for design alternatives which trade-off the cost of
server resources with the time required to scale the application.

I. INTRODUCTION

Cloud computing has emerged as a new IT delivery model
in which an organization or individual can rent remote com-
pute and storage resources dynamically, using a credit card,
to host networked applications “in the cloud.” . The appeal
of cloud computing lies in its usage-based pricing model –
organizations only pay for the resources that are actually
used, and can flexibly increase or decrease the resource
capacity allocated to them at any time. This elasticity pro-
vided by Cloud computing can yield significant cost savings
when compared to the traditional approach of maintaining
an expensive IT infrastructure that is provisioned for peak
usage – organizations can instead simply rent capacity, and
grow and shrink it as the workload changes.

Cloud environments enable flexible, elastic provisioning
by supporting a variety of hardware configurations and
mechanisms to add or remove server capacity. However
this flexibility also raises new challenges for application
providers: (i) given several available resource configurations
for a particular workload, which one to choose, and (ii) how
best to transition from one resource configuration to another
to handle changes in workload. The first decision arises from
the availability of a number of server configurations, each
with a different amount of virtual CPU cores, memory, and
disk space to satisfy the same resource requirements. The
array of available hardware configurations lead to a number
of different ways to configure a typical multi-tier Web
application. Further, these server configurations are typically
not priced linearly with server capacity. For instance, a quad-
core server may not be priced four times the price of four
single-core servers. As shown in Table I, depending on the

exact configuration, the price per core of a server may be
higher or lower than the cost of a single-core system, and
a careful selection of actual configuration may lower the
total infrastructure cost. The second decision arises when
adding more server capacity to accommodate an increase
in the application request volume, for example. There is a
similar array of choices in determining the new resource
configuration (e.g., add a new replica or move the application
to a larger server), as well as different costs or overheads
based on the mechanism used to make the transition to the
new target configuration.

In this paper, we present a new approach for dynamically
provisioning virtual server capacity that exploits pricing
models and elasticity mechanisms to select resource config-
urations and transition strategies that optimize the incurred
cost. Our paper makes the following contributions:

Cost-aware elasticity. We present Kingfisher, a cost-
aware system that integrates multiple elasticity mechanisms
such as replication and migration and computes both a cost-
optimized configuration for the desired capacity as well as a
plan for transitioning the application from its current setup
to its new configuration. Kingfisher’s algorithms can take
into account the price differentials in the per-core cost of
different server types to minimize the infrastructure cost of
provisioning a certain capacity. Kingfisher also minimizes
the time to add extra capacity using different elasticity mech-
anisms (we call this time as transition cost). We formulate
our provisioning problem as an integer linear program (ILP)
to account for both infrastructure and transition cost for
deriving appropriate elasticity decisions.

Prototype implementation and experimentation on
public and private clouds. We implement a prototype of our
Kingfisher cloud provisioning engine, using the OpenNebula
cloud toolkit [1], that incorporates our optimizations, and
evaluate its efficacy on both a private laboratory-based Xen
cloud and the public Amazon EC2 cloud. Our experimental
results (i) demonstrate that cost-aware elasticity can achieve
24% infrastructure cost savings for the same capacity in the
private cloud, and up to 35% in EC2 over cost-oblivious
provisioning approaches, (ii) demonstrate that integrating
multiple mechanisms such as migration and replication
into a unified approach can double the cost savings, and
(iii) demonstrate how our transition-aware approach can
be employed to quickly provision capacity in scenarios
where an application workload surges unexpectedly. In our



experiments, we observed transition time improvements of
2x in the private cloud and up to 6x in EC2 using transition-
aware elasticity.

The Case for Cost-aware Elasticity: While there has
been significant research on dynamic capacity provisioning
for data center applications, there are three key differences
between the prior work and capacity provisioning in the
cloud. First, some of prior work on dynamic provisioning has
been cloud provider centric, where the data center provider
attempts to maximize resource utilization by dynamically
allocating a set of servers across hosted applications with
varying workload demands (and attempts to statistically
multiplex as many applications as possible on the data
center). In contrast, the problem articulated in this paper
requires a customer-centric view, where each customer (“ap-
plication provider” ) individually optimizes their capacity
needs by choosing the best server configuration that matches
their needs. Cloud provider centric approaches attempt to
maximize revenue while meeting an application’s SLA in
the face of fluctuating workloads, while a customer-centric
approach attempts to minimize the cost of renting servers
while meeting the application’s SLA.

Second, the prior work on dynamic provisioning has not
been cost-aware. By being cost-oblivious, prior approaches
assume that so long as the desired capacity is allocated to
the application, the choice of exact hardware configuration
is immaterial. That is, the unit cost per core is assumed to
be identical, making an N -core system equivalent, from a
provisioning perspective, to an N -core systems with single
cores. In the cloud context, however, the choice of the
configuration matters, since the pricing per core is not
uniform. Hence, Kingfisher must take the infrastructure costs
of servers into account during provisioning.

Third, much of the prior work on provisioning has em-
ployed replication as the primary means to increase an
application’s capacity. The application is assumed to be
replicable, and workload increases are handled by adding ad-
ditional server instances to the application’s pool of servers.
An alternative method for capacity provisioning is to employ
migration, where an application and its data are migrated to
larger capacity server (e.g., a server with more cores) to
handle workload growth. As we will show in this paper,
Kingfisher considers both replication and migration when
choosing the best method of transition the application from
one capacity configuration to another.

II. CLOUD BACKGROUND AND PROBLEM STATEMENT

Consider a cloud computing platform that offers N hetero-
geneous server configurations for rent, each with a different
rental cost (infrastructure cost). The pricing of servers is
assumed to be arbitrary. Thus, the pricing can be convex,
where the cost per-core increases sub-linearly with the
number of cores, or concave where more the cost of more
capable servers increases super-linearly with the number

Amazon EC2 Cloud Platform
Server size Configuration Cost/hr $/core
Small 1 ECU, 1.7GB RAM, 160GB disk $0.085 $0.085
Large 4 ECUs, 7.5GB RAM, 850GB disk $0.34 $0.085
Med-Fast 5 ECUs, 1.7GB RAM, 350GB disk $0.17 $0.034
XLarge 8 ECUs, 15GB RAM, 1.7TB disk $0.68 $0.085
XLarge-Fast 20 ECUs, 7GB RAM, 1.7TB disk $0.68 $0.034

New Server’s NS Cloud Platform
Small 1-core 2.8GHz, 1 GB RAM, 36GB disk $0.11 $0.11
Medium 2-core 3.2 GHz, 2 GB RAM, 146GB disk $0.17 $0.085
Large 4-core 2.0GHz, 4GB RAM, 250 GB disk $0.25 $0.063
Fast 4 core 3.0 GHz, 4 GB RAM, 600GB disk $0.53 $0.133
Jumbo 8 core 2.0GHz, 8GB RAM, 1TB disk $0.60 $0.075

Table I
CLOUD SERVER CONFIGURATIONS AND THEIR PRICES. FOR EC2, 1

ECU= 1.2 GHZ XEON OR OPTRON CIRCA 2007.

of cores, or arbitrary where some other pricing formula is
employed. As noted in Table I, both the EC2 cloud and the
NewServer (NS) cloud platform employ a convex function
for their most popular choices (e.g., small, medium, large)
and the pricing model becomes arbitrary when the “high-
CPU” or “fast CPU” configurations are taken into account.

We assume that these servers can be allocated or deallo-
cated on-demand by a customer for her application. From an
application standpoint, these capacity changes can be made
either via replication—by adding or removing replicas—
or via migration—by moving the application to a larger
or a smaller server. If a specific cloud platform exposes
a subset of these mechanisms (e.g., the EC2 cloud does
not presently support live migration), then our approach
must take these constraints into account when provisioning
resources. We assume that an application is distributed
with k interacting components (e.g., k tiers in multi-tier
applications); each tier has an SLA associated with it that
must be met by provisioning sufficient capacity to service
that tier’s workload.

Given such a cloud platform, the goal of our work
is to develop a system that supports elasticity for appli-
cations by (i) choosing the most cost-effective elasticity
mechanism (e.g., replication, migration) when adding or
removing capacity, and (ii) choosing the most cost-effective
server configuration. The elasticity problem arises both when
initially provisioning/deploying an application in the cloud
as well as during any subsequent reconfiguration.

Initial Provisioning: Assuming an application with k in-
dependent components/tiers, let λi denote the peak estimated
workload seen at tier i. Then, the initial deployment problem
is one of determining how many cloud servers to provision
for each tier and of what type such that the infrastructure cost
is minimized and a peak workload of λi can be sustained
at each tier while meeting per-tier response time SLAs.
Since the desired capacity can be satisfied using multiple
hardware configurations , the goal is to choose the cheapest
configuration that meets the needs of each tier. We compute
the initial configuration and deploy the application.

Subsequent provisioning: Once an application has been



deployed on the cloud, its workload demands may change
over time—due to incremental growth or sudden change
in popularity. In such cases, the application will need to
be reconfigured by dynamically increasing (or decreasing)
the capacity at each tier. The problem of subsequent re-
provisioning is one where, given a certain server config-
uration that is already in use, we must determine a new
configuration that specifies how many cloud servers and of
what types to use for each tier to sustain the new peak
workloads of λ′

i at tier i. Furthermore, we must also specify
a plan for morphing each tier from its current configuration
to the new configuration using mechanisms such as resizing,
migration or replication. Thus, for subsequent provisioning
decisions, we are interested in minimizing two types of
costs: (i) the infrastructure cost of the servers, and (ii) the
transition cost, defined as the latency, to move the current
to the new configuration.

Depending on the scenario, a customer may be interested
in optimizing the infrastructure cost, the transition cost or
some combination of the two. For instance, steady growth in
workload volume can be handled by computing a new con-
figuration that minimizes the infrastructure cost of servers.
In contrast, a sudden surge in workload—caused by a flash
crowd—will require additional capacity to be brought online
as quickly as possible. In this scenario, it is more important
to reduce the latency to bring additional capacity online
even if it implies choosing a configuration that incurs a
somewhat higher infrastructure cost. Such a transition cost
aware approach must consider different configurations that
offer the same capacities and pick the one that offers the
fastest migration path.

III. COST-AWARE ELASTICITY ALGORITHMS

Any dynamic provisioning algorithm involves two steps:
(i) when to invoke the provisioning algorithm, and (ii) how
to provision capacity so as to minimize infrastructure or
transition cost.

When to provision? The provisioning algorithm can be
triggered in a proactive or a reactive manner. A proactive
approach uses workload forecasting techniques to determine
when the future workload will exceed currently provisioned
capacity and invokes the algorithm to allocate additional
servers before this capacity is exceeded [2]. In contrast a re-
active approach uses thresholds on resource utilization or on
SLA violations to trigger the need for additional capacity. A
combination of predictive and reactive approach is also em-
ployed to handle the prediction inaccuracy and also to avoid
oscillations in provisioned capacity due to oscillations1 in
workload [13]. The issue of proactive or reactive invocation
is orthogonal to that of cost-aware provisioning, and hence
in this paper we choose perfect forecaster, i.e. a forecaster

1inaccurate workload prediction can lead to a rapid oscillation of the
workload forecast between its increase and decrease

that knows the workload in advance. Next we discuss how
to provision for optimizing infrastructure/transition cost.

A. Infrastructure Cost-aware Provisioning
Given the estimated peak workload λ1,λ2,λk that must be

sustained at each tier, the goal of our approach is to compute
which type of cloud server to use and how many at each
tier so as to minimize infrastructure cost; the provisioned
servers must have the collective capacity to service at least
λi request/s at tier i while meeting tier’s response time
SLAs.

Our cost-aware provisioning algorithm involves two steps:
(1) for each type of cloud server, compute the maximum
request rate that the server can service at a tier, and (2) given
these server capacities, compute a least-cost combination of
servers that have an aggregate capacity of at least λi.

Step 1. Empirical Determination of Server Capacities.
For each server configuration supported by the cloud plat-
form (e.g., small, medium, large), we must first determine
the maximum request rate that each configuration can sustain
for this application. This information is used in the subse-
quent step by our provisioning algorithm to determine how
many servers of a particular type will needed to service the
peak workload λi. Clearly, the maximum request rate (i.e.,
the server capacity) depends on the nature of the application,
its workload mix and the server type.

One possible approach for estimating the maximum work-
load that can be serviced by a particular server type is to
employ queuing theory [3], where the server is modeled as
a queuing system and queuing theoretic results are used to
derive a relationship between the request rate, service times
of requests, and the response time SLA. This approach can
not account for software artifacts that limit the application
capacity from scaling with the number of cores, causing the
queuing-based model to overestimate the capacity of multi-
core systems.

To overcome this drawback, we employ a systems ap-
proach that uses empirical profiling—Kingfisher estimates
the maximum server capacity by running the application
on different hardware configurations, subjecting them to a
gradually increasing synthetic workload, and determining
the point where the server saturates . Such an empirical
approach is more accurate since capacities are computed
using actual measurements on real hardware and can account
for software artifacts since the actual application behavior is
used when estimating capacities. The approach, however,
requires an application provider to carefully set up and
profile the application on various hardware configurations
supported by the cloud platform, and such profiling is more
involved than the simple measurements required by the
queuing approach. We note, however, that a system such
as JustRunIt [4] that can clone virtual machines and run the
cloned application on a sandboxed server can be exploited to
reduce the overheads of such an empirical approach. Once



the maximum request rates of the various servers supported
by the cloud platform have been determined, this information
is subsequently used by the provisioning algorithm.

Step 2. Determining Server Configurations. Consider
a cloud platform with M different types of servers (e.g.,
small, medium, large). Let Cj and pj denote that capacity
(maximum request rate) and the infrastructure cost of server
type j. Let λ denote the peak workload request rate for
which capacity needs to be provisioned at a tier. The problem
of infrastructure cost-aware provisioning is stated as

minimize
MX

j=1

njpj , (1)

such that
MX

j=1

njCj ≥ λ, (2)

where nj denotes the number of servers of each type that
is chosen. This optimization problem can be formulated and
solved as an integer linear program, as discussed later in this
section. The ILP solution yields (n1, n2, . . . , nM ) — which
tells the application provider how many servers of each type
should be chosen for the application tier. Notice that the ILP
can handle both the capacity increase and capacity decrease.

B. Transition Cost-aware Provisioning
While our infrastructure cost-aware provisioning algo-

rithm minimizes recurring infrastructure costs, it does not
account for (or optimize) the transition latency to move
from the old configuration to the new—a factor that depends
on the size of the application’s disk and/or memory state.
In many cases, this latency is important, especially when
additional capacity needs to be added to the application
quickly (e.g., during a flash crowd).

To be able to handle such scenarios, the provisioning
approach must be able to estimate the latency of using differ-
ent provisioning mechanisms, such as replication, migration
and resizing. By taking into account the latency of such
mechanisms, a configuration that minimizes such overheads
is chosen. We estimate the overhead of these mechanisms
as follows:
Local resizing: Local resizing involves using the hypervisor
API on a machine to modify the resource allocation of a
virtual machine (e.g., to give it more RAM or to allocate it
additional cores or CPU shares). This can be done efficiently
with minimal overheads (the latency is on the order of tens
of milliseconds). Hence, local resizing is always the most
desirable option to scale a VM’s capacity. However, since the
physical server may lack sufficient idle capacity for resizing,
the algorithm must frequently resort to other options.
Replication: Starting up a new instance (replica) of an
application tier involves copying the machine image of the
OS/application from central storage to the disk on the new
server, starting up the OS and the application replica, and

reconfiguring the application to make it aware of the new
replica. The latency can be estimated as D

r + b, where D is
the size of the disk image, r is the network bandwidth avail-
able for the copy operation and b is a constant representing
the OS and application startup time.
Live migration: Live migration of a virtual machine from
one server to another involves copying the memory state
of the VM to new server while the application is running
(memory pages that are dirtied during the copy phase
are iteratively resent). Typically live migration mechanisms
assume that the disk state of the VM is maintained on a
shared file system. Hence, the latency of the live migration
is w · R

r , where R is the size of the VM’s RAM, r is the
network bandwidth available for the copy operation, and w is
a constant that captures the mean number of times a memory
page is (re)sent over the network (due to dirtying of pages
during the migration process).
Shutdown-migrate. While live migration is a implemented in
most popular hypervisors such as Xen and VMware, some
public clouds such as Amazon’s EC2 do not currently expose
this option. Migration can be “simulated” in a public cloud
by suspending the application, converting its disk state into
a new machine image, copying the machine image to a new
server and restarting the image on the new machine. Since
the disk state may need to be copied twice, once to construct
a new machine image and then to copy the machine image
to the new server2, the latency of this approach is 2D

r + b.
The transition-aware approach then attempts to minimize

this overhead by preferring mechanisms that incur the lower
copying overheads (and hence, lower latencies). Like before,
this can be stated and solved as an ILP optimization problem
as discussed next.

C. An ILP-based Elasticity Algorithm

Both infrastructure and transition cost-aware provisioning
problems can be stated using the following integer linear
program (ILP). Let M denote the number of server types
supported by the cloud platform; Let pj denote the infras-
tructure cost3 for server type j and let Cj denotes its max-
imum capacity. Let λ denote the peak workload for which
the application needs to be provisioned, and let N denote the
maximum number of servers that could be needed to satisfy
λ (any large number can be chosen as N). Let T denote the
number of the provisioning mechanisms supported by the
platforms (e.g., replication, migration, resizing). Then the
objective function for minimizing infrastructure cost is

min
NX

i=1

MX

j=1

TX

k=1

pjxijk (3)

2In Amazon’s EC2, the disk state must be uploaded to its S3 storage
system as a machine image and then copied over to the new server, resulting
in two copy operations

3Price changes are handled currently by updating the pricing parameters
and recomputing the provisioning solution.



subject to the constraints
NX

i=1

MX

j=1

TX

k=1

xijkCj ≥ λ (4)

MX

j=1

TX

k=1

xijk = 1, ∀i (5)

The terms xijk is an integer variable in the ILP that can take
values of 0 or 1; A value of 1 indicates that server i is trans-
formed into server-type j using a provisioning mechanism
k (e.g., replicate or migrate); a value of 0 indicates that that
option was not chosen by the ILP. The output of the ILP is
set of values xijk that denotes which server types are chosen
and also specifies a plan for transitioning for each server i
to the new server type j using method k (replicate. migrate
etc). If this is the first time the application is being deployed
onto the cloud, the current configuration is empty; for sub-
sequent (re)provisioning, the plan specifies how the current
configuration is to be morphed into the new configuration
(e.g., using replication, migration etc); note that the cost,
pj , in (3), is independent of the mechanism k, which means
that all reconfiguration mechanisms are considered equal as
long as they provide the same final capacity. However, this
formulation becomes useful in capturing the transition cost
as described below.

The ILP for transition-aware provisioning is identical to
the previous one except for the optimization criteria which
must minimize the transition cost rather than infrastructure
cost, and thus Equation (3) changes to:

min
NX

i=1

MX

j=1

TX

k=1

mijkxijk. (6)

Here mijk is the cost of transforming server i to server-
type j using mechanism k. This cost is estimated using the
mechanism-models mentioned in section III-B that capture
the overhead of replication, live migration etc4. Like before,
xijk ∈ {0, 1} indicate whether the final solution will employ
technique k to transition server i to server type j.

Although for a small problem (with nodes less than 10) a
perfect solution can be obtained by solving the above formed
ILP, as the size of the problem increases finding the optimal
solution becomes hard. We have implemented a greedy-type
heuristic with a worst case bound of 2 for an approximate
solution of the above ILP [5]. The basic idea of the heuristic
is to sort xi,j,k in increasing order of pj/Cj and then find
the smallest list of xi,j,k’s which satisfy Eq. (4). Once an
xi′,j′,k′ has been chosen for a particular i = i′, we skip the
remaining xi′,j,k; this ensures that we satisfy the constraint
in Eq. (5).

IV. KINGFISHER SYSTEM IMPLEMENTATION

We have implemented a prototype of Kingfisher, a system
that supports elasticity in today’s public and private cloud

4Using the model of mechanisms described in section III-B, we pre-
compute a matrix, say M ′ = [m′

ijk]i,j=1...M ;k=1...K , which represents
the cost of migration from server-type i to server-type j using mechanism
k. We use M ′ to compute mi,j,k of (6)
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Figure 1. Architecture of our Kingfisher prototype

computing platforms. Kingfisher presently supports both
Amazon’s EC2 public cloud and Xen-based private clouds.
Kingfisher combines an application-centric provisioning en-
gine with a cloud management platform. It assumes a
virtualized cloud platform and provides support for virtual
machine (VM) deployment, VM image management, in
conjunction with elastic provisioning. Kingfisher uses a
modified version of the OpenNebula toolkit to implement its
cloud management mechanisms—e.g., to deploy/undeploy
VMs on a set of servers in a private-cloud, create/terminate
instances on Amazon’s EC2, and to reconfigure applications
with more or less capacity. We use the XML-RPC APIs
exposed by OpenNebula deploy, terminate, or reconfigure
servers allocated to an application.

The architecture of Kingfisher and its relationship to the
cloud orchestration framework is shown in Figure 1. We
briefly describe below the key components of our architcture,
the details are given in [6].

Monitoring engine: Our monitoring engine can track the
application-workload and system resources. The monitor-
ing data is stored in a round-robin database. We have
implemented our monitoring engine by enhancing Ganglia
[7]. Each VM image is pre-configured with the reporting
agent; thus, when new virtual machines are dynamically
deployed, the Ganglia server automatically recognizes new
servers and begins to monitor them without the need for
any additional configuration. In scenarios where the cloud
platform provides monitoring capabilities (e.g., Amazon
EC2 CloudWatch), our monitoring engine can directly query
the cloud platform APIs, rather than Ganglia databases, to
obtain these metrics.

Workload Forecasting: The workload forecasting com-
ponent in Kingfisher uses the workload statistics gathered
by the monitoring engine to derive estimates of future
workloads. We use the open-source R statistical package
to implement workload forecasting. In our experiments (in
Section V), we focus on evaluating the cost benefits of
Kingfisher, hence we assume a perfectly accurate forecaster
but any other forecaster can be seamlessly used in its place.

Capacity planner: The capacity planner is the heart of
Kingfisher’s provisioning engine. It implements our ILP-
based algorithm for optimizing the infrastructure cost for



an application or the transition cost of moving to a new
configuration. We employ an lpsolve, an open-source LP
solver that is invoked via a JNI interface from Kingfisher.

Our ILP-based planner requires several pieces of input be-
fore it can begin computing cost-optimized configuration for
an applications. First, the various types of servers supported
by the cloud platform and their infrastructure prices need to
be specified. Second, all provisioning mechanisms supported
by the cloud platform (e.g., migration, replication etc) must
be specified, and a model for estimating the cost/overhead
of each mechanism must also be specified. Finally, the
empirically derived application capacities for each server
hardware type must be specified.

Given these configuration parameters, Kingfisher’s plan-
ner can be invoked by specifying (i) the tier-specific peak
request rate λ for which capacity must be provisioned, (ii)
the current configuration for the application, which can be
empty if this is the initial deployment of the application, and
(iii) the optimization objective, which can be infrastructure
cost or transition cost.

Orchestration engine: Once an initial or new configuration
has been computed, Kingfisher’s orchestration engine instan-
tiates the configuration using the transition plan. This com-
ponent uses the interfaces exposed by the cloud management
platform to resize VMs, startup new instances, or migrate
existing VMs. The orchestration engine merely specifies the
server type to use (e.g., small, medium, large) for each
configuration step, and leaves the problem of placement of
these VMs onto physical servers to the cloud manager. Thus,
the management platform (OpenNebula or EC2) is assumed
to track which physical servers are available to create a
VM of the desired type for the application. Migrations were
implemented by the VM-manipulation capabilities provided
by the underlying hypervisor or by EC2.

V. EXPERIMENTAL STUDY FOR ELASTICITY:
METHODOLOGY AND SETUP

In our experimental investigation for cost-aware elasticity,
we consider two environments: (i) Private Cloud - a setup
based on our prototype design in a lab setting, and (ii)
Public Cloud - conducting our study on Amazon EC2 with
some adaptation of our prototype. We conduct experiments
with a number of mechanisms for achieving elasticity in
the cloud, starting with cost-awareness with replication,
and adding migration and transition-cost awareness. Our
goal is to understand whether these mechanisms can further
improve cost-aware elasticity support beyond the traditional
replication-only approach. Our evaluation metrics are the
overall infrastructure cost of the virtual servers supporting
the application deployment, the cost in terms of latency to
change or scale the configuration, and the latency to achieve
target application response time after a configuration change.

A. Cost-aware elasticity mechanisms

Cost-aware vs Cost-oblivious with Replication: First,
we consider replication-only as the method for supporting
elasticity - the typical method that is available in public
clouds to support elasticity. Here we compare between
resource cost-oblivious (CO-R) and cost-aware (CA-R) ap-
proaches to illustrate the benefit of cost-aware approaches.

Migration: Second, we introduce migration in addition
to replication as the means for supporting elasticity to
investigate benefit from such additional mechanisms beyond
base level replication based elasticity5. We refer them as
CA-RM and CO-RM.

Transition cost-aware: Third, we account for transition
cost, defined as the time taken to execute the configuration
change to understand its effect on supporting elasticity. We
compare the transition cost aware (TA-RM) and transition-
cost oblivious (TO-RM) approach to explicitly account for
such costs as part of elasticity study.

B. Experimental Testbed and Workload

For the private cloud, leveraging the prototype we dis-
cussed earlier, we use a laboratory-based cloud system built
on virtualized Xen/Linux-based cluster, while our evaluation
on the public cloud uses Amazon’s EC2. We use the java
implementation of TPCW [8] for our experiments. TPC-W
is a multi-tier web benchmark that represents an e-commerce
web application comprising of a Tomcat application tier
and a mysql database tier. The workload used to trigger
the provisioning the algorithm was browsing mix of the
TPC-W specification; that was generated using TPC-W
clients. We have tested each approach on two types of
workload patterns: 1) smoothly increasing workload (small-
jump workload) 2) Sharply increasing workload (large-jump
workload).

C. Profiling Server Capacities

Earlier, we have argued that real-world applications will
not scale linearly with the number of cores due to soft-
ware artifacts and differences in processor hardware across
different systems. As our decision algorithms will have to
determine the amount of resource required to meet the
desired application level performance, we resort to empirical
profiling to determine the application’s capacity on each
server type.

We configured TPC-W with both tiers in a single VM,
and ran this VM on various server instances of both private
and public cloud. In the case of public cloud we used the
following EC2 server instances: m1.small (S), c1.medium

5We implemented the migration of a server-instance to another instance
using the live-migration, vcpu-set and mem-set facilities of Xen to perform
migration. Live-migration migrates a virtual machine (server-instance) to a
new host-machine (which has more CPU and MEM), while vcpu-set and
mem-set change the number of virtual-cpus and memory of the virtual-
machine.



(a) Non-linear scaling of TPC-W on Intel and AMD
servers

(b) Non-linear scaling behavior of TPC-W on EC2-
instances

Figure 2. Profiling server instances for private and public cloud

(M), m1.Large (L), c1.xlarge (XL) and m1.xlarge (XLM);
these instances have 1, 4, 8, 5 and 20 EC2 compute units
(ECUs), respectively. On the private cloud, it was not
possible to have instances equivalent to those of public
cloud, nonetheless, we created 1, 2 and 4 core systems; we
refer to single-core system as “small” dual-core as “medium”
while the quad-core as “large”. In each case, we gradually
increased the workload seen by the TPC-W application until
the server saturated and began dropping requests. Fig. 2a
plots the empirically derived capacities for various multi-
core configurations on our Intel and AMD systems on our
private cloud. It is quite apparent that server configurations
on each processor have a very different capacity and in
both cases they scale non-linearly. Fig. 2b plots the derived
capacities for various EC2-instances.

VI. EVALUATION ON A PRIVATE CLOUD

Our private cloud platform is built on two types of servers:
8-core 2GHz AMD Opteron 2350 servers and 4-core 2.4
GHz Intel Xeon X3220 systems. All machines run Xen 3.3
and Linux 2.6.18 (64bit kernel). Our platform is assumed to
support small and large servers, comprising 1, 2 and 4 cores,
respectively. These are constructed by deploying a Xen
VM on the above servers and dedicating the corresponding
number of cores to the VM (by pinning the VM’s VCPUs
to the cores).

We created a virtual appliance of TPC-W on CentOS
5.2. We have used a modified version Tomcat-5.5.27 as the
servlet container and mysql-5.0.45 as the backend database-
server; our modified Tomcat server logs the service time
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Figure 3. Cost-aware versus cost-oblivious provisioning

of each request, in addition to other default per-request
statistics. We also created a dispatcher appliance using the
HAProxy load balancer; the dispatcher is used to distribute
and load balance across all TPC-W replicas.

A. Cost-aware versus Cost-oblivious Provisioning
We first compare the cost-aware approach to a cost-

oblivious approach (which ignores infrastructure costs when
provisioning servers) in a restricted setting where only
“replication” is used to modify the deployment. We denote
these two approaches as CA-R (cost-aware with replication)
and CO-R (cost-oblivious with replication). In these exper-
iments, for simplicity we used two types of server-classes,
small and large, with the NS-cloud platform’s pricing model,
detailed in Table-I. We increase the request rate (λ) from
35 to 210 req/s. Fig. 3a depicts the server configurations
chosen by the CA-R and CO-R approaches (and the resulting
infrastructure cost) when the workload increases sharply
in a few large steps. We see that, even for this relatively
small deployment, cost-aware shows up to 12% reduced
infrastructure cost for the same provisioned capacity.

If the workload increases more steadily, as shown in
Fig. 3b, both approaches choose identical configurations,
i.e., an increasing number of small servers. With replication
as the only elasticity mechanism, and slowly increasing
workload, the cost-aware approach is not able to find op-
portunities for further cost improvement.

B. Benefits of adding Migration mechanism
We next consider the benefit of the cost-aware approach

compared to cost-oblivious when migration is added as an
additional elasticity mechanism to allow relocation of an
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Figure 4. Benefits of using replication and migration in a unified
provisioning approach.
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Figure 5. Application Performance during cost-aware and cost-oblivious
provisioning for large-jump workload.

application to a more cost-effective server configuration. By
enabling both mechanisms to modify the deployment, our
provisioning algorithms are able to consider a larger set
of feasible configurations, which can yield higher savings
in the infrastructure cost. Figure 4a compares the two
approaches as the workload grows in large jumps. The
cost-aware approach (CA-RM) shows a benefit as high as
24% over cost-oblivious (CO-RM), twice the relative benefit

as with using replication-based elasticity alone. For the
steadily growing workload, shown in Figure 4b, the cost-
aware algorithm shows a similar benefit over cost-oblivious.
Recall that with replication alone, the cost-aware approach
produced an equivalent solution as cost-oblivious for the
slowly increasing workload – in this case, by adding the
migration mechanism, cost-aware provisioning is able to
improve the infrastructure cost by 24%. Though the cost-
oblivious approach uses both migration and replication as
well, its choices are frequently more expensive than those
of the cost-aware approach.

Figure 5 shows the changing request-rate applied to
the TPC-W application, and the corresponding average
response-time during the experiments. By leveraging migra-
tion elasticity, the CA-RM approach is able to be much more
responsive to provisioning requests. For example, for the first
large increase in workload, CA-RM chose a migration while
CO-RM selected 2 replications, hence cost-aware finished
the task in 10 sec as opposed to 1000 sec for cost-oblivious.
This is because live-migration copies only the RAM-image
of the VM, which is an order of magnitude faster than
copying the disk image in replication.

C. Transition cost-aware Provisioning
Our experiments thus far have focused on optimizing

infrastructure cost and have ignored the overhead of tran-
sitioning the application deployment from one configuration
to another. By making elasticity decisions based on the time
overhead of various options, Kingfisher’s transition cost-
aware approach can quickly provision additional capacity
in the cloud when the workload surges suddenly. However,
by focusing on rapid reconfiguration, transition cost-aware
provisioning may not produce the minimal infrastructure
cost.

To demonstrate the benefits of our approach, we in-
creased the TPC-W application workload in a series of large
steps. At each step, we invoked Kingfisher’s transition cost-
aware provisioning and compared the decisions made by
this approach with its infrastructure cost-aware provisioning
method (i.e., which ignores the transition cost when making
decisions). We assumed a cloud platform with two server
types, small (S) and large (L), with infrastructure costs of
$0.11 and $0.25 per hour, respectively (as in Table-I).

Figure 6 shows that the transition and infrastructure costs
resulting from the chosen configuration after each work-
load step (i.e., from 35 req/s to 175 req/s). The transition
cost-aware approach is able to pick lower transition time
configurations, while the other approach opts for a lower
infrastructure cost configuration but takes an order of mag-
nitude more time. For example, when the workload increases
from 140 to 175 req/s, the transition cost-oblivious approach
performs a replication requiring 458s, while transition cost-
aware opts for migration to a large server which requires
7 seconds, but results in a slightly higher infrastructure



cost. Over the course of the experiment, the figure shows
that transition cost-oblivious chooses replication twice, while
transition cost-aware replicates once, resulting in a much
quicker response at the expense of some added infrastructure
cost.

Figure 7(a) and (b) show the applied workload on the
TPC-W application and the average response time as the
workload increases. Between 150 and 200 seconds the
workload increases to 175 req/s and, after a small spike
in response time corresponding to the migration to a large
server, the transition cost-aware solution settles to the target
response time. In contrast, in (a) the transition cost-oblivious
approach take significantly longer to reach the desired re-
sponse time as the replication operation proceeds.

The experiment demonstrates that since copying mem-
ory state during live migration incurs lower latencies than
copying disk images during replication live migration may
be preferred, whenever feasible, to reduce transition costs.
However, migration is not always feasible (e.g., if the
application is already on the largest possible server) and
replication may be needed in such cases.
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Figure 6. Comparison of a transition-cost aware system with a transition-
cost oblivious system. Solid lines denote a configuration change, while
dotted lines indicate no change.

D. Impact of the Pricing Model

Prior experiments have assumed a convex pricing model
where the cost-per-core decreases as the number of cores
increases. Since our ILP can handle arbitrary pricing models,
we demonstrate how different pricing models can impact the
choice of the configuration.

We consider the TPC-W application and wish to de-
ploy it on a cloud platform with different initial capacities
(workload, and corresponding required capacity, is increased
from λ to 6λ). We assume that the cloud supports three
types of servers, small, medium and large. For comparison,
we also show the results of the cost-oblivious approach,
which always chooses small servers regardless of the pricing
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Figure 7. Workload and Response Times of a transition-cost aware system
with a transition-cost oblivious system.

model. First, we assume a convex pricing model, which re-
sembles those employed in current clouds. In this case, larger
servers have lower cost-per-core, causing our approach to
prefer medium and large servers over small ones, when
possible. Next, we employ concave pricing model, where
the cost-per-core increases for larger systems. In this case,
since the small server has the cheapest price per code, our
cost-aware approach uses only small servers to provision
capacity, effectively choosing the same configuration as cost-
oblivious. Finally, we choose an arbitrary pricing model,
where the medium server is the cheapest, and the large server
is the next cheapest on a cost-per-core basis. This causes
our approach to prefer medium servers when possible and
occasionally some large server instances.

Provisioning Algorithm λ 3λ 4λ 5λ 6λ
Convex pricing model (S=0.11,M=0.15,L=0.25)

Cost Aware S 2M M,L 2L 4M
Cost Oblivious S 3S 4S 5S 6S

Concave pricing model (S=0.11,M=0.24,L=0.5)
Cost Aware S 3S 4S 5S 6S

Arbitrary pricing model (S=0.11,M=0.15,L=0.44)
Cost Aware S 2M S,2M 2S,2M 4M

Table II
PROVISIONING WITH DIFFERENT PRICING MODELS

VII. EVALUATION ON PUBLIC CLOUD: AMAZON EC2
In this section we conduct our experimental evaluation

on public cloud using Amazon EC2. We compare cost-aware
with cost-oblivious elasticity methods for both infrastructure
and transition costs. We need careful examination of the
migration support in Amazon EC2 as the steps and the
associated costs are quite different based on whether image



provisioning is based on EBS or instance-store based [9].
We compare three different scenarios for transition cost-
aware approach - these differ in the way the transition
cost is accounted as well as the storage is used for image
provisioning.

Note that Amazon EC2 supports eight EC2-instance types
[9]. We have used 5 of these server-types of EC2, namely
S, M, L, XL and XLC, each of which are profiled offline
and the results are shown in Fig. 2b. EC2 allows creation
of instances of each of these server types; these instances
can be created either from instance-store or from EBS-
volume snapshots, where an EBS-volume is a persistent
storage. Amazon offers snapshoting capability on these EBS-
volumes and these snapshots can be used to create new EC2-
instances.

A. Determining Transition Costs in EC2
Kingfisher’s transition-aware provisioning method needs

to accurately account for the overheads of different replica-
tion / migration mechanisms available in EC2. We conducted
a sequence of experiments to empirically determine these
costs that we require for Kingfisher provisioning step.

We determine the transition costs for both EBS and
instance-store based provisioning approach as the associ-
ated process and costs are quite different. EC2 provides
two mechanisms from starting up a new new replica: (1)
using an EBS-volume image (2) using the instance-store.
Unlike private cloud, which supports live migration, the
EC2 system supports only shutdown-and-migrate on EBS-
volume based instances, while on instance-store based EC2-
instances it only supports replication. Nevertheless, it is
possible to simulate a migrate operation for instance-store
based instances (i.e. those created using instance store) in
two different ways. If the application does not maintain any
state on its local disk (e.g., if the persistent state is stored on
the S3 and on a separate EBS-volume, which is mounted on
EC2-instance during instance-creation time), then we can
emulate migration by starting a new instance on a larger
server (via replication) and simply shutting down the old
server and attaching the disk state to the new server (called
replicate-shutdown). In contrast, if the state of the local
disk needs to be migrated as well, then a shutdown-copy-
migrate operation can be performed, where an application
is shutdown, a machine image of its disk state is created
and uploaded to S3, and a new replica is started with this
image; on EBS-snapshot based instances, one can stop the
instance and restart it as a different EC2-instance; we call
this as stop-and-start operation.

In order to capture the cost of each of the provision-
ing operation, we break down the each operation into
its component steps and capture the cost of each of the
component steps. The shutdown-copy-migrate option, in a
non-EBS volume instance involves following five steps 1.)
copy the complete disk-image 2.) compress it 3.) uploading

it onto S3 4.) register it as an AMI6 5.) create an instance
using this new AMI. Table III(a) shows the time taken to
complete each component steps for different size-images.
Note that the total time is linearly varying with the size
of compressed image. Similarly for EBS, there are three
distinct steps. Table III(b) depicts the time it takes to take
a snapshot of volume which contains data which cannot be
compressed any-further. The time to take the snapshot of an
EBS volume can also be modeled as a linear function of
size of compressed image size. As shown in IIIc, the time
it takes to boot an instance from EBS-snapshot is nearly
constant– our measured average value is 85 sec The average
instance registration time is 7 sec. The replicate-shutdown
option incurs a similar overhead as that of a pure replicate
operation. In our experiments we have used the time to
be 800 sec (since our instance gets compressed to 3GB).
Finally, the stop-and-start operation is estimated to have
mean overhead of 65 sec.

Volume
Size
(GB)

Compressed
Image
(GB)

Snapshot upload
time(s)

boot
time
(s)

10 1.22 675 175 190
10 1.60 710 210 246.5
10 2.34 927 310 345
10 2.99 1160 314 407.1
10 3.08 1308 435 424
10 3.54 1466 490 494.3

(a) Time measurements of steps involved in shutdown-copy-
migrate operation

Volume
Size (GB)

Used
Space

Compressed
Image
(GB)

Zone Snapshot
time

10 2 2 us-east-1a 491
10 4 4 us-east-1a 915
10 6 6 us-east-1a 2064
10 8 8 us-east-1b 2596

(b) Time Measurements of taking snapshot of an EBS volume

Volume Size
(GB)

Used-up
space

Zone Startup
Time (s)

10 5 us-east-1a 82.7
10 6 us-east-1a 84
10 7 us-east-1a 82
10 8 us-east-1b 85.7
10 9 us-east-1a 88

(c) Time measurements of start-up time of an image from EBS-
volume

Policy λ 2λ 3λ 6λ
CO-RM 4S(.34) S,L (.425) 2L (.68) 3L,2S (1.19)
CA-RM 4S (.34) 2M (.34) S,2M (.425) 4M,S (.765)

TA-RM-1 4S (.34) 2S,M (.34) S,2M (.425) XL,L,M (1.19)
TA-RM-2 4S (.34) 2S,M (.34) S,2M (.425) S,4M (0.765)
TA-RM-3 4S (.34) 2S,M (.34) S,2M (.425) 3M,L (0.85)

(d) Provisioning with different methods (λ = 35). Choice of provi-
sioning mechanism for each transition, i.e. from λ → 2λ, 2λ → 3λ
and 3λ→ 6λ, are described in section VII-C

Table III
MEASUREMENTS AND PROVISIONING ON EC2

6An Amazon Machine Image (AMI) is a virtual machine image which
is used by EC2 to create server instances



B. Infrastructure-cost aware Provisioning

To evaluate the efficacy of Kingfisher in taking infras-
tructure and transition costs into account, we repeated our
TPC-W experiment on the public EC2 cloud. We assume an
initial configuration of four small servers serving an initial
workload of λ = 35. The infrastructure cost of servers is
summarized in Table I and transition cost is discussed above.
Like before we varied the workload in steps and Table III(d)
depicts the configurations generated by the cost-oblivious
and Kingfisher’s cost-aware methods. The cost-aware (CA-
RM) method is able to provision the same capacities at 35%
lower cost.

C. Transition-cost aware Provisioning

Using the empirically determined transition costs, we next
evaluate transition cost-aware elastic provisioning. We con-
sider three transition cost scenarios based on usage pattern
and constraints in EC2: (i) TA-RM-1, which only takes into
account the number of transitions and cost of each transition
and also the infrastructure cost of final configuration; (ii) TA-
RM-2: that considers transition costs and final infrastructure
costs for non-EBS instances in EC2, and (iii) TA-RM-3 that
distinguishes between 32-bit small EC2 instances, and 64-
bit larger EC2 instances, and assumes that 32-bit and 64-bit
applications are not mixed across the corresponding server
types.

As shown in Table III(d), when workload jumps to 2λ,
TA-RM-* chooses to perform only one stop-and-start oper-
ation as opposed to two chosen by CA-RM; notice that both
configurations have the same dollar cost however CA-RM
policy tries to maximize capacity, while TA-RM-* schemes
minimize the number of reconfigurations. When the work-
load increases from 2λ to 3λ, the CA-RM method resorts
to replication, while the TA-RM-* chooses the faster stop-
and-start provisioning. In the final step, CA-RM chooses
to perform two replications, however, TA-RM-1 initiates
two stop-and-start operations for faster provisioning. Since
TA-RM-2 provisions non-EBS instances, it chose the faster
replication option (over the slower shutdown-copy-migrate).
TA-RM-3, on the other-hand, performs a stop-and-start from
S to M instances and then initiates another replication.

Figure 8 show the result of provisioning experiment
conducted using Kingfisher for TA-RM-3 scheme. Figure
8a and Figure 8b show the response-times of the of the
corresponding configurations, indicating the responsiveness
of the system using the end-to-end response time of the
configuration under workload. The benefit of transition-cost
aware approach is apparent from Figure 8c,8d: in the first
and last step it approximately takes the same time7, however
in the second jump the transition-cost aware system achieves
the new configuration in 60 sec as opposed to 382 sec.

7The large variation in similar operations is because the copy operation
is dependent on the load on the backend network and disk systems of EC2
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Figure 8. Comparison of a transition-cost aware system with a transition-
cost oblivious system.

VIII. RELATED WORK

Our work focuses on optimizing the use of elasticity
mechanisms and is applicable in commercial cloud service
offerings (exemplified by Amazon EC2 and others) and clus-
ter management systems such as OpenNebula or Eucalyptus.
In particular, this study is the first work to propose cost-
aware provisioning in a cloud, along with algorithms to
optimize how additional mechanisms beyond replication can
be leveraged to support elasticity.

There is a significant amount of related work, however,
in the area of dynamic capacity provisioning in data cen-
ters, grids, or compute clusters, starting with earlier work
such as [10] and [11]. Much of this work is platform-
centric, while our work considers a customer-centric view



of provisioning and resource optimization. Other work has
considered migration as a means of dynamic provision-
ing [12], while we consider replication with different types
of migrations and assign cost to each of them. There is
also an extensive body of work on dynamic provisioning
of web applications using analytic models [13], [14], [15],
[16]. Classical feedback control theory has also been used
to model the bottleneck tier for providing performance
guarantees for web applications [17], [18]. The approach
in [18] formulates the application tier server provisioning
as a profit maximization problem and models application
servers as M/G/1/PS queueing systems. The work in [3]
provides a model-driven approach for adapting resources for
a multi-tier application. Finally, machine learning techniques
have also been used for provisioning, such as the k-nearest
neighbor approach to provision the database tier [19].

In contrast to these efforts, our work automates the process
of characterizing the workload mix and uses empirical mod-
els as a basis for provisioning system capacity. Further, while
we employ analytic models of infrastructure and transition
costs, our approach involves full prototype implementation
and experiments on an actual Linux cluster.

IX. CONCLUDING REMARKS

Since today’s cloud platforms offer a plethora of different
server configurations for rent and price them differently on a
cost-per-core basis, we argued that these pricing differentials
can be exploited by an application provider to minimize
the infrastructure cost of provisioning a certain capacity.
We proposed a new cost-aware provisioning approach for
cloud applications that can optimize either the infrastructure
cost for provisioning a certain capacity or the transition
cost of reconfiguring an application’s current capacity. Our
approach exploits both replication and migration to dynam-
ically provision capacity and uses an integer linear program
formulation to optimize cost. We prototyped a cloud pro-
visioning engine, using OpenNebula, that implements our
approach and evaluated its efficacy on a laboratory-based
Xen cloud. Our experiments demonstrated the cost benefits
of our approach over prior cost-oblivious approaches and
the benefits of unifying both replication and migration-
based provisioning into a single approach. We also presented
a case study of how our approach can be employed in
a public cloud such as Amazon EC2. In future we plan
to extend kingfisher by integrating it with systems which
employ queuing theory based model for capacity estimation
for provisioning on cloud.
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