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ABSTRACT Not only to reduce the candidates but also to maintain detection performance in multiple-input
multiple-output (MIMO) detection, an adaptive overlapped cluster (AOC) scheme to balance detection error
and computing cost is built for 4× 4 and 8× 8 MIMO-OFDM systems with up to 256 quadrature amplitude
modulation (QAM). The constellations are partitioned into several clusters. A cluster with size decided by
channel status is chosen for signal decoding. Different partition schemes are combined to minimize the
numbers of clusters required to cover a candidate symbol as the pre-estimated signal falls at cluster edges,
namely overlapped clustering. The simulations of a 4 × 4 MIMO OFDM with 64 QAM and 8 × 8 MIMO
OFDM with 256 QAM hint that the AOC-based detection requires an additional 0.57 dB and 1.02 dB
compared to maximum likelihood (ML). Compared with K-best sphere decoding (SD), it is reduced the
computing complexity to 24.50% ∼ 56.25% in 4 × 4 MIMO OFDM and, 35.00% ∼ 56.25% in 8 × 8
MIMO OFDM. In addition, the proposed scheme is ported to a reconfigurable frequency-domain (FD)
modem, which is designed and implemented via TSMC 45-nm technology, with multi-rate clocking and
processing elements (PEs) upgrading for supporting the proposed MIMIO detection. The results show that
the throughput is 1077.8 Mbps with 4× 4 64-QAM modulations.

INDEX TERMS Low complexity, MIMO detection, multi-rate clock, cluster, reconfigurable modem.

I. INTRODUCTION
Wireless communication techniques have developed signifi-
cantly in recent decades. Multi-input multi-output orthogonal
frequency division multiplexing (MIMO-OFDM) systems as
well as large number of antennas and high-order quadra-
ture amplitude modulation (QAM) have been widely used
to support increasing data rates. However, these increase the
computing complexity of the MIMO detection, leading to the
challenge of how to design a MIMO detection algorithm with
acceptable computing complexity and performance.

In uncoded MIMO-OFDM systems, MIMO detection can
be mainly divided into two categories [1], [2]: linear detec-
tion, such as the zero forcing detection (ZFD) and the
minimum mean squared error detection (MMSED), and
non-linear detection such as maximum likelihood (ML).

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Magarini.

Linear detection methods are simple to implement, but have
poor performance, especially in systems with the same
numbers of transceiver and receiver antennas [2]. In con-
trast, non-linear detection methods can reach the optimal
performance mathematically, but has unacceptable comput-
ing complexity [2]–[4]. Maximum likelihood post-detection
processing (ML-PDP) [5] is employed to reduce comput-
ing complexity of the ML method, and numerous stud-
ies discuss compromises between operation complexity and
performance.

The sphere decode (SD) method is a well-known MIMO
detection method. The main idea of SD detection [6] is
to confine the number of searching constellation points,
although the associated algorithm still needs to span redun-
dant searching sets exponentially in the worst case. Many
studies have focused on decreasing the searching set. For
example, the 256-QAM LR-Aided Fixed-Complexity Tree
Searching (LRA FCTS) [7] is proposed to make computation
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cost effectively via fixing tree size of the full expansion in
the fixed-complexity sphere decoder (FSD). And the positive
diagonal values (PSV) technique [8] was proposed to reduce
the nodes visited times in node-pruning processing. The lit-
erature also discusses how to implement SD-based MIMO
detection under hardware resource limitations [9]–[12]. The
computing complexity of SD has been shown to decrease
as the performance decrease [13], but there is a 16-QAM
K-best Schnorr-Euchner (KSE) [10] to reduce computational
complexity with near-ML performance which modifies the
K-best SD via Schnorr-Euchner strategy. To balance the link
performance and computational complexity, an optimized
SD algorithm and the corresponding architecture by using
a state-machine is reported [14], [15]. Similar to SD, Lay-
ered ORthogonal lattice Detector (LORD) is proposed to
reduce the computational complexity. A enhanced LORD
reduces the computing effort via choosing the constella-
tion subset according to the received symbol [16]. And,
the concept of LORD algorithm is suitable for high-QAM
MIMO detection [17] Similar to SD algorithm, cluster algo-
rithms are employed to shrink the searching space. Our
previous works employed overlapped clusters to avoid per-
formance loss which is caused by estimated signal allocat-
ing on clusters’ edge [18]. For reducing the search space,
an efficint low-complexity detector via dividing adjacent
decision regions with horizontal or vertical edge [19].

Vertical bell laboratories layered space-time (V-BLAST)
is a low-complexity MIMO detection whose basic concept
is to decode signal starting from the received signal with
the strongest power [20]. After the first signal is determined,
the error between this signal and the strongest received signal
is employed to identify the signal with second strongest
power, and so on until the last signal is received. The liter-
ature notes that sorted QR decomposition can be employed
in the V-BLAST algorithm to simplify successive detection
processes in V-BLAST [21]. In addition, methods to improve
the successive interference cancellation (SIC) efficiency have
also been proposed [22]–[26] for V-BLAST. For instance,
a 16-QAM MIMO detection [22], which is combined with
ZF, ML, and SIC processing to minimize the computing cost.

The LR-aided MIMO detection using a coordinate
transformation by adapting the Lenstra-Lenstra-Lovász
(LLL) [27] algorithm has become well-known. The concept
of the LR algorithm is to search a short and near-orthogonal
path according to a lattice basis. However, the LLL algo-
rithm is not efficient because the execution time is decided
by column swap operations [28]. Hence, several studies
have proposed different strategies to optimize the LR-aided
algorithm [28]–[37], a LR-Aided K-best detection [38] com-
bines hardware-optimized LLL (HOLLL) and K-best algo-
rithm to approach ML performance. And a 64-QAM
lattice-reduction-aided minimum-mean-squared-error-based
fixed-complexity sphere decoder (LRA-MMSE-FSD) [39]
makes FSD low computational cost via reducing the number
of full expansion (FD) stage. In 8 × 8 MIMO, a 64-QAM
MIMO detection base on fixed-complexity Effective

Lenstra-Lenstra-LovÃąsz (fcELLL) algorithm [37] is intro-
duced to improve the computational efficiency of Effective
Lenstra-Lenstra-Lovász (ELLL).

In hardware implementation, there are two architec-
tures: application-specific integrated circuit (ASIC) and
application-specific instruction-set processor (ASIP). For
ASIC implementation, a soft-outputMIMO detector [40] that
employs a lattice-reduction-aided soft-output K-best detec-
tor to remove the iteration loops for enhanced throughput
has been reported. An optimal soft MIMO detector [41]
combines the advantages of depth-first approaches and
breadth-first approaches to provide a soft ML solution
without exhaustive searching. A scalable K-best MIMO
detector’s [42] critical path length is constant and indepen-
dent of the antenna number. For reducing the computing
complexity of preprocessing in MIMO detection with high
antenna number, a K-best detector combines Cholesky sorted
QR decomposition and partial iterative lattice reduction [43].
Finally, a 2-D sorting detector [44] is proposed to parallel the
K-best procedure for enhancing the throughput and reducing
the storage elements. Besides the ASIC architecture, aMIMO
detector is designed by using a reconfigurable ASIP (rASIP),
which is constructed by coarse-grained reconfigurable archi-
tecture that supports different matrix operations [45].

Many algorithms have been proposed to reduce the com-
plexity of the searching procedure in MIMO detection algo-
rithms. For instance, Bayesian theory [46], [47] or maximum
a posterior (MAP) [48] techniques have been employed to
find a statistical property to make MIMO detection more
efficient. Also, it is benefited to practical implementation by
slicing the MIMO detection system into several 2-by-2 MAP
detection cores and paralleling them [49]. The branch and
bound algorithm has been combined with the M-algorithm
to reduce the complexity of the ML algorithm [50]. A QL
decomposition has been employed to avoid the matrix inver-
sion operation, thus reducing complexity [51], and allow to
speed up the procedure of MIMO detection via breaking the
QL decomposition into subset streams. Graph theory has also
been used as a strategy to analyze the optimal path [52], [53].

In this work, the adaptive overlapped cluster (AOC)-based
MIMO detection is proposed which try to save computing
complexity via partitioning constellations into several clus-
ters to limit the searching space. Several partition schemes
can be employed to cluster constellations to avoid extra
computing complexity when the pre-estimated signal falls
at clusters’ edge. The concept of the proposed algorithm
is illustrated in Fig. 1. At first, several clusters are chosen
according to the location of the pre-estimated signal. After
that, the size of the chosen cluster is narrowed or broadened
according to channel status. Simulations of 4 × 4 and 8 × 8
MIMO detection hint that the AOC technique is an accept-
able compromise between computing complexity and perfor-
mance. Furthermore, the proposed detection can be ported to
a 4 × 4 reconfigurable modem by upgrading processing ele-
ments (PEs) and employing multi-rate clock in the arithmetic
logic unit (ALU). Additionally, a 454.8 KGE reconfigurable
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FIGURE 1. Concept of adaptive overlapped clustering.

frequency-domain (FD) modem with 1077.8 Mbps through-
put is proposed for porting the proposed AOC MIMO
detection.

The remainder of this paper is organized as follows.
Section II presents assumptions of the system and the prob-
lem statement. Sections III introduces the concept of the
AOC MIMO detection. The proposed algorithm is ported
to a frequency domain (FD) reconfigurable modem in

Section IV. In Section V, the proposed AOC scheme is sim-
ulated and compared with prior works. Finally, Section VI
provides conclusions.

II. SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT
A. SYSTEM DESCRIPTION
Assume an uncoded MIMO-OFDM system denoted as NT ×
NR, where NT is the number of transmitter antennas and

VOLUME 7, 2019 36105



Y.-T. Liao, T.-Y. Hsu: Cost-Effective AOC-Based MIMO Detector in a FD Reconfigurable Modem

NR is the number of receiver antennas. In this study, 4 × 4
and 8 × 8 systems are simulated. To maintain a focus on
performance of the MIMO detection algorithm, we further
assume perfect timing and frequency synchronization for
avoid the additional errors which is caused by synchroniza-
tions. The rich-scattering environment is considered to be
additive white Gaussian noise (AWGN). The received base-
band signal for theNT×NRMIMO system can bemodelled as
eq. (1).

yj = Hjxj + nj (1)

where xj =
[
x j1 x

j
2 . . . x

j
N

]T
; [∗]T means transpose; x ji is

the j-th transmitted subcarrier modulated with N -QAM con-
stellation, where N is 64 or 256 for both 4×4 system and
8×8 system, and transmitted by the i-th transmitted antenna;

yj =
[
yj1 y

j
2 . . . y

j
N

]T
is the received symbol vector in the

received signal space; and nj =
[
nj1 n

j
2 . . . n

j
N

]T
is an

independent identical distributed (i.i.d.) complex zero-mean
Gaussian noise vector with variance σ 2 per dimension. More-
over, the j-th NT × NR channel Hj is frequency-selective
fading and expressed as eq. (2), where hjik presents the
channel state information (CSI) of the j-th subcarrier trans-
mitted from the k-th transmitter antenna to i-th receiver
antenna.

Hj
=


hj11 · · · hj1NT
...

. . .
...

hjNR1 · · · hjNRNT

 (2)

B. PROBLEM STATEMENT
The SD and LORD algorithm is an attractiveMIMOdetection
algorithm to limit the amounts of searching constellations
and thus reducing computing cost and memory requirement.
However, it takes extra operations to decide if constellations
allocate at a given search radius for each pre-estimated signal.
Thus, it is advantageous to group constellations beforehand,
that is, to partitions constellations into clusters. At least
two clusters need to be chosen to ensure sufficient diversity
when the pre-estimated signal falls at the edge of clusters.
In different fading channels, the size of the chosen cluster
may be insufficient, causing performance loss, or redundant,
causing unnecessary computing cost. Therefore, it is impor-
tant to minimize amounts of candidates without performance
degrading.

In VLSI implementations, computing power is propor-
tional to the clock rate multiplied by the computing resource.
Preferred to supply various specifications, the proposed algo-
rithm is ported to a reconfigurable modem [54] which must
be upgraded to ensure sufficient computing power for the
proposed detection porting. Because speeding up the clock
rate makes chips hard to configured and increasing the com-
puting resources leads to complex interconnection and large
chip area, the impact of layout, interconnection, and area are
additional important design issues.

FIGURE 2. Flow chart of the proposed algorithm.

III. PROPOSED MIMO DETECTION
The basic concept of the AOC-based MIMO detection is to
partition the constellations into several clusters. To address
the diversity problem which is caused by pre-estimated sig-
nals falling at the edge of clusters, a multiple partition scheme
allowsmore than one cluster to possess the same constellation
point. The best cluster is chosen according to the allocation
of an estimated symbol by detail matching, and the size of the
chosen cluster is variable according to channel gain of each
antenna to reduce the computing cost in a high signal-to-noise
ratio (SNR) environment or to avoid performance loss in a
low SNR environment. As illustrated in Fig. 2, the flow of
the proposed MIMO detection can be divided into four major
steps.

1) Pre-processing. Pre-processing is combined by
Pre-estimated and Sorted QRD. In Sorted QRD,
the channel matrix Hj is decomposed to unitary matrix
Qj and upper-triangular Rj, where Hj

= Qj
× Rj,

via the sorted QR decomposition (SQRD) according to
channel gain. The SQRD processing outputs the sorted
received signal Zj, inverted sorted channel matrix
(Sj)−1, sorted unitary matrixQj,sorted upper-triangular
matrix Rj, and sorted channel gain Gj. Simultane-
ously, the proposed algorithm exploits linear detectors
to obtain pre-estimating signals x̂j in Pre-estimation,
where Zj = Sj × x̂j.

2) AOC scheme. The AOC algorithm partitions the con-
stellations into a number of clusters using different par-
tition schemes. Cluster sizes are increased or decreased
according to the column norm of Hj, which includes
channel gain information. Then, the AOC algorithm
chooses a cluster according to the pre-estimated
signal x̂j.

3) Detail matching. This step is adapted from breadth-
first searching procedure [10]. The partial Euclidean
distance (PED) of the received signal and the constella-
tion points in the chosen cluster is computed. The PEDs
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of candidate signals and the received signals in the
searching space are compared and the signals with the
K smallest PED are kept.

4) Termination criterion. The candidate signal with the
lowest PED is selected as the estimated signal. If the
decoding antenna level is not the last one, return to
step 2. Otherwise, the estimated signal is reordered and
output.

These steps are explained in more detail in the following
subsections

A. PRE-PROCESSING
The purpose of pre-processing is to rearrange the columns
of the channel matrix Hj according to the norm of the chan-
nel columns, and to determine the pre-estimated signal x̂j

employed in the AOC algorithm. The pre-processing proce-
dure includes two functions, Sorted QR Decomposition and
Pre-Estimation.

1) SORTED QR DECOMPOSITION
We employ the MMSE-SQRD to decompose the channel
matrix Hj into Qj and Rj according to the channel gain Gi,j,
where Gi

≡ ‖hinor‖
2 and Hnor ≡

[
h1nor h2nor . . . h

n
nor
]
.

Normalized channel matrix Hnor is defined in Eq. (3) where
hmax = max{h11, . . . , hNRNT }. Thus, the decoding procedure
of the detail matching step starts at the strongest signal [55].

Hnor =


hj11
hmax

· · ·
hj1NT
hmax

...
. . .

...

hjNR1
hmax

· · ·
hjNRNT
hmax

 (3)

2) PRE-ESTIMATION
Pre-Estimating uses linear detection to produce the
pre-estimated signal x̂ according to the sorted received sig-
nals Z and H [55]. The goal of pre-estimating is to reduce
computing complexity in the AOC procedure. In this work,
the MMSE approach is used to estimate x̂.

B. AOC SCHEME
To balance detection error and computing cost, the AOC
scheme is divided into overlapped clustering and dynamic
clustering. The best cluster is identified according to the
pre-estimated signal x̂ via the following decoding procedure.

1) OVERLAPPED CLUSTERING
Overlapped clustering is composed of cluster choosing and
boundary removal, as described in the following sections.
A simplification of 256-QAM overlapped clustering in the
first quadrant is illustrated in Fig. 3.

a: CLUSTER CHOOSING
In order to save memory in implementations, we pre-partition
the constellations into several clusters Ck according to

FIGURE 3. Overlapped clustering in first quadrant of 256 QAM.

Algorithm 1 Cluster Selection
Pre-estimated
Input: signal x̂, Pre-partitioned clusters C
Output: Sets of the cluster, ωi

1: for i = 1:NR do
2: ωi

← ∅

3: ωi
temp← ∅

4: for each cluster C do
5: if C 3 x̂ then
6: ωi

temp = ωi
temp

⋃
C

7: else
8: Do nothing
9: end if
10: end for
11: ωi

← ωi
temp

12: end for

various schemes. To additionally ensure a diverse set of can-
didates, we select clusters which include the pre-estimated
signal x̂. Inωi, the resulting set of clusters, i indicates the layer
index. Cluster selection is illustrated in Step 1 of Figure 3 and
is described in Algorithm 1.

b: BOUNDARY REMOVAL
To reduce computational costs when the pre-estimated sig-
nal x̂ falls on the edge of a cluster, the cluster is dropped if
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FIGURE 4. Expression for distance of estimated signal to cluster
boundaries.

FIGURE 5. The smallest removal case.

Algorithm 2 Boundary Removal
Pre-estimated
Input: signal x̂, sets of cluster, ωi, which include x̂, and

boundary threshold TB
Output: Candidate cluster sets ωi

c
1: ωi

c← ∅

2: for each cluster C ∈ ωi do
3: Compute dUB, dBB, dLB, and dRB
4: Compute ER according to Eq. (4)
5: if ER < TB then
6: Remove C from ωi

7: else
8: Keep C in ωi

9: end if
10: end for
11: ωi

c← ωi

the edge ratio ER, which is defined in Eq. (4), is smaller than
a given boundary threshold TB. The smallest removal case is
illustrated in Fig. 5. If x̂ is allocated on the corners (red area
in Fig. 5) of the 3×4 (or 4×3) cluster, such cluster is removed.
The edge ratio of such case is 1/7× 1/5 = 1/35 Thus, TB is
defined as 1/35 in this work. Boundary removal is illustrated
in Step 2 of Figure 3 and is described in Algorithm 2.

ER =
min(dRB, dLB)
max(dRB, dLB)

×
min(dUB, dBB)
max(dUB, dBB)

(4)

2) DYNAMIC CLUSTERING
To compensate for performance losses caused by the limited
combinations of multiple clusters, the size of the candidate
clusters is updated taking into account the channel status
of each layer and antenna. In the AOC algorithm, we use
dynamic clustering to balance detection error and computing

Algorithm 3 Dynamic Clustering

Input: Channel gain Gi, Candidate cluster ωi

Output: Candidate set ωi

1: Given threshold values {T1,T2}, where T1 < T2.
2: for p = 1 : m do
3: q = p+ 1
4: if Gi < T1 then
5: Enlarge ωi

6: else if Gi > T2 then
7: Narrow ωi

8: else
9: ωi is not changed

10: end if
11: end for
12: Output candidates set ωi

costs. Dynamic clustering broadens the candidate cluster set
ωi
c to reduce the probability of detection error when the

channel gain Gi is too low, and trims ωi
c to reduce computing

costs when Gi is high. Thresholds T1 and T2 are used to
control whether ωi is enlarged or narrowed. If Gi is smaller
than T1, then ωi is enlarged by 1 constellation point. Else,
if Gi is larger than T2, then ωi is narrowed by 1 constellation
point. A dynamic clustering example is illustrated in Fig. 6.
As the ideal CFR matrix approximates a unit matrix, which
corresponds to a channel gain close to 1. In Fig. 7 (a), the sim-
ulation shows that BER performance and T1 are similar as
T1 = 1, 0.9, or 0.8. Thus, T1 is set to 0.8 for balancing
performance and computing complexity. In Fig. 7 (b), BER
performance are similar as T2 being infinite and 1.2. Infinite
T2 means that the candidate cluster is never narrowed. Hence,
T2 is set to 1.2. If Gi lies between T1 and T2, ωi is invariant.
The pseudo code is presented in Algorithm 3. The inputs
are the candidate cluster ωi and channel gain Gi for each
antenna i of which ωi is broadened or narrowed according
to Gi. Finally, the adjusted ωi is output and used in the detail
matching step.

IV. MULTI-RATE ARCHITECTURE
We revised the FD MIMO-OFDM reconfigurable
modem [54] to provide enough computing power for the
proposed AOC-based MIMO detection. The revised modem
is implemented in HDL and synthesized using Synopsys’s
Design Compiler with TSMC’s 45-nm technology. In the
ALU of the revised modem, basic PEs such as adders, mul-
tipliers, and dividers are driven by an 80-MHz or 160-MHz
clock and accelerators while the sorter and matrix inverter
are driven by a 320-MHz clock as a compromise between
computing power and routing complexity. With multi-rate
clocking, PE counts are controlled to facilitate VLSI imple-
mentation. Below we present details on the modifications
and port scheduling. There are 10 R/W ports between the
SIMD-based ALU and the centralized memory pool. The
block diagram of the modified design is shown in Fig. 8.
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FIGURE 6. Dynamic clustering.

FIGURE 7. Thresholds T1 and T2 v.s. BER: (a) T1; (b) T2.

The basic system clock is 20 MHz and is applied to mod-
ules employed in the digital front-end. A multi-rate clock
generator [56] is used to generate a 4× clock (80 MHz) and
an 8× clock (160 MHz) based on the system clock.

A. IMPLEMENTATION LIMITS
Initially, the proposed method selects possible constellation
points according to the estimated signal which is obtained by
linear detectors. The performance and computing complexity
is affected by the largest pre-set cluster. The relationship
between BER performance and maximal cluster size with 4×
4 64-QAM is illustrated in Fig. 9. The BER performance of

5×5 and 6×6 case are similar. However, 6×6 case takesmore
computing power. The largest cluster size for partitioning
constellations is set to 5 × 5, as illustrated in Fig. 10. And,
to maintain computational efficiency in implementations, the
partitioned cases are fixed. Furthermore, the constellations
are numbered, as illustrated in Fig. 11, to record the surviving
candidates in MIMO detection. In this numbering system,
we divide the constellation index IdxNum by 4, and then use
the remainder to indicate the quadrant of the constellation via
Eq. (5). The quotient is used to indicate complex values. After
recognizing the quadrant of the allocated constellation, the
constellation index ConIdx = bIdxNum/4c is employed to
map the index to the complex value via Equations (7) and (6).
The signs of the real and imaginary parts are indicated by
the quadrant information. For example, a constellation with
an index IdxNum of 37 is allocated on the second quadrant
because 37 mod 4 = 1, yielding a constellation index
ConIdx of 9, which in turn yields a complex value of−3+ 5i
because 9 mod 4 = 1 and b9/4c = 2.

IdxNum mod 4 =


0 First quadrant
1 Second quadrant
2 Third quadrant
3 Fourth quadrant

(5)

ConIdx mod 4 =


0 Real part = 1
1 Real part = 3
2 Real part = 5
3 Real part = 7

(6)

bConIdx/4c =


0 Imaginary part = 1
1 Imaginary part = 3
2 Imaginary part = 5
3 Imaginary part = 7

(7)

The set of possible constellation points is then broadened
or narrowed according to the channel gain information. To
reduce hardware costs, the maximum number of candidates
in the clusters is limited to 16. Thus, the candidate signals

VOLUME 7, 2019 36109



Y.-T. Liao, T.-Y. Hsu: Cost-Effective AOC-Based MIMO Detector in a FD Reconfigurable Modem

FIGURE 8. Block diagram of revised reconfigurable modem.

FIGURE 9. Maximal cluster size v.s. performance.

are compared with the received signal via K-best (K = 12)
in the SQRD search space. The output is the detection signal
with the least cumulative square Euclidean distance. In this
study, the reconfigurable modem is designed for 20-MHz
4×4 WLAN applications. Most of the mathematic operation
units are shared. However, the original architecture does not
perfectly support AOCMIMO detection: for instance, SQRD
and matrix multiplications, which are used frequently in the
proposed MIMO detection algorithm, are not provided in the
original architecture.

Two limits must be balanced when porting AOC-based
MIMO detection to the reconfigurable modem: the clock
rate of the ALU and the PE resources in the ALU. To port
the proposed MIMO detection, the reconfigurable modem is
extended, as illustrated in Fig. 12.

1) CLOCK LIMIT
The main purpose of the single instruction multiple data
(SIMD)-based ALU [54] is to maximize the utilization and

FIGURE 10. Overlapped clustering scheme in 64 QAM (fixed scale).

FIGURE 11. QAM mapping index.

efficiency of basic PEs such as adders and multipliers. There-
fore, in the ALU we create advanced instructions as com-
binations of these basic operations. These are implemented
by reconfiguring computing paths in the ALU. However,

36110 VOLUME 7, 2019



Y.-T. Liao, T.-Y. Hsu: Cost-Effective AOC-Based MIMO Detector in a FD Reconfigurable Modem

FIGURE 12. Multi-rate ALU architecture of PE resource extension.

as this leads to high routing complexity and bus connections,
the clock rate of this part cannot be too high; that is, there
must be a clock limit. To enhance throughput, PE resources
must be increasedwith acceptable routing complexity and bus
connections. Based on the advanced instructions supported
in the original ALU, we slightly modify it to add advanced
instructions to support one-cycle (160 MHz) 4 × 1 matrix
multiplication.

2) PE LIMIT
Not every instruction can be implemented by reconfiguring
computing paths. For example, matrix inversion is not suit-
able for this technique due to its high complexity in terms
of computing paths. Thus, we use a dedicated accelerator to
support such operations. As PE utilization in dedicated accel-
erators is inefficient, we take into account PE resources as
a trade-off between utilization and throughput. In this work,
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FIGURE 13. Timing diagram of QR-based matrix inverter.

we adopt a multi-clock rate strategy to balance utilization and
throughput in a dedicated accelerator. To support AOC-based
MIMO detection, key operations in the algorithm such as
matrix inversion and QR decomposition must be added into
the original ALU architecture. However, these operations
have high computing complexity, especially in a 4 × 4 or
more antenna system. In this work, to reduce hardware costs,
QR decomposition and matrix inversion share a hardware
resource: a QR-based matrix inverter. The dedicated acceler-
ator proposed in [54] is also integrated in the multi-rate ALU.
Furthermore, we support matrix multiplication, an advanced
instruction. To increase flexibility in scheduling and control,
we use a micro control unit (MCU) to make decisions in
every algorithm, which is stored in an algorithm ROM in
themodified reconfigurablemodem. For increased efficiency,
we propose a centralized memory pool to reduce data-access
latency and maximize memory utilization.

B. HARDWARE AND INSTRUCTION ENHANCEMENT
1) QR-BASED MATRIX INVERTER
QR decomposition and matrix inversion are impor-
tant operations in the proposed detection method. To
meet the computing requirements of AOC-based MIMO
detection, a QR-based matrix inverter is integrated
in the SIMD-based ALU in sequence. The hardware
design of the QR-based matrix inverter uses a modi-
fied Gram-Schmidt algorithm [57]. And the algorithm is
described in Algorithm 4.

The block diagram and timing diagram are illustrated in the
bottom of Figures 12 and 13, respectively. Thematrix inverter
takes 52 clock cycles (320 MHz) to compute and output
each matrix. It employs 2 H matrix generators, 2 R matrix
generators, and 1 Q matrix generator. H matrix generators
are employed to subtract the columns of the H matrix by

Algorithm 4Modified Gram-Schmidt Algorithms [57]
Input: Channel Frequency Response Matrix H
Output: Unitary Matrix Q, Upper-triangle Matrix R, and

inverted Channel Frequency Response Matrix H−1

1: for k = 1 : n− 1 do
2: Rk,k = ‖H1:n,k‖

3: Q1:n,k = H1:n,k
/
Rk,k

4: for j = k + 1 : n do
5: Rk,j = Q†

1:n,k × H1:n,j
6: H1:n,j = H1:n,j − Q1:n,k × Rk,j
7: end for
8: end for
9: H−1 = R−1 × Q†

10: Note: † means Hermitian conjugate.

the production of Q1:n,k and Rk,j in 3 cycles (320 MHz),
where n is the number of antennas, k is from 1 to n − 1,
and j is from k + 1 to j. R matrix generators take 3 cycles
(320 MHz) to compute the diagonal elements of R and the
remaining elements of upper-triangle matrixR. TheQmatrix
generator takes 2 cycles (320 MHz) to compute the columns
of the unitary matrix Q. To increase utilization of function,
the pipeline architecture is also used to computing the matrix
inversion of H as well. After completing QR decomposition,
the H−1 matrix is computed via the following equation,
H−1 = R−1 ×Q†, where R−1 is defined in Eq.(8), as shown
at the bottom of this page.

2) MATRIX MULTIPLICATION
In the proposed MIMO detection, where QT is a 4×4 matrix
and Zj is a 4×1 matrix, the sorted transposed unitary
matrix QT , decomposed from channel matrix Hj, is multi-
plied by the sorted received signal Zj. The implementation
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FIGURE 14. Matrix multiplication data path.

of this matrix multiplication requires 16 complex multipliers
and 12 complex adders. To shorten the time needed for
decoding and fetching instructions, matrix multiplication is
designed as an advanced instruction, as it accounts for most
of the operations. An equation for the matrix multiplication
operation is given by (9). In this example, matrix multi-
plication requires 16 complex multipliers and 12 complex
adders. As it is time-consuming to fetch these instructions, we
use an advanced instruction. The equation shows that matrix
multiplication is easily parallelized; thus it can be executed in
a single 160-MHz cycle. As the I/O port operates at 160MHz,
the input data and computing result is read/written from/to
memory in two 160-MHz cycles. Also, the ALU executes
in one 160-MHz cycle. In the proposed ALU architecture,
the matrix multiplication operation is parallelized. The ALU
data path is illustrated in Fig. 14: in this ALU, 12 matrix
multiplications can be executed simultaneously.

Z1
Z2
Z3
Z4

 =

X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

×

Y1
Y2
Y3
Y4

 (9)

3) PARTIAL EUCLIDEAN DISTANCE COMPUTING
AND SORTING
In addition to the instructions mentioned above, it is also
important to compute partial Euclidean distances (PEDs) and
to choose the K-best PEDs in the implementation of the
proposed detection approach. An advanced instruction is thus
added to execute these two operations. Figure 15 illustrates
the instructions for decoding different layers. The clustered

FIGURE 15. Instructions for decoding different layers: (a) Layer 4;
(b) Layer 3; (c) Layer 2; (d) Layer 1.

FIGURE 16. Memory mapping of clustered candidates to PED results.

candidates are recorded with IdxNum, and the PED results
are stored in memory sequentially, as illustrated in Fig. 16.
The initial values of this memory space are set to 0xFFFF.
To reduce computing complexity, the decoding procedure
starts from the 4th layer. The number of constellations in the
clustered candidate sets is limited to 16; thus, 16 complex
multipliers and 16 complex adders are required to compute
the PEDs of the 4th layer. Thus 192 complex multipliers and
192 complex adders are required to compute the PEDs in

R−1 =



1
r11

−r12
r11r22

r12r23 − r13r22
r11r22r33

r13r22r44 + r12r33r24 − r12r23r44 − r22r33r14
r11r22r33r44

0
1
r22

−r23
r22r33

r23r34 − r33r24
r22r33r44

0 0
1
r33

−r34
r33r44

0 0 0
1
r44


(8)
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the 3rd layer, 382 complex multiplications and 382 complex
additions in the 2nd layer, and 572 complex multipliers and
572 complex adders in the 1st layer. Therefore, the proposed
multi-rate ALU takes 1, 1, 2, and 3 160-MHz cycles to com-
pute the PEDs in the 4th, 3rd, 2nd, and 1st layers, receptively.
After computing the PEDs in each layer, they are sorted and
the results stored in local memory, 12 constellations with
smaller PEDs are chosen as candidates. To accelerate the
sorting process, the sorters are divided into 16 subgroups,
each of which takes four 320-MHz cycles (or two 160-MHz
cycles) to determine the best 12 PED candidates. In order to
avoid placing approximate-value PEDs in the same sorting
subgroup, candidate PEDs are spread and assigned to sorters
uniformly as illustrated in Fig. 17. The address mapping
algorithm is described in Algorithm 5. In this implementa-
tion, the maximum number of PED candidate combinations
is 16 ∗ 12 = 192, where 12 is the surviving candidates from
the last layer and 16 is the maximum number of clustered
candidates in the current layer.

FIGURE 17. PED-to-sorter memory mapping.

The timing diagram of the PED computing and sorting
procedure is shown in Fig. 18. To process one data symbol
(52 subcarriers), the proposed ALU requires 106 160-MHz
cycles to compute and sort PEDs in layers 3 and 4. Also,
it requires 107 and 159 160-MHz cycles in layers 2 and 1,
respectively.

FIGURE 18. Timing diagram of PED computing and sorting instruction:
(a) Layers 4 and 3; (b) Layer 2; (c) Layer 1.

Algorithm 5 Sorter Memory Mapping
1: for i = 1 : 192 do
2: switch (address mod 16)
3: case 0:
4: Assign PED to subgroup 0;
5: case 1:
6: Assign PED to subgroup 8;
7: case 2:
8: Assign PED to subgroup 1;
9: case 3:

10: Assign PED to subgroup 9;
11: case 4:
12: Assign PED to subgroup 2;
13: case 5:
14: Assign PED to subgroup 10;
15: case 6:
16: Assign PED to subgroup 3;
17: case 7:
18: Assign PED to subgroup 11;
19: case 8:
20: Assign PED to subgroup 4;
21: case 9:
22: Assign PED to subgroup 12;
23: case 10:
24: Assign PED to subgroup 5;
25: case 11:
26: Assign PED to subgroup 13;
27: case 12:
28: Assign PED to subgroup 6;
29: case 13:
30: Assign PED to subgroup 14;
31: case 14:
32: Assign PED to subgroup 7;
33: case 15:
34: Assign PED to subgroup 15;
35: end switch
36: end for

4) CENTRALIZED MEMORY POOL AND LOCAL ALU CACHE
As mentioned above, the centralized memory pool is used to
make memory access more efficient. In this work, the pool is
combined with latch cells to reduce access latency. After this
operation, the channel matricesHi are estimated and stored in
the pool. In a 4×4 IEEE 802.11n system with 20 MHz band-
width, there are 52 channel matrices for the data subcarrier;
each Hi contains 16 I/Q data. In this system, both the real
and imaginary parts of I/Q data are stored in 16-bit (1 word)
format. Therefore, 52 × 16 × 2 words are needed to store
the estimated Hi without pilot positions. The algorithm’s
pre-processing yields the decomposed matrix unitary matri-
cesQi and up-triangle matricesRi. Therefore, the centralized
memory pool requires 52×16×2×2 words to store the data
matrices of Q and R. In addition, 52 × 2 words are required
to store subcarriers for each OFDM symbol. The memory
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FIGURE 19. Scheduling of proposed MIMO detection.

requirements are summarized in Table 1. The system must
provide at least 7280 words to store the channel matrices.
Here, to store the information mentioned above and exchange
data between the MCU, ALU, and accelerators, the central-
ized memory pool contains 16384 words of storage space.
In addition to the centralized memory pool, a local ALU
cache is used to store intermediate data generated during
MIMO detection. As the maximum space requirement occurs
when storing intermediate data for the computing and sorting
of PEDs, the size of the local ALU cache is 9984 words.
For throughput enhancement, the operating frequency of the
centralized memory pool is 160 MHz. The characteristics
of the centralized memory pool and local ALU cache are
summarized in Table 2. All of thememory units are composed
of 32-bit latches.

TABLE 1. Memory requirements for each subcarrier.

C. SCHEDULING
The scheduling of the proposedMIMOdetection is illustrated
in Fig. 19. The operating frequency of the proposed ALU and
MCU is 160 MHz and 320 MHz, respectively. Starting off,
the ALU computes ŷ = QT

×y to later obtain the PED. As the
proposed ALU executes at most 12 matrix multiplications in
one 160-MHz cycle, it requires 5 cycles to process the matrix
multiplication for 52 subcarriers, after which anMCU is used
to choose the cluster ωi according to the channel gain and the

TABLE 2. Summary of centralized memory pool and local ALU cache.

estimated signals where i is layer 1, 2, 3, and 4. The MCU
requires at most 88 320-MHz cycles (44 160-MHz cycles) for
this procedure. In this implementation, to ensure reasonable
hardware complexity and computing times, the number of
clustered constellations in each ωi is kept to at most 16. After
determining the clustered constellation set of the 4th layerω4,
the ALU uses 106 160-MHz cycles to compute and decide
the 12 best PED candidates. At the same time, ω4 is clustered
in the MCU. Similarly, the PEDs of layers 3, 2, and 1 are
computed in 106, 107, and 159 160-MHz cycles. Finally,
the procedure uses at most 530 160-MHz cycles to decide
the decoding result of each subcarrier.

Fig. 20 is an overview timing diagram of the scheduling
for one signal packet. A short training field (STF) is used to
synchronize sample timing and frequency at the beginning of
the received packet. A high-throughtput long training field
(HT-LTF) is subsequently employed to estimate the chan-
nel frequency response and frequency-dependent I/Q imbal-
ance (FDI) [54]. Once the former is estimated, the QR-based
matrix inverter computes the Q, R, and H−1 for FDI estima-
tion and further MIMO detection. After H−1 is computed,
the channel gain and the estimated signals can be output in
one 160-MHz cycle. The inverse channel matrix of the two
corresponding subcarriers can be output every 26 160-MHz
cycles, after which two matrix multiplications, 32 complex
multipliers, and 24 complex adders are employed to compute
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FIGURE 20. Scheduling for processing of single packet.

TABLE 3. Specifications of SIMD-based ALU.

the channel gain and the estimated signal for the correspond-
ing subcarrier. The proposed ALU executes 12 matrix mul-
tiplications and at least 60 complex multiplications in one
160-MHz cycles; thus, it can compute the channel gain and
estimated signal in one 160-MHz cycle for two subcarriers.
Following the HT-LTF symbols, data symbols are received.
Due to the 20-MHz specification of the implementation, each
data symbol should be processed within 320 80-MHz cycles.
At the beginning of every data symbol, 55 cycles (80 MHz)
are needed to complete FDI compensation. The proposed
MIMO detection procedure is completed in 530 160-MHz
cycles (265 80-MHz cycles).

D. IMPLEMENTATION RESULTS
The ALU’s hardware operation resources are summarized
in the upper part of Table 3. The multi-rate ALU has
10 read ports and 10 write ports for 16-bit complex value
access. The operating frequency of the I/O ports is 160 MHz
and the operationing frequencies of the multi-rate ALU are
80, 160 MHz, and 320 MHz. The proposed ALU supplies
a total of 509 adders, 812 multipliers, and 24 dividers.
The multi-rate ALU takes one cycle (160 MHz) each
to complete one complex multiplication and one com-
plex division. Matrix multiplication, an advanced instruc-
tion, is used to compute ŷ = QT

× y, where Q is
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TABLE 4. Simulation specification.

a 4 × 4 matrix and y is a 4 × 1 vector in a 160-MHz
cycle. The QR-based inverter takes 52 cycles (320 MHz)
to compute the inverse channel matrix and decompose the
channel matrix into a unitary matrix Q and an upper-triangle
matrixR. Finally, the PED computing and sorting operation is
also implemented as an advanced instructionwhich takes 4, 4,
5, and 6 160-MHz cycles to compute and sort the PED of the
4th, 3rd, 2nd, and 1st layer, respectively. Hence, the proposed
SIMD-based ALU handles each OFDM symbol time.

V. SIMULATIONS AND DISCUSSION
A. ALGORITHM LEVEL
In this section, the required SNR between the standard ML,
K-Best SD, and the proposed detection under a packet error
rate (PER) of 0.08 and the complexity between K-best SD
MIMO detection and the AOC-based MIMO detection are
compared at first. And then, the difference between some
prior arts and the proposed method are also discussed.

The simulation specifications are provided in Table 4,
the proposed MIMO detection is simulated and referred
to OFDM system without channel coding. In this work,
the multi-path fast-fading frequency-selective channel with
15 taps, 100 ns Root Mean Square (RMS) delay, and AWGN
is chosen. The distance between the transceiver and receiver
is 20 meters. The standard deviation of shadow fading is 3 dB
in line of sight (LOS) and 6 dB in non-line-of-sight NLOS
propagation. The signal bandwidth is 40 MHz with 108 sub-
carriers, whose Fast Fourier Transform (FFT) length is 128.
The antenna and modulation scheme are 4×4 and 8×8 with
both 64 QAM and 256 QAM. The K-best parameter, K, and
the cluster parameter are tuned to have nearly-performance
performance for the purpose of comparison with K-best SD.
Since K-best SD is suitable for a practical system, its comput-
ing cost is set as 100%. And the boundary condition is used
to indicate different partition scheme for pre-partition scheme
clusters C.
Fig. 21 illustrates the PER of ML-based detection, K-Best

SD detection, and the AOC MIMO detection adapted in a
4 × 4 64 QAM MIMO-OFDM system. Table 5 summarizes

FIGURE 21. Performance in a 4 × 4 64-QAM MIMO-OFDM system.

TABLE 5. Performance comparison for a 4 × 4 64-QAM system.

the performance of Fig. 21, with the performance and com-
plexity comparisons are normalized to ML-based detec-
tion. In the performance simulation, SNR degradation
betweenML-based detection and the proposed algorithmwas
within 0.57 dB. Compared to K-best SD, the algorithmic
complexity can be reduced to 24.50% ∼ 56.25% in the aver-
age case and 39.06% ∼ 56.25% in the worst case.
Fig. 22 presents the PER of ML-based MIMO detection,

the proposed algorithm, and the K-best SD in 8 × 8 MIMO
OFDM with 256 QAM. It is observed that the performance
loss between ML and the proposed AOC is within 1.02 dB.
The performance and complexity comparisons are presented
in Table 6. Compared to K-best SD, the algorithmic complex-
ity can be reduced to 56.25% ∼ 35% in the average case and
56.25% in the worst case.

Tables 7 addresses the comparisons of 4 × 4 and
8×8MIMO detection, i.e., the amount of floating operations
(FLOPs), the required SNR at a bit error rate of 10−3 and
channel type. In this comparison, we convert the measured
performance@PER 0.08 into equivalent performance@BER
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FIGURE 22. Performance in an 8 × 8 256-QAM MIMO-OFDM system.

TABLE 6. Performance comparison for an 8×8 256-QAM system.

10−3 via eq. (10).

PER = 1− (1− BER)Bit_Length_of _Packet (10)

Compared to 4 × 4 MIMO detections, the proposed algo-
rithm takes 71k FLOPs to maintain SNR performance with
64 QAM in frequency-selective fading channel (with 100 ns
RMS delay and 15 taps delay spread). If this AOC-based
MIMO detection is worked in AWGN only, the required
FLOPs, which is more than LRA-MMSE FSD [39] (7937),
is around 3.97k in 64-QAM. Compared to KSE method [10],
the AOC algorithm takes about 16k if 9 constellations are
chosen in each layer with 16 QAM and K is set to 12. Finally,
compared to a slicing list detector [19] reduce the number
of visited node in the detection tree via mapping the points
to decision lists, the proposed detection spans 43.75% fewer
search tree between layers and has 3.48 dB enhancement. In
the 8 × 8 systems, the proposed detection consumes 815k
FLOPs for maintaining SNR performance with 256 QAM.
Also, the channel condition is the same as 4 × 4 simulation.
Compared to fcELLL detection [37], the proposed algorithm

TABLE 7. Comparisons of 4×4 and 8×8 MIMO detection.

take fewer FLOPs for matrix reordering because we sort the
channel according to the channel gain straightly. Then, com-
pared to the slicing list detection [19], the tree spanning of the
proposed detection is also 43.75% fewer than the slicing list
detection [19]. Finally, compared to the MIMO detection [7]
which is combined with LR-based processing, the proposed
AOC-based MIMO detection balances computing efforts and
required SNR in frequency-selective fading with an accept-
able computational effort.

B. IMPLEMENTATION LEVEL
The implementation features are listed in Table 8. The revised
reconfigurablemodem is realized byHDL and synthesized by
the Synopsys Design Compiler via TSMC’s 45-nm technol-
ogy. The hardware cost of the proposed algorithm is estimated
under the resource utilization in the revised reconfigurable
modem because the modem does not support only the MIMO
detection function. Table 9 presents the comparisons of this
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TABLE 8. Implement summarize of proposed AOC MIMO detection.

TABLE 9. Comparison with related 64-QAM MIMO detectors.

work and other related MIMO detectors whose comparison
indexes are antenna configuration, gate counts, clock fre-
quency, and throughput. In this comparison, we estimate the
equivalent hardware cost of the proposed MIMO detector
according to the computing resources in the reconfigurable
modem, which is used to accomplish the AOC detection func-
tion. It takes 454.8 kGE (kilo-gates equivalent) to implement
the proposed MIMO detection. The two QR-based inverters
consume 51.8% of the hardware cost. Excluding the cost
of two QR-based inverters, the proposed MIMO detection
requires 235.8 kGE to realize its function. The proposed
detector throughput is 1077.8 Mbps. Further, the throughputs
of the references are normalized via Eq. 11.

Througputnorm = Througput ×
Tech.
45nm

(11)

The ASIC architecture, a 16 × 16 Cholesky sorted
QR decomposition and partial iterative lattice reduc-
tion (CHOSLAR) detector [43] and a 4 × 4 variable K-best
detector [44], which are realized respectively via the 65-nm
and 90-nm technology, are reported. The 16 × 16 MIMO
detector adopted Cholesky decomposition to perform QR
decomposition. Compared to the QR-based inverter which
is adopted in reconfigurable modem, the Cholesky-based
QR decomposition performs better parallel ability. Thus,
a MIMO detector with higher antenna number is imple-
mented. If the proposed algorithm is designed in a 16 × 16
detector, it requires more than 2000 kGE to implement the

AOCMIMO detection. Because the gate counts of QR-based
Inverter is grown at least 10 times. On the other hand,
a variable K-best MIMO detector [44], whose normalized
throughput is 2400 Mbps, is implemented via 2-dimensioned
paralleled sorter. Compared to this detector, the design pur-
posed of the sorter in this work is to shorten the latency
via combining the memory mapping. However, it takes addi-
tional operators to compute the PEDs of each candidate.
A reconfigurable application-specific instruction set proces-
sor (rASIP) LMMSE detector [45], which is constructed by
coarse-grained reconfigurable architecture that supports dif-
ferent matrix operations [45], is compared. The detector sup-
ports up to an 8×8 antenna configuration, which hints that the
rASIP architecture is flexible. Compared to the rASIPMIMO
detection, the hardware cost and throughput of the proposed
reconfigure modern are acceptable.

VI. CONCLUSION
The proposed adaptive overlapped cluster (AOC)-based
MIMO detection not only maximizes the hit probability of
the chosen cluster but also minimizes the number of clustered
constellations by combining several overlapped clusters, with
the size determined by the channel status. This was ported to
a frequency-domain (FD) MIMO-OFDM modem that sup-
ports 4 × 4 WLAN with a 20-MHz bandwidth. The modem
includes a revised centralized memory pool, multi-rate ALU,
and MCU. We extended PEs slightly in the multi-rate ALU
to improve operation utilization with acceptable clock rates.
The centralized memory pool prevents data copy and reduced
access latencies. There is also a MCU for scheduling and
controlling. In the implementation, the AOC scheme costs
454.8 kGE to yield a throughput of 1077.8 Mbps, which is
sufficient to support the target specification. On the algorithm
level, the simulations shows that the computing complexity of
4 × 4 64-QAM MIMO OFDM and 8 × 8 256-QAM MIMO
OFDM saves 43.75% (100%–56.25%) in the worst case.
Compared to ML detection, the proposed detection yields dB
reductions of 0.57 in 4 64-QAM MIMO OFDM and 1.02 in
8× 8 256-QAM MIMO OFDM.

REFERENCES
[1] T.-D. Chiueh and P.-Y. Tsai, OFDM Baseband Receiver Design for Wire-

less Communications. Hoboken, NJ, USA: Wiley, 2007.
[2] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj,

and H. V. Poor, MIMO Wireless Communications. New York, NY, USA:
Cambridge Univ. Press, 2007.

[3] X. Zhu and R. D. Murch, ‘‘Performance analysis of maximum likelihood
detection in a MIMO antenna system,’’ IEEE Trans. Commun., vol. 50,
no. 2, pp. 187–191, Feb. 2002.

[4] Y. L. C. de Jong and T. J. Willink, ‘‘Iterative tree search detection
for MIMO wireless systems,’’ IEEE Trans. Commun., vol. 53, no. 6,
pp. 930–935, Jun. 2005.

[5] K. Neshatpour, M. Shabany, and G. Gulak, ‘‘A high-throughput VLSI
architecture for hard and soft SC-FDMA MIMO detectors,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 62, no. 3, pp. 761–770, Mar. 2015.

[6] E. Viterbo and J. Boutros, ‘‘A universal lattice code decoder for fad-
ing channels,’’ IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642,
Jul. 1999.

[7] H. Kim, J. Park, H. Lee, and J. Kim, ‘‘Near-MLMIMO detection algorithm
with LR-aided fixed-complexity tree searching,’’ IEEE Commun. Lett.,
vol. 18, no. 12, pp. 2221–2224, Dec. 2014.

VOLUME 7, 2019 36119



Y.-T. Liao, T.-Y. Hsu: Cost-Effective AOC-Based MIMO Detector in a FD Reconfigurable Modem

[8] M. Kim and J. Kim, ‘‘Applications of SDR exact-ML criterion to tree-
searching detection for MIMO systems,’’ in Proc. 8th Int. Conf. Signal
Process. Commun. Syst. (ICSPCS), Dec. 2014, pp. 1–7.

[9] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, ‘‘VLSI implementation of MIMO detection using the sphere
decoding algorithm,’’ IEEE J. Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, Jul. 2005.

[10] Z. Guo and P. Nilsson, ‘‘Algorithm and implementation of the K-Best
sphere decoding for MIMO detection,’’ IEEE J. Sel. Areas Commun.,
vol. 24, no. 3, pp. 491–503, Mar. 2006.

[11] X. Chen, G. He, and J. Ma, ‘‘VLSI implementation of a high-throughput
iterative fixed-complexity sphere decoder,’’ IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 60, no. 5, pp. 272–276, May 2013.

[12] M.Mahdavi andM. Shabany, ‘‘Novel MIMO detection algorithm for high-
order constellations in the complex domain,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 5, pp. 834–847, May 2013.

[13] M. Neinavaie and M. Derakhtian, ‘‘ML performance achieving algorithm
with the zero-forcing complexity at high SNR regime,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 7, pp. 4651–4659, Jul. 2016.

[14] M. M. Mansour, S. P. Alex, and L. M. A. Jalloul, ‘‘Reduced complexity
soft-output MIMO sphere detectors—Part I: Algorithmic optimizations,’’
IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5505–5520, Nov. 2014.

[15] M. M. Mansour, S. P. Alex, and L. M. A. Jalloul, ‘‘Reduced complexity
soft-outputMIMO sphere detectors—Part II: Architectural optimizations,’’
IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5521–5535, Nov. 2014.

[16] A. Tomasoni, M. Siti, M. Ferrari, and S. Bellini, ‘‘Hardware oriented,
quasi-optimal detectors for iterative and non-iterative MIMO receivers,’’
EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1, p. 62, Feb. 2012.
doi: 10.1186/1687-1499-2012-62.

[17] H. Sarieddeen, M. M. Mansour, L. M. A. Jalloul, and A. Chehab, ‘‘Low-
complexityMIMO detector with 1024-QAM,’’ in Proc. IEEEGlobal Conf.
Signal Inf. Process. (GlobalSIP), Dec. 2015, pp. 883–887.

[18] J. Y. Chu, Y. T. Liao, and T. Y. Hsu, ‘‘Low complexity MIMO detection
by using overlapped cluster search,’’ in Proc. IEEE 5th Int. Conf. Consum.
Electron. Berlin (ICCE-Berlin), Sep. 2015, pp. 401–404.

[19] S. Suh and J. R. Barry, ‘‘Reduced-complexityMIMOdetection via a slicing
breadth-first tree search,’’ IEEE Trans. Wireless Commun., vol. 16, no. 3,
pp. 1782–1790, Mar. 2017.

[20] G. J. Foschini, ‘‘Layered space-time architecture for wireless communi-
cation in a fading environment when using multi-element antennas,’’ Bell
Labs Tech. J., vol. 1, no. 2, pp. 41–59, Feb. 1996.

[21] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, ‘‘MMSE exten-
sion of V-BLAST based on sorted QR decomposition,’’ in Proc. IEEE Veh.
Technol. Conf. (VTC-Fall), vol. 1, Oct. 2003, pp. 508–512.

[22] Y. Lee, H. C. Shih, C. S. Huang, and J. Y. Li, ‘‘Low-complexity MIMO
detection: A mixture of ZF, ML and SIC,’’ in Proc. 19th Int. Conf. Digit.
Signal Process., Aug. 2014, pp. 263–268.

[23] M. Mandloi and V. Bhatia, ‘‘Ordered iterative successive interference
cancellation algorithm for largeMIMOdetection,’’ inProc. IEEE Int. Conf.
Signal Process., Inf., Commun. Energy Syst. (SPICES), Feb. 2015, pp. 1–5.

[24] M. Mandloi, M. A. Hussain, and V. Bhatia, ‘‘An improved multiple feed-
back successive interference cancellation algorithm for MIMO detection,’’
in Proc. 8th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2016,
pp. 1–6.

[25] D.-C. Chang and D.-L. Guo, ‘‘Spatial-division multiplexing MIMO detec-
tion based on a modified layered OSIC scheme,’’ IEEE Trans. Wireless
Commun., vol. 12, no. 9, pp. 4258–4271, Sep. 2013.

[26] M. Mandloi, M. A. Hussain, and V. Bhatia, ‘‘Improved multiple feedback
successive interference cancellation algorithms for near-optimal MIMO
detection,’’ IET Commun., vol. 11, no. 1, pp. 150–159, 2017.

[27] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, ‘‘Factoring polynomials
with rational coefficients,’’ Math. Ann., vol. 261, no. 4, pp. 515–534,
Dec. 1982.

[28] Q. Wen and X. Ma, ‘‘An efficient Greedy LLL algorithm for MIMO detec-
tion,’’ in Proc. IEEE Military Commun. Conf., Oct. 2014, pp. 550–555.

[29] W. Zhang, S. Qiao, and Y. Wei, ‘‘HKZ and Minkowski reduction algo-
rithms for lattice-reduction-aided MIMO detection,’’ IEEE Trans. Signal
Process., vol. 60, no. 11, pp. 5963–5976, Nov. 2012.

[30] Q. Zhou and X. Ma, ‘‘Element-based lattice reduction algorithms for
large MIMO detection,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 2,
pp. 274–286, Feb. 2013.

[31] U. Ahmad et al., ‘‘Exploration of lattice reduction aided soft-outputMIMO
detection on aDLP/ILP baseband processor,’’ IEEE Trans. Signal Process.,
vol. 61, no. 23, pp. 5878–5892, Dec. 2013.

[32] K. Zhao and S. Du, ‘‘Full-diversity approximated lattice reduction algo-
rithm for low-complexityMIMO detection,’’ IEEE Commun. Lett., vol. 18,
no. 6, pp. 1079–1082, Jun. 2014.

[33] S. Shahabuddin, J. Janhunen, Z. Khan, M. Juntti, and A. Ghazi,
‘‘A customized lattice reduction multiprocessor for MIMO detection,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 2976–2979.

[34] D.Mitsunaga, T. T. Y. Khine, andH. A. Zhao, ‘‘A low complexity ZF-based
lattice reduction detection using curtailment parameter inMIMO systems,’’
in Proc. IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2016,
pp. 1–5.

[35] S. Liu, Y. Yu, and H. Lv, ‘‘Hybrid pre-judging fix-LLL lattice reduction
algorithm for MIMO detection,’’ in Proc. 3rd Int. Conf. Inf. Sci. Control
Eng. (ICISCE), Jul. 2016, pp. 1337–1341.

[36] J. Liu, S. Xing, and L. Shen, ‘‘Lattice-reduction-aided sphere decoding
for MIMO detection achieving ML performance,’’ IEEE Commun. Lett.,
vol. 20, no. 1, pp. 125–128, Jan. 2016.

[37] Q. Wen and X. Ma, ‘‘Fixed-complexity variants of the effective LLL
algorithm with greedy convergence for MIMO detection,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 3826–3830.

[38] M. Shabany, A. Youssef, andG. Gulak, ‘‘High-throughput 0.13-µmCMOS
lattice reduction core supporting 880 Mb/s detection,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 5, pp. 848–861, May 2013.

[39] H. Kim, H. Lee, and J. Kim, ‘‘MMSE-based lattice-reduction-aided fixed-
complexity sphere decoder for low-complexity near-ML MIMO detec-
tion,’’ in Proc. 21st IEEE Int. Workshop Local Metrop. Area Netw.,
Apr. 2015, pp. 1–6.

[40] J.-Y. Lin, J.-C. Chi, C.-F. Liao, and Y.-H. Huang, ‘‘A 6.4 g LLR/s 8×8
64-QAM soft-output MIMO detector with lattice reduction preprocess-
ing,’’ in Proc. Int. Symp. VLSI Design, Autom. Test (VLSI-DAT), Apr. 2017,
pp. 1–4.

[41] M. Shabany, R. Doostnejad, M. Mahdavi, and P. G. Gulak, ‘‘A 38 pj/b
optimal soft-MIMO detector,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 64, no. 9, pp. 1062–1066, Sep. 2017.

[42] I. A. Bello, B. Halak, M. El-Hajjar, and M. Zwolinski, ‘‘VLSI imple-
mentation of a scalable K-best MIMO detector,’’ in Proc. 15th Int. Symp.
Commun. Inf. Technol. (ISCIT), Oct. 2015, pp. 281–286.

[43] G. Peng, L. Liu, S. Zhou, Y. Xue, S. Yin, and S. Wei, ‘‘Algorithm and
architecture of a low-complexity and high-parallelism preprocessing-based
k-best detector for large-scale MIMO systems,’’ IEEE Trans. Signal Pro-
cess., vol. 66, no. 7, pp. 1860–1875, Apr. 2018.

[44] W. Fan and A. Alimohammad, ‘‘Two-dimensional sorting algorithm for
high-throughput K-best MIMO detection,’’ IET Commun., vol. 11, no. 6,
pp. 817–822, 2017.

[45] X. Chen, A. Minwegen, S. B. Hussain, A. Chattopadhyay, G. Ascheid,
and R. Leupers, ‘‘Flexible, efficient multimode MIMO detection by using
reconfigurable ASIP,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 10, pp. 2173–2186, Oct. 2015.

[46] S. Yang, T. Lv, R. G. Maunder, and L. Hanzo, ‘‘From nominal to
true a posteriori probabilities: An exact Bayesian theorem based prob-
abilistic data association approach for iterative MIMO detection and
decoding,’’ IEEE Trans. Commun., vol. 61, no. 7, pp. 2782–2793,
Jul. 2013.

[47] C.-C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, ‘‘Robust MIMO
detection under imperfect CSI based on Bayesian model selection,’’
IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 375–378,
Aug. 2013.

[48] R. Malladi, K. Kuchi, and R. D. Koilpillai, ‘‘Set-partitioning based for-
ward/backward soft decision algorithms for MIMO detection,’’ in Proc.
Int. Conf. Signal Process. Commun. (SPCOM), Jul. 2012, pp. 1–5.

[49] M. M. Mansour and L. M. A. Jalloul, ‘‘Optimized configurable architec-
tures for scalable soft-input soft-output MIMO detectors with 256-QAM,’’
IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4969–4984, Sep. 2015.

[50] A. Elghariani and M. Zoltowski, ‘‘Branch and bound with M algorithm for
near optimal MIMO detection with higher order QAM constellation,’’ in
Proc. Mil. Commun. Conf. (MILCOM), Oct. 2012, pp. 1–5.

[51] M.M.Mansour, ‘‘A near-MLMIMO subspace detection algorithm,’’ IEEE
Signal Process. Lett., vol. 22, no. 4, pp. 408–412, Apr. 2015.

[52] S. Yoon and C.-B. Chae, ‘‘Low-complexity MIMO detection based on
belief propagation over pairwise graphs,’’ IEEE Trans. Veh. Technol.,
vol. 63, no. 5, pp. 2363–2377, Jun. 2014.

[53] B. Y. Kong and I.-C. Park, ‘‘Efficient tree-traversal strategy for soft-output
MIMO detection based on candidate-set reorganization,’’ IEEE Commun.
Lett., vol. 17, no. 9, pp. 1758–1761, Sep. 2013.

36120 VOLUME 7, 2019

http://dx.doi.org/10.1186/1687-1499-2012-62


Y.-T. Liao, T.-Y. Hsu: Cost-Effective AOC-Based MIMO Detector in a FD Reconfigurable Modem

[54] S. Y. Yeh, Y. T. Liao, W. C. Lai, and T. Y. Hsu, ‘‘Cost-efficient frequency-
domain MIMO–OFDM modem with an SIMD ALU-based architecture,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 12,
pp. 2791–2803, Dec. 2015.

[55] L. Bai and J. Choi, Low Complexity MIMO Detection. New York, NY,
USA: Springer, 2012.

[56] W. C. Lai, Y. T. Liao, and T. Y. Hsu, ‘‘A cost-effective preamble-assisted
engine with skew calibrator for frequency-dependent I/Q imbalance in 4×4
MIMO-OFDMmodem,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60,
no. 8, pp. 2199–2212, Aug. 2013.

[57] P. Salmela, A. Burian, H. Sorokin, and J. Takala, ‘‘Complex-valued QR
decomposition implementation for MIMO receivers,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., Mar. 2008, pp. 1433–1436.

YUAN-TE LIAO was born in Taipei, Taiwan,
in 1985. He received the B.S. degree in mathemat-
ics from National Tsing Hua University, Hsinchu,
Taiwan, in 2008. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
National Chiao Tung University, Hsinchu. His
current research interests include MIMO-OFDM
systems, system-on-a-chip design technology, and
related VLSI architecture.

TERNG-YIN HSU received the Ph.D. degree
from the Institute of Electronics, National Chiao
Tung University, Hsinchu, Taiwan, in 1999, where
he joined the Department of Computer Science,
in 2003, and is currently a Professor. He was
a co-founder and the CTO of amoesolu cooper-
ation, from 2013 to 2014. His current research
interests include GPU-based soft RAN, radio
function split and virtualization, baseband algo-
rithms, multi-spec transmissions, VLSI architec-

tures, analog-like digital circuits, system-on-a-chip design technology, and
related application-specified integrated circuits (ASIC) designs.

VOLUME 7, 2019 36121


	INTRODUCTION
	SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT
	SYSTEM DESCRIPTION
	PROBLEM STATEMENT

	PROPOSED MIMO DETECTION
	PRE-PROCESSING
	SORTED QR DECOMPOSITION
	PRE-ESTIMATION

	AOC SCHEME
	OVERLAPPED CLUSTERING
	DYNAMIC CLUSTERING


	MULTI-RATE ARCHITECTURE
	IMPLEMENTATION LIMITS
	CLOCK LIMIT
	PE LIMIT

	HARDWARE AND INSTRUCTION ENHANCEMENT
	QR-BASED MATRIX INVERTER
	MATRIX MULTIPLICATION
	PARTIAL EUCLIDEAN DISTANCE COMPUTING AND SORTING
	CENTRALIZED MEMORY POOL AND LOCAL ALU CACHE

	SCHEDULING
	IMPLEMENTATION RESULTS

	SIMULATIONS AND DISCUSSION
	ALGORITHM LEVEL
	IMPLEMENTATION LEVEL

	CONCLUSION
	REFERENCES
	Biographies
	YUAN-TE LIAO
	TERNG-YIN HSU


