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Abstract— This paper demonstrates that the vehicle sideslip 

can be estimated through the kinematic relationship of velocity 
measurements from two low-cost GPS (Global Positioning 
System) receivers. To compensate for the low update rate of low-
cost GPS receivers, acceleration/angular rate measurements from 
an IMU (Inertial Measurement Unit) are merged with the GPS 
measurements using an Extended Kalman Filter. Two technical 
challenges were addressed: (i) unsynchronized updates of the two 
GPS receivers and (ii) significant delays in GPS velocity 
measurement. A stochastic observability analysis reveals that the 
proposed method guarantees the observability when a vehicle has 
non-zero yaw rates. Experimental verification shows that the 
vehicle sideslip is estimated regardless of surface friction levels 
under several maneuvers.  
 

Index Terms—Sideslip estimation, Global Positioning System 
(GPS), Kalman Filter, Stochastic Observability 

I. INTRODUCTION 

lectronic Stability Control (ESC) is a highly effective 
active safety system for ground vehicles. A study from the 

National Highway Traffic Safety Administration (NHTSA) 
reports that ESC can save 5,300~9,600 lives and prevent 
156,000~238,000 injuries annually in the United States [1]. 
The vehicle sideslip angle is the angle between the vehicle’s 
moving direction (course angle) and its heading direction 
(heading angle) at the center of mass. It is a critical piece of 
information for ESC implementation [2], yet is 
difficult/expensive to measure directly. Many approaches have 
been proposed toward its estimation and they can be grouped 
into three categories: Dynamic model-based, IMU integration-
based, and GPS-based. 

Dynamic model-based methods utilize a vehicle dynamic 
model that describes how the sideslip angle is affected by and 
related to vehicle input signals and parameters, such as 
steering angle and tire cornering stiffness. Farrelly proposed a 
standard Luenberger observer of a linearized system [3]. 
Kiencke showed the feasibility of a nonlinear observer [4]. 
Best showed that simultaneous estimation of cornering 
stiffness enhanced sideslip angle estimation performance [5]. 
Stephan compared the estimation performance of four types of 
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observers (linear, extended Luenberger, extended Kalman 
filter, and sliding-mode) and concluded that nonlinear 
observers outperformed linear observers [6]. Yih proposed to 
use steering torque information for a sideslip angle estimation 
[7]. Gao showed that a high-gain observer based on input-
output linearization was useful [8]. Grip proposed a nonlinear 
observer with a friction adaptation [9]. The dynamic model-
based methods have two drawbacks: they require accurate 
vehicle parameter information such as tire cornering stiffness 
and vehicle mass, and they work only when the sideslip angle 
is small (roughly 4 degrees or less) [10].  

IMU integration-based methods process signals of the 
Inertial Measurement Unit (IMU) to estimate the vehicle 
sideslip angle. Farrelly was among the first groups using this 
method [3]. He showed that sideslip angle estimation was 
robust to cornering stiffness variations. It was also shown that 
this method worked for large sideslip angles. Imsland 
proposed a nonlinear observer [11]. Ungoren confirmed the 
robustness of IMU integration-based methods for various 
sideslip angle ranges [12].  This type of method does not 
require accurate parameters and works well even for large 
sideslip angles. However, bias in the sensor measurement can 
significantly deteriorate the estimation accuracy because IMU 
integration-based methods rely heavily on measurement 
integration. 

Several researchers have used GPS measurements for 
sideslip angle calculation. Since GPS technology can measure 
vehicle velocity via the Doppler effect, the course angle is 
directly measurable. Therefore, the main problem for GPS-
based methods is to measure or estimate the vehicle heading 
angle. Bevly developed a method of utilizing a single-antenna 
GPS receiver for sideslip angle estimation [13-15]. His 
method merged the velocity signal from a low-cost single-
antenna GPS receiver with accelerations and angular rates 
from an IMU. In his method, the vehicle heading is obtained 
by integrating the yaw rate during turning. Hrovat and Farrell 
focused on the accurate positioning capability of a GPS 
technology [16-17]. In their work, a vehicle was equipped 
with multiple GPS receivers. If the position of each GPS 
receiver is accurately known, the vehicle heading angle can be 
calculated from the relative positions among the receivers. 
Currently, the carrier-phase differential GPS (CDGPS) can 
meet the position accuracy requirement (position error within 
the range of centimeters) [17]. To achieve that accuracy, 
however, a base tower is required and the associated cost is 
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significant (at least several thousand dollars). Ryu utilized 
another aspect of CDGPS; measuring the heading angle from 
the observed phase difference of carrier waves received at two 
antennas. As the course and heading angles are measured by a 
dual antenna GPS receiver, the vehicle sideslip angle can be 
easily obtained [18-19]. This method solves most concerns of 
the previous methods but the dual-antennae CDGPS receiver 
is too expensive to be adopted by car makers today [20]. 

This paper proposes a new method to estimate the vehicle 
sideslip angle by using velocity measurements from two GPS 
receivers. GPS velocity measurements can be accurate 
regardless of GPS positioning accuracy because a GPS 
receiver determines velocity based on the Doppler shift of 
GPS carrier wave or by differencing two consecutive GPS 
carrier wave measurements, instead of differentiation of the 
GPS position measurements [13]. Since this method uses two 
GPS receivers, it may look similar to Ryu’s method. However 
we only use the velocity measurement, which is accurate even 
on low-cost GPS receivers (Fig. 1). Benefits of this method 
include: (i) it does not require accurate vehicle parameter 
information, (ii) it works for large and small sideslip angles, 
(iii) it has GPS measurements correct the sideslip estimation 
during vehicle turning, (iv) it does not need a standing 
reference tower and (v) it is based on cost effective GPS 
receivers. 

 

Fig.  1 GPS velocity measurement accuracy vs. price: Integrated development 
kits of San Jose Tech, NavSync, VBOX, Novatel, and Dewetron are 
compared. 

The remainder of this paper is organized as follows. Section 
II describes how velocities of two GPS receivers are related to 
the vehicle sideslip angle. Section III shows the Kalman Filter 
implementation to integrate velocities of two GPS receivers 
and accelerations/angular rates of an IMU. Unsynchronized 
updates of two GPS receivers and significant delays in GPS 
measurements are addressed here. Section IV discusses the 
stochastic observability of the Kalman Filter. Section V 
presents results of experimental verification and discusses the 
performance in a statistical context. Conclusions are presented 
in Section VI. 

II. VELOCITY MEASUREMENTS OF TWO RECEIVERS 

 

Fig.  2 Top view of a ground vehicle with two GPS receivers 

Fig. 2 shows the top view of a ground vehicle with two GPS 
receivers installed at the front and rear ends of the vehicle. 
Vfe/Vfn and Vre/Vrn are eastbound/northbound velocities of the 
GPS receivers at the front and rear end, respectively. U and V 
are longitudinal and lateral velocities of the vehicle at center 

of gravity (CG). ψ is the vehicle yaw angle and ψɺ is the yaw 

rate. Lf and Lr are distances from CG to front and rear end 
GPS receivers, respectively.  Velocities measured from the 
two GPS receivers are kinematically related to the vehicle 
longitudinal/lateral velocities, the yaw angle, and the yaw rate 
( , , ,U V ψ ψɺ ) as 

 
 cos ( )sinfe fV U V Lψ ψ ψ= − + ɺ  (1) 

 sin ( )cosfn fV U V Lψ ψ ψ= + + ɺ  (2)                                   

 cos ( )sinre rV U V Lψ ψ ψ= − − ɺ  (3)                                             

 sin ( )cosrn rV U V Lψ ψ ψ= + − ɺ   (4) 

 
U and V can be expressed as functions of ( , , , )fe fn re rnV V V V and 

the vehicle sideslip is  

( )1tan V
Uβ −=                                (5) 

However, this equation set is not always solvable due to the 
singular point. To find the singular point(s), the Multivariable 
Taylor’s Theorem [21] is applied to yield (6) where δ  is 
deviation from the true value. The Jacobian matrix (the 4-by-4 
matrix in (6)) expresses the relationship between infinitesimal 
change of ( , , ,U V ψ ψɺ ) and( , , , )fe fn re rnV V V V . 
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If the Jacobian does not have full rank, change in ( , , ,U V ψ ψɺ ) 

may not be manifested by measuring( , , , )fe fn re rnV V V V . This is 

the singular condition. Since the determinant of the Jacobian 
has a simple form of (7), (6) is singular if and only if the 
vehicle yaw rate is zero. 

( )2
det( ) f rJ L L ψ= + ɺ                                  (7) 

Fig. 3 gives an intuitive explanation why a zero yaw rate 
corresponds to the singular condition. When the vehicle yaw 
rate is zero, velocities of the two GPS receivers will be 
identical for two distinct cases of A and B. Therefore, it is 
impossible to calculate the vehicle yaw angle when the yaw 
rate is zero. In other words, velocities of the two GPS 
receivers need to be coupled with the yaw angle through a 
non-zero yaw rate.  

 
Fig.  3  Top view of two vehicles with different yaw angles when yaw rate is 
zero 

When the vehicle yaw rate is not zero,( ), , ,U Vδ δ δψ δψɺ are 

unique functions of ( , , , )fe fn re rnV V V Vδ δ δ δ by inverting (6). 

Assuming that the standard deviations of 
( , , , )fe fn re rnV V V Vδ δ δ δ  are identical, the standard deviation of 

the vehicle sideslip estimation is  
 

2 2 2 2

2 2 2 2 2 2 2 2

2 2
( )f r f r

GPS GPS
sum sum sum sum

L L L L

L U L L U L
σ σ δβ σ

ψ ψ
− ++ +

+ ≤ ≤ +
ɺ ɺ

 (8) 

where  

����
�  ��	
����� � |���
��� , ���| 

����
�  ��	
����� � |���
��� , ���| 

�
����� Standard deviation of the GPS velocity errors 

���
��� , ��� Covariance of east-/north-bound GPS velocity errors   
Lsum Lf+ Lr 

 
Since the east-/north-bound velocities are measurements from 
the same GPS receiver, their errors are correlated and the 
covariance cannot be assumed to be zero. In the equation 

above, ( )cov ,e nV Vδ δ of the front and rear end GPS receivers 

are assumed to be same (see the Appendix for the derivation). 
Equation (8) shows that the vehicle sideslip estimation using 
(1)-(5) becomes more accurate as the vehicle velocity and yaw 
rate increases.  

 

III.   SENSOR FUSION THROUGH KALMAN  FILTER 

Section II explains that longitudinal/lateral velocities (hence 
the vehicle sideslip angle) can be calculated by processing 
velocities from two GPS receivers as long as the vehicle is 
turning. In order to capture all of the vehicle dynamic modes, 
GPS update rate must be at least 10 Hz [13].  However, our 
market survey revealed that low cost GPS receivers are likely 
to have low update rates such as below 5Hz (Fig. 4). In fact, 
the GPS receivers utilized for this paper have a 2.5 Hz update 
rate. 

Fig.  4  GPS update rate performance vs. price: Integrated development kits of 
San Jose Tech, NavSync, VBOX, Novatel, and Dewetron are compared. 

To compensate for the slow update rate, GPS measurements 
are merged with fast updating angular rates/accelerations from 
an IMU. As explained in [13], GPS velocities and IMU signals 
are an ideal pair for sensor fusion due to their complementary 
nature. The Kalman Filter is used as the sensor fusion 
framework.  

 Given the system and measurement equations 

, 1 1 1 1 1 1k k k k k k k kx x u w− − − − − −= Φ + Γ + Λ                  (9) 

 k k k kz H x v= +                                                (10) 

where  

�� � ����  State vector 

���� � �� �� Input vector 

!��� � ��"�� Plant error vector 

#� � �$�� Measurement vector 

�� � �$�� Measurement error vector 
Φ�,��� � ���� State transition matrix 
Γ��� � ����  Input matrix 
Λ��� � ����" Plant noise matrix 
H� � �$�� Measurement matrix 

 
the Kalman Filter provides the optimal state estimation 
through [22] 

, 1 1 1 1ˆ ˆk k k k k kx x u− +
− − − −= Φ + Γ       (11) 

, 1 1 , 1 1 1 1
T T

k k k k k k k k kP P Q− +
− − − − − −= Φ Φ + Λ Λ  (12) 

1T T
k k k k k k kK P H H P H R

−− − = +   (13) 

ˆ ˆ ˆk k k k k kx x K z H x+ − − = + − 
 (14) 

[ ]k k k kP I K H P+ −= −   (15) 
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where  

�&�
�
�&�

� The predicted (corrected) state estimate 

'�
�
'�

� The predicted (corrected) state error covariance 

(� ) *+!�!�
,- Plant noise covariance matrix 

�� ) *+����
,- Measurement noise covariance matrix 

The symbol *
· is an expected value of a random variable. 
Equations (11)-(12) are referred as ‘time update’, while (14)-
(15) are ‘measurement update’. As our system has nonlinear 
measurement equation, (10) would have the form of 

 ( )
( )

( )

1 ,1 ,

,1 ,

, ,

, ,

k k n

k k k k

m k k n

g x x

z g x v v

g x x

 
 

= + = + 
 
  

⋯

⋮

⋯

 (16) 

In this case, the Jacobian of (16) replaces kH  as  

 

1 1 1

,1 ,2 ,

2 2 2

,1 ,2 ,

,1 ,2 ,

ˆ

k k k n

k k k nk

k
m m m

k k k n

g g g

x x x

g g g

x x xH

x
g g g

x x x

−

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂ ∂ ∂
 ∂ ∂ ∂=  
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (17) 

Additionally, (14) is changed to 

 ( )ˆ ˆ ˆk k k k kx x K z g x+ − − = + − 
 (18) 

This whole process is known as the Extended Kalman Filter 
(EKF). Unlike its linear counterpart, the EKF is not an optimal 
estimator. However it provides a working solution with low 
computational requirement. 

A. Time update of the Kalman Filter 
Governing equations for IMU measurements are baselines 

of the time update equations. Accelerations and angular rate 
from an IMU are [18] 

 
xm x xa U V b wψ= − + +ɺ ɺ  (19) 

 
ym y ya V U b wψ= + + +ɺ ɺ  (20)                                                  

 m r rr b wψ= + +ɺ  (21) 

where  

/0$  Longitudinal acceleration measurement 
/1$ Lateral acceleration measurement 

2$ Yaw rate measurement 

30 , 31 , 34  Biases in /0$, /1$, and 2$ 

!0 , !1 , !4  Gaussian white noise in /0$, /1$, and 2$ 

  

These equations are rearranged to form a differential equation 
of (22) and it is the base of the ‘time update’ equations.   

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

xm x x

ym y y

m r r

U U a b w

V V a b w

r b w

ψ
ψ

ψ ψ

  −           
             = − + − +             
  −                       

ɺ ɺ

ɺ ɺ

ɺ

   

 (22) 
The bias in yaw rate (br) can be estimated accurately during 
vehicle standstill. Biases in accelerometers (bx, by) are 
calculated by averaging raw signals when a vehicle is driven 
straight. The bias estimation may not be perfectly accurate. In 
that case, the sideslip estimation error would be accumulated 
by integrating (22), which is a main concern of IMU 
integration-based methods. However, our method makes GPS 
velocity measurements correct the sideslip estimation during 
turning. Therefore the impact of inaccurate bias estimation is 
attenuated compared to pure integration methods.  

To implement the Kalman Filter, Equation (22) is rewritten 
as (23), where �
6 is a state, �
6 is an input and !
6 is a 
noise. Integration of (22) from tk-1 to tk yields (24) [22]. 

 ( ) ( ) ( ) ( ) ( )x t F t x t Gu t Lw t= + +ɺ     (23)                                               

[ ]
1

1 1( ) ( , ) ( ) ( , ) ( ) ( )
k

k

t

k k k k kt
x t t t x t t Gu Lw dτ τ τ τ

−
− −= Φ + Φ +∫  (24) 

If ∆8
) 6� � 6��� is small enough, F(t) can be handled as a 

constant matrix (Fk-1) within the time step of 1[ , )k kt t− . Then 

( )1,k kt t −Φ  is equal to 1F Tke ∆−  and (24) becomes  

 
( ) ( )1 11

1 1
1( ) ( ) ( ) ( )

k k
k k k kk

k k

t tF t F tF T
k k t t

x t e x t e Gu d e Lw dτ ττ τ τ τ− −−

− −

− −∆
−= + +∫ ∫

 (25) 

∆8 in this study is 6 ms and the input �
6 is the measurement 
of an IMU. Since the frequency contents of the input (1-4 Hz) 
are much slower than the sampling rate (166 Hz), �
9 in (25) 
can be handled as a constant equal to �
6���. However, the 
same argument is not valid for the plant noise (!
6). 
Therefore (25) is converted to (26) where �� is �
6� and 
���� is �
6��. 

 
( )11 1

1

1
1 1 1 ( )

k
k kk k

k

t F tF T F T
k k k k t

x e x e I F Gu e Lw dτ τ τ−− −

−

−∆ ∆ −
− − − = + − +  ∫   

(26) 
The state estimation follows 

1 1 1
1 1 1ˆ ˆk kF T F T

k k k kx e x e I F Gu− −∆ ∆ −
− − − = + − 

                    (27) 

Accordingly, the expected value of the state covariance (
kP ) is 

calculated by (28). 
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Given { }( ) ( ) ( )T
cw t w Q tε τ δ τ′= −  where cQ′  is the power 

spectral density matrix and ( )tδ τ− is the Dirac delta function, 

(28) is rewritten as 

 ( )1 1
, 1 1 , 1 0

k k
T TF FT T

k k k k k k cP P e LQ L e dτ τ τ− −
∆

− − − ′= Φ Φ + ∫       (29)                           

 where , 1k k−Φ is 1F Tke ∆− . If T∆  is short compared to the system 

time constants, F Te I F T∆ ≈ + ∆ . Then  (27) and (29) become 

 1 1 1ˆ ˆk k k kx x u− − −= Φ + Γ    (30)                                                          

 
1 1 1 1

T T
k k k k kP P Q− − − −′= Φ Φ + Λ Λ  (31) 

where G TΓ = ∆ , L TΛ = ∆ and 1
c

k

Q
Q

T−

′
′ =

∆
. Equations (30)-(31) 

are derived from a continuous system and they serve as the 
‘time update’ of the Kalman filter. 

B. Addressing unsynchronized updates of two GPS receivers 
Equations (1)-(2) are used when the front-end GPS receiver 

has measurement updates and (3)-(4) are used when the rear-
end GPS receiver has updates. As two GPS receivers operate 
independently, their updates are not synchronized (Fig. 5).  

 

 

Fig.  5  Typical velocity profiles from two individual GPS receivers. 
 

‘Asynchronous update’ is an effective technique to solve 
this problem [23]. The idea is simple: the Kalman filter 
measurement update is executed only for the updated sensor 
even though the updated sensor contains only partial 
information. Therefore, when the front-end GPS receiver is 
updated, (1)-(2) are used and the measurement matrix would 
be 

cos sin sin ( )cos

sin cos cos ( )sin
k k k k k f k k

k
k k k k k f k k

U V L
H

U V L

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

− − − − 
=  − + 

ɺ

ɺ
  (32) 

When the rear GPS measurement is updated, (3)-(4) are used 
and the corresponding  kH  

is        

cos sin sin ( )cos

sin cos cos ( )sin
k k k k k r k k

k
k k k k k r k k

U V L
H

U V L

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

− − − + =  − − 

ɺ

ɺ
 (33) 

Legitimately, concerns about the observability arise with this 
method. Results of the observability analysis are presented in 
Section IV.  

C. Addressing significant delays of GPS measurements 
GPS velocity measurements have time delays. The GPS 

receivers used in this research estimate its velocity by 
interpreting the change in carrier phase between successive 
samples. This approach is known to have an inherent latency 
equal to half of the sampling time in delivering velocity 
measurements [24]. Accordingly, the update frequency of 2.5 
Hz would have on average a 200 ms latency solely due to this. 
Moreover, the internal processing time (<300 ms according to 
the product specification) of the GPS module and other 
communication time add to the total delay.  

There have been several methods proposed to handle sensor 
delays and they can be grouped into two categories: hardware-
based and software-based methods. In the hardware-based 
methods, measurement of several sensors can be tightly 
aligned by using measurement update timing information in a 
reference clock such as one Pulse-Per-Second signal (PPS) of 
a GPS [25-27]. However, it requires direct access to the sensor 
module hardware. As a direct access to the hardware was not 
allowed in our case, a software-based method was considered. 
Skog proposed a software-based method using extrapolation 
through Taylor’s expansion [28-29]. We tried this method but 
the result was often inaccurate under high dynamic 
maneuvers, such as a double lane change or slalom on high 
frictional surfaces. Instead, Larsen’s ‘measurement shifting’ 
idea [30] is adopted. Fig. 6 is a discrete Kalman filter 
framework to illustrate this idea. From time stamps of s to k-1, 
the state and its covariance evolve through the time update 
because no new measurement is available (solid line on the 
bottom). At the time stamp of k, a measurement is available 
(#�) but it represents a value of time s. Accordingly #� is 
shifted back to the time s (#�@;) and merged with the state 
estimation of �&; to yield the measurement updated state of 
�&;

��< . Then the new state at k (�&�
��<) is obtained through time 

update from �&;
��<  (dashed line).  

 

 ( )( ){ } ( ) ( ) { } ( )( )1 11 1

1 1
1ˆ ˆ ( ) ( )

k k
k k k kk k

k k

Tt tTT F t F tF T F T T T
k k k k k k t t

P x x x x e P e e L w w L e d dτ αε ε τ α α τ− −− −

− −

− −∆ ∆
−≡ − − = + ∫ ∫  (28) 
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Fig.  6  The measurement shift for delay handling: (i) state estimation through 
the time update from time index s to k-1, (ii) a measurement is available at k 
but it is shifted to the time s due to the delay, (iii) the Kalman Filter 
measurement update at time s, (iv) time update to yield the state estimation at 
k. 

The GPS delay must be known to apply the “measurement 
shifting” technique. When a vehicle accelerates (or 
decelerates) during straight driving, the delay in GPS velocity 
measurements can be observed by comparing it to the vehicle 
velocity calculated from the wheel speed sensors. Hence the 
GPS delay is calculated during that maneuver. The vehicle 
acceleration (or deceleration) must be mild enough to avoid 
excessive longitudinal wheel slip. 

IV.  STOCHASTIC OBSERVABILITY ANALYSIS 

Even though the Kalman Filter is capable of extracting 
optimal state estimations from noisy measurements, optimality 
does not imply stability of the estimation [31]. For linear time 
invariant (LTI) systems, the necessary and sufficient condition 
for the estimation stability was identified in a clear form [22]. 
For time varying systems, however, only sufficient conditions 
have been developed. A sufficient condition developed by 
Dyest, Price and Sorenson [32-33] is summarized in 
Jazwinski’s book [31]. 

The system of (9)-(10) is said to be uniformly completely 
observable if there exists a positive integer => and positive 
constants ?>, @> such that  

( )

( ) 1
, ,

0 ,

,
o

o o o o

k
T T

o i k i i i i k
i k N

I O k k N I k N

where

O k k N H R H

α β

−

= −

< ≤ − ≤ ∀ ≥

− ≡ Φ Φ∑

 (34) 

The system is uniformly completely controllable if there exists 
a positive integer cN and positive constants ?A , @A such that 

 
( )

( )
1

, 1 , 1

0 ,

,
c

c c c c

k
T T

c k i i i i k i
i k N

I C k k N I k N

where

C k k N Q

α β

−

+ +
= −

< ≤ − ≤ ∀ ≥

− ≡ Φ Γ Γ Φ∑

 (35) 

For two symmetric matrices A and B, A≥B means that (A-B) is 
positive semi-definite. If the system is uniformly completely 
observable, uniformly completely controllable and  

0P  is 

positive definite, then 
kP+  is uniformly bounded from above 

and below as
  

11 10 ( , ) ( , ) ( , ) ( , )

max( , )

k

o c

O k k N C k k N P O k k N C k k N

k N N N

−− + − < − + − ≤ ≤ − + − 

∀ ≥ ≡
 (36) 

Given (36), the state estimation error is bounded-input 
bounded-output (BIBO) stable and the system described by (9)
-(10) is said to be stochastically observable in the sense that 
state error covariance matrix ('�

�) is upper bounded. 
The stochastic observability of the Kalman filter is analyzed 

by investigating three conditions for (36). Since the 
measurement equation is nonlinear, the Extended Kalman 
Filter is used for the analysis [34]. Since this is a time-varying 
system, the observability relies on trajectories of the state. 
Therefore we established the procedures as follow (i) choose a 
maneuver, (ii) choose an integer N, (iii) build B
C, C � = and 
D
C, C � = and (iv) evaluate E?>, @>, ?A , @AF. If all of 
E?>, @> , ?A, @AF are positive for a certain choice of N, the 
system is stochastically observable. Certainly 

0P  is initialized 

to be positive definite.  
Test maneuvers include single lane changes (SLC), double 

lane changes (DLC), slaloms (SLL), and J-turns on high 
friction surface and N of 1,2 and 3 are tried. The stochastic 
observability is governed by system matrices (i.e. 

, 1 1,k k k− −Φ Γ
and kH  of (9)-(10)). In other words, it scrutinizes if the system 

matrices are properly structured to be observable or not. The 
unsynchronized GPS measurement updates change the system 
matrices compared to the synchronized update case. If both 
GPS receivers update at the same time, H� would be 4 � 3  by 
combining (32) and (33). If not, H� would be either (32) or 
(33) according to the updated GPS. Both 
synchronized/unsynchronized GPS update cases are analyzed 
to assess the impact of the ‘Asynchronous update’ technique.  

Fig. 7 shows the ?> of 
C, C � = , and its corresponding 
yaw rate during a J-turn maneuver (N=2 case). The solid line 
represents the synchronized GPS update case and the dash line 
is for the unsynchronized case. All others of E@>, ?A , @AF are 
positive regardless of vehicle yaw rate, hence  ?> is the only 
limiting factor. In the figure, the dependency of  ?>on the yaw 
rate is clearly visible. When the yaw rate is around zero,  ?> is 
also zero. On the other hand, when the yaw rate is substantial 
(within the time window 13 sec~18 sec),   ?>is positive for the 
synchronized measurement update case. Consequently, the 
stochastic observability is guaranteed when the yaw rate is not 
zero. It should be noted that this result is consistent with the 
outcome of the singularity analysis in Section II.  

The influence of unsynchronized measurement updates is 
also demonstrated in the figure. As the dashed line is positive 
during vehicle turning, this Kaman Filter is stochastically 
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observable even with the unsynchronized measurement 
update, as long as the vehicle yaw rate is not zero. However, 
the dashed line is lower than the solid line, implying the 
observability of the unsynchronized update case is weaker 
than the synchronized case. Even though a J-turn of N=2 case 
is presented here, the same conclusion was drawn for different 
maneuvers and with other N values.  

 
Fig.  7  The minimum eigenvalue (?>) of B
C, C � = and its corresponding 
yaw rate of a J-turn maneuver for N=2 

The observability analysis reveals that the proposed method 
may not estimate the vehicle sideslip accurately during 
straight driving. The singularity analysis in Section II supports 
the same conclusion. To resolve this observability concern of 
straight driving, the bicycle model is utilized. The bicycle 
model is a kinetic equation which describes vehicle lateral and 
yaw dynamics as follows  

2

2 2

1f r f f r r f

f ff f r r f f r r

zz z

C C D C D C C

mU mU mU
d

D CD C D C D C D C rr
II I U

ββ
− − − +   −         = +   − + − −     

   
  

ɺ

ɺ

               

(37) 
where  

@ The vehicle sideslip angle 

2 Yaw rate 

DK, D4 Front and rear tire cornering stiffness 

LK, L4 Distance from CG to front and rear axles 

M Vehicle mass 

NO Moment of inertia with respect to z-axis 

d Steering angle at the front axle 

 Although the bicycle model requires accurate vehicle 
parameters in general, it can provide fairly accurate vehicle 
sideslip estimation during straight driving regardless of 
parameter accuracy. Fig. 8 shows the estimated sideslip by a 
bicycle model during a lane change on a snow covered road. 
Vehicle parameters including DK , DK , M, and NP are manipulated 

to vary from 25% to 175% of nominal values.  

 
Fig.  8  The vehicle sideslip angle estimations by a bicycle model with 
parameters of 25%~175% of nominal values at 30 kph. 

The black line is the true sideslip angle from the Oxford 
RT2500 and grey lines represent estimations by the bicycle 
model with varied parameters. As seen in the figure, sideslip 
estimation is inaccurate during a lane change maneuver 
mainly due to the inaccurate tire cornering stiffness. However, 
it should be noted that sideslip is accurately estimated during 
straight driving regardless of parameter accuracy. Therefore 
the bicycle model is solely employed for sideslip estimation 
during straight driving. The straight driving is determined 
based on the vehicle yaw rate. 

V. EXPERIMENTAL RESULTS 

A sports car was used on the TRW proving ground at Locke 
Township, Michigan to collect the experimental data. Key 
parameters of the vehicle are shown in Table I. The test 
vehicle was equipped with a production IMU (from Autoliv) 
whose update rate is 166 Hz. Sensor noise levels (1σ ) are 
0.02 m/s2 for the accelerometer and 0.08o/sec for the yaw rate 
gyros. Two units of the U-blox EVK-5H GPS evaluation kit 
(USD199/each) were utilized. One GPS receiver was installed 
at the front end of the vehicle, and the other at the rear end. Its 
noise level (1σ ) is 0.01 m/s and its update rate is 2.5 Hz. For 
the reference signal, an RT2500-250 unit from Oxford 
Technical Solutions was installed at the vehicle CG. 
According to its specification document, the error levels (1σ )  
are 0.3o for the yaw angle and 0.4o for the sideslip angle. Its 
update rate is 250 Hz. Various maneuvers of single lane 
changes (SLC), double lane changes (DLC), slaloms (SLL), 
and J-turns were executed on high-/mid-/low-frictional 
surfaces (asphalt/wet jennite/wet tile, respectively). Each test 
scenario has 9 repetitions. Therefore, a total of 108 data sets (= 
3 surfaces × 4 maneuvers × 9 repetitions) were collected.  
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TABLE I 
TEST VEHICLE PARAMETERS 

Wheel base  4.45 m 
Front to CG Length (Lf) 1.9 m 
CG Height 0.5 m 
Vehicle Mass 1765 kg 
Yaw Moment of Inertia 2500 kg·m2 

Fig.  9 – Fig.  12 show the sideslip estimation performances 
with SLC, DLC, SLL, and J-turns. In the top plots, solid lines 
are the reference values from RT2500 and the dotted lines are 
estimations from the proposed method. The grey areas show 
the 95% confidence range calculated from the state error 
covariance matrices. Since the sideslip estimation accuracy is 
dependent on the vehicle speed and yaw rate as indicated in 
(8), bottom plots are added. In the plots, solid lines represent 
the absolute value of vehicle yaw rates and dotted lines are 
vehicle velocities. Plots of dry asphalt show higher yaw rates 
and faster vehicle speeds than plots of wet tile. The J-turn on  
wet tile shows the yaw rate jump at the end of trace (the 
bottom right plot of  Fig. 12). It is because the vehicle hit the 
high friction patch at the end of the run and spun out.  

To obtain RMS error, the estimation error is tallied only 
when the magnitude of the vehicle yaw rate is greater than 10 
o/s. The overall RMS error from all the 108 data sets is 2.6o . 
Fig. 13 contains boxplots of the sideslip RMS errors, given 
surface types and maneuvers. The black horizontal line in the 
grey box represents the median, and the grey box represents 
the central 50% of the data. Two black horizontal lines outside 
of the grey box stand for maximum and minimum of the data, 
respectively. The “+” mark represents an outlier. If this mark 
appears, a nearby black horizontal line is 1.5 times the height 
of the central box, instead of a maximum or minimum. 

 Fig. 13 shows the proposed estimation algorithm performs 
better on a high friction surface than a low friction surface. On 
a high friction surface, the RMS error levels are lower and 
run-to-run variations are tighter. Both features can be 
explained by (8). First, better accuracy on a high friction 
surface is a straightforward expectation from (8) because both 
vehicle speed and yaw rate were higher on the surface. 
Second, (8) suggests that the standard deviation of the sideslip 

estimation error has 1 �R  relationship with a vehicle speed and 
a yaw rate. Accordingly the sideslip estimation error would 
have higher sensitivity as vehicle speeds and yaw rates are 
lower. In other words, given the same amount of the yaw rate 
(or vehicle speed) variations, the standard deviation of the 
estimation error will vary in wider ranges as the vehicle speed 
and yaw rate reduce. This is why bottom plots of Fig. 13 have 
wider ranges.  

On the dry asphalt surface, SLL and J-turn show degraded 
performance than SLC and DLC. This is due to the roll angles 
generated during maneuvers. Fig. 14 shows the frequency 
histogram of roll angles generated during maneuvers on the 
dry asphalt. Black lines represent the combined frequency of 
SLL and J-turn while grey lines represent that of SLC and 

DLC. It is clearly observed that more roll angles were 
generated during SLL /J-turn than SLC/DLC.  With 1 o of roll 
angles, the gravity exerts 0.17 m/s2 on a lateral accelerometer 
and it will work as an unknown bias. Consequently, more roll 
angles would degrade the estimation accuracy further.  

VI.  CONCLUSIONS 

Horizontal velocities from two GPS receivers were 
processed to calculate vehicle sideslip angles. Those 
measurements were integrated with IMU signals including 
longitudinal/lateral acceleration and yaw rate to compensate 
for the low update rate of the GPS. The Kalman filter 
technique was used as the backbone for the sensor fusion. Two 
challenges are present: (i) delay in GPS signals and (ii) 
unsynchronized updates between the two GPS receivers. 
Delays in GPS signals are handled through the ‘measurement 
shift’ technique and unsynchronized GPS updates are 
addressed by ‘asynchronous update’ technique. The 
observability analysis reveals that the observability is 
guaranteed only when the vehicle yaw rate is adequately large. 
If the vehicle yaw rate is not large enough, the bicycle model 
is employed for the sideslip angle estimation. To assess the 
performance, experimental verification included maneuvers of 
single lane changes, double lane changes, slaloms, and J-turns 
on three different surface friction levels. The experimental 
results have shown that the vehicle sideslip angle is estimated 
fairly accurately regardless of surface friction levels. Accuracy 
of vehicle parameters such as tire cornering stiffness, mass, 
and moment of inertia does not influence the estimation 
performance of the method. The calculated RMS error from 
108 data set is 2.6 o. 

Two GPS receivers used in this study cost less than USD 
400 (USD 199 each for the full development kit). The IMU 
price should be in the USD 10 range, considering general 
market price of ESC systems. Hence the total integration cost 
is around USD 410 for the single-unit prototype. The price of 
the GPS receiver was for the enclosed development kit. If just 
a GPS core chip is used or mass production is involved, costs 
will drop further.  The cost of this method is much lower than 
that of CDGPS [17-19] because currently a dual-antennae 
CDGPS costs at least several thousand dollars. This method is 
similar to single GPS velocity-based method discussed in [13-
15]. A fundamental difference is that this method has the 
sideslip angle estimation corrected by GPS during turning 
while the single GPS method does not.  
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Fig.  9  SLC on dry asphalt and wet tile: the vehicle sideslip estimation and its corresponding velocity and |yaw rate|. 

 

 
Fig.  10  DLC on dry asphalt and wet tile: the vehicle sideslip estimation and its corresponding velocity and |yaw rate|. 

 
Fig.  11  SLL on dry asphalt and wet tile: the vehicle sideslip estimation and its corresponding velocity and |yaw rate|. 
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Fig.  12  J-turn on dry asphalt and wet tile: the vehicle sideslip estimation and its corresponding velocity and |yaw rate|.

 
Fig.  13  Distribution of roll angles during a slalom maneuver 

  

 
Fig.  14  Frequency histogram of roll angles on a dry asphalt surface 

 

APPENDIX 

DERIVATION  OF (8) 

If  the Jacobian matrix of (6) is not singular, solving (6) 
yields (38) where Lsum=Lf+Lr. The standard deviation of a 
linear combination of two variables is computed by 

2 2 2 2 2( ) ( ) ( ) 2 ( , )aX bY a X b Y abCov X Yσ σ σ+ = + +     (39) 

Therefore, �	
�� is calculated by (40). In (40), 
���
��� , ��� of the front and rear end GPS receivers are 
assumed to be same. Since |sin 
·| V 1, (40) is converted into 

(41). @ W 6/X��+�
YR - Z �

YR   if @ is small. �@ Z ��
YR  if U 

behaves as a constant compared to V. Therefore, (41) is 
changed to (42) and rearranging (42) yields (8). 
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