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Abstract: Slime Mould Algorithm (SMA) is a newly designed meat-heuristic search that mimics the
nature of slime mould during the oscillation phase. This is demonstrated in a unique mathematical
formulation that utilizes adjustable weights to influence the sequence of both negative and positive
propagation waves to develop a method to link food supply with intensive exploration capacity and
exploitation affinity. The study shows the usage of the SM algorithm to solve a non-convex and
cost-effective Load Dispatch Problem (ELD) in an electric power system. The effectiveness of SMA
is investigated for single area economic load dispatch on large-, medium-, and small-scale power
systems, with 3-, 5-, 6-, 10-, 13-, 15-, 20-, 38-, and 40-unit test systems, and the results are substantiated
by finding the difference between other well-known meta-heuristic algorithms. The SMA is more
efficient than other standard, heuristic, and meta-heuristic search strategies in granting extremely
ambitious outputs according to the comparison records.

Keywords: economic load dispatch; non-convex; slime mould algorithm; with and without valve-point effect

1. Introduction

In the actual functioning of power systems, Economic Load Dispatch (ELD) is a crucial
problem to solve. The role of the power system is to deliver continuous power to the
consumers at affordable price which is its main important feature [1,2]. The objective
is to reduce energy-generating costs while fulfilling load needs and ensuring equality
and inequality constraints. This fact results in a higher degree of pollution awareness in
thermal plants, as well as a lower cost of diagnosing the problem. Because they operate in
conjunction with a collection of viable alternatives, evolutionary methods are now perfectly
suited for discovering answers to optimization problems. All optimization approaches,
including evolutionary ones, are known to be influenced by constraints [3], since the
traditional procedure of an evolutionary approach by employing operators for individuals
in a population may violate the constraints rules. The way evolutionary approaches deal
with constraint rules of challenges is a significant aspect that is directly connected to the
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quality of solutions created for such problems. By converting the present solution that
opposes the constraints into a viable one, a redesigned method eliminates unattainable
solutions. In every step of the evolutionary method, the number of better individuals grows
as a result.

Wind, solar, thermal, nuclear, renewable, hydro, and other power producing facilities
are used in most power generation systems. It is known that nuclear power plants are
controlled at stable power outputs. In the case of renewable energy systems, the operational
cost will not change as much as the production. In thermal systems, however, the running
cost varies with the total power output. As a result, the economic load dispatch issue, which
includes the use of thermal systems as generators, is considered a critical optimization issue
in electric power systems. Maintaining an economical operation is a difficult challenge for
both traditional and smart grid systems. When power systems are exposed to operational
and transmission imperatives, the economic load dispatch limit the optimal outcome for
an electric power generation to sustain the load demand with minimum generation price.
The economic load dispatch problem is usually solved by sophisticated computerized
approaches that meet the operational and power system imperatives via minute-to-minute
monitoring. A little increase in economic load dispatch demonstrates its long-term reaction
to the declining price of total power output. As a result, a variety of optimization meth-
ods have been developed to address cost-effective load dispatch issues while producing
high-quality results. Traditional optimization approaches were the sole option to address
economic load dispatch concerns for many years. Because of the limitations of conventional
methods, system operators have a chance to fail to notice the realistic and technological
imperatives of the system’s units. There are two types of simplifications in this category.
First, combined with the accuracy of the generating unit’s pricing model, particularly for
different types of fuels or taking the valve-point loading impact into account [4], multi-
valve steam turbines are widely seen in real-world generating units. The valve point of the
generating unit is drawn when the steam turbine’s intake valve opens abruptly, pushing the
energy consumption curve upward. This phenomenon is known as the “valve-point effect”.
The sine term must be overlaid on the fuel cost function due to the valve-point effects’
discontinuity and high-order nonlinearity of input and output characteristics. Therefore,
it is necessary to analyze the fuel curve and cost function for power generation with the
valve-point effect. The other is related to network topology and is only concerned with
reducing transmission system loss [5].

The main contributions of this work are as follows:

• The slime mould algorithm is implemented as it has great global search capability.
• The SM algorithm is used to solve a non-convex and cost-effective load dispatch

problem (ELD) in an electric power system.
• The efficiency of the algorithm is tested on standard IEEE test systems.
• The method is evaluated on nine different test systems with and without valve-point

loading effects.

The remaining sections of this article are structured as follows: Section 2 consists of
the literature survey; mathematical formulation for single area economic load dispatch
is provided in Section 3; concepts of the slime mould algorithm and its economic load
dispatch flow chart are provided in Sections 4 and 5, respectively. Section 6 contains results
and discussions, and the conclusion is given in Section 7.

2. Literature Survey

The economic load dispatch problem is a major concern for the cost-effective operation
of electric power systems, as it concentrates on basically assembling the power outputs
of the units by establishing time intervals in order to decrease generating costs while still
meeting other system requirements. In general, the traditional economic load dispatch
problem is reduced in order to solve the convex quadratic programming problem [6], which
may now be handled effectively using MOSEK [7]. Furthermore, the system becomes non-
smooth, non-convex, and non-continuous when the valve-point loading effect, transmission
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loss, and prohibited operating zones are taken into account. The objective function arises
as multiples of the local minimum as a result of these features, making global minima
exceedingly difficult to attain. Aside from that, the non-smooth nature of the function makes
the derivate-based mathematical programming technique challenging to apply directly.

Traditional optimization techniques often look at linear, piecewise linear, and price
functions of generators in quadratic functions, with only network loss being considered.
These classic techniques include Lambda Iteration [8], Gradient Descent Method [9], Lin-
ear Programming [10], Newton’s Technique [11], Dynamic Programming [12], Gradient
search [13], and the Lagrangian Relaxation Algorithm [14]. Because of the persistence
of severe nonlinear characteristics in real-world practical networks, such as the use of
more fuel, nonlinearity in power flow, prohibited operating zones, and valve-point loading
effects, traditional techniques are being harmed by oscillatory issues which lengthen the
solution time for large systems [15]. As a result, while dealing with high-dimensional
economic dispatch difficulties, these suffer from disadvantages such as failure to meet
imperatives and lengthy time calculations.

This time-consuming calculation in optimization methods prompted researchers to
develop meta-heuristic optimization strategies to solve large-scale problems. The meta-
heuristics method in [16] takes into consideration non-convex pricing functions and non-
smooth operating functions as well as other imperatives. This includes techniques such
as Synergic Predator-Prey Optimization (SPPO) [17], Seeker Optimization Algorithm
(SOA) [18], Genetic Algorithm (GA) [19,20], Evolutionary Programming (EP) [21], Firefly
Algorithm (FA) [22], Particle Swarm Optimization (PSO) [23–25], Artificial Bee Colony
(ABC) [26], Colonial Competitive Differential Algorithm (CCDE) [27], Bacterial Foraging Al-
gorithm (BFA) [28], Improved Tabu Search Algorithm (ITS) [29], Ant Colony Optimization
(ACO) [30], Group Search Optimizer (GSO) [31], Harmony Search Algorithm (HAS) [32],
Biogeography Based Optimization (BBO) [33], and Differential Evolution (DE) [34].

Heuristic techniques, which are known for their adaptability and flexibility, have
received a lot of attention in recent years for solving a range of real-time economic load
dispatch issues. Such techniques include Orthogonal Learning Competitive Swarm Opti-
mizer(OLCSO) [35], Water Cycle Algorithm (WCA) [36], Moth Flame Optimizer (MFO) [37],
Opposition-Based Krill Herd Algorithm (OKHA) [38], Two-Stage Artificial Bee Colony
(TSABC) [39], Modified Crow Search Algorithm (MCS) [40], Chaotic Improved Harmony
Search Algorithm (CIHSA) [41], Improved Fireworks Algorithm with Chaotic Sequence
Operator (IFWA-CSO) [42], Exchange Market Algorithm (EMA) [43], Distance-Based Fire-
fly Algorithm (DFA) [44], Root Tree Optimization Algorithm (RTO) [45], Backtracking
Search Algorithm (BSA) [46], Adaptive Charged System Search Algorithm (ACSS), Ant
Lion optimizer (ALO) [47], Grey Wolf Optimization (GWO) [48], Improved Differential
Evolution (IDE) [49], Improved Bird Swarm Algorithm (IBSA) [50], Chaotic Bat Algorithm
(CBA) [51], Particle Swarm Optimization (PSO) [52,53], Island Bat Algorithm (IBA) [54],
Dual-Population Adaptive Differential Evolution (DPADE) [55], and Chaotic Teaching-
Learning-Based Optimization (CTLBO) [56], which are used to solve economic load dis-
patch problems. To summarize, the Artificial Cooperative Search Algorithm (ACS) [57] was
recently proposed on the basis of a co-evolution method that may find an optimal solution
for the problematical economic load dispatch issue with a high degree of probability. Of-
fering economic load dispatch with valve-point loading impact [58] evolves the requisite
condition for the local minimum. A Traverse Search Method (TSM) was presented for
addressing economic load dispatch with valve-point loading effect by taking into account
such an important state. A method called Dimensional Steepest Decline Technique (DSD),
which employs the decline rate series of fuel cost, was proposed in [58] to search efficiently
for optimum solutions based on prior local minima data. Few articles have focused on
combining two or more ways to solve the issue of economic load dispatch in order to
improve the strategies’ performance.

Furthermore, to meet the greater complexity of economic dispatch problems in prac-
tice, two or more techniques have been pooled to produce a hybrid methodology. This
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technique combines two or more traditional methods with any meta-heuristic optimizer.
The newly designed hybrid optimizers include Bee Colony Optimization joined with Se-
quential Quadratic Programming (BCO-SQP) [59], Interior Point Method (IPM) integrated
with Differential Evolution (DE) [60], mixed Differential Evolution with Biogeography-
Based Optimization (DE-BBO) [61], Particle Swarm Optimizer-Sequential Quadratic Pro-
gramming (PSO-SQP) [62], combined Active Power Optimization with Genetic Algorithm
(GA-APO) [63], Chaotic Self-adaptive Particle Swarm Optimization [64], and Modified
Sub-Gradient integrated with Harmony Search (MSG-HS) [65].

Their stochastic character, on the other hand, leads to a few drawbacks that many
heuristics-based approaches suffer from. The choice of parameters, for example, is crucial
for these techniques to function, and they need a lot of individual research to get an
acceptable result.

The optimization approaches, on the other hand, are difficult to master, and the solu-
tions obtained in each run are similar. As a result, unlike stochastic searching approaches,
these strategies must be conducted just once. As a result, these approaches have recently
received a lot of attention. Mixed Integer Quadratic Programming (MIQP) was developed
to linearize the cost function induced by valve-point effects, according to [66]. Three ap-
proaches to find a solution for dynamic economic dispatch (DED) were incorporated in [11]
based on this MIQP method: Multistep Method, Warm Start Method, and Range Restriction
Format. The complete generating price function was recovered by its linear nearness to
solve Dynamic Economic Load Dispatch (DED), and then a combination approach was
included with Mixed Integer Linear Programming and Interior Point Technique in [67].
In [68], the economic dispatch problem was rebuilt using the Quadratically Constrained
Quadratic Programming (QCQP) form, resulting in the Semi-Definite Programming (SDP)
technique. This problem may be addressed iteratively using the Convex Iteration Method
and the Branch and Bound approach. To address the economic dispatch issue, which
included transmission loss and prohibited operating zones, [69] suggested a method called
A Bi-level Branch and Bound approach (BB) in combination with Mixed Integer Quadrati-
cally Constrained Quadratic Programming. A fresh Big-M approach based on the MIQP
strategy was proposed in the publication [70]. In [71], R.A. Jabr proposed the Semi definite
Programming (SDP) technique.

In the paper [72], the authors focused on solving economic dispatch problems with
penetration of wind energy sources. Peng et al. in [73] discussed the combined schedul-
ing problem with due consideration of other renewable energy sources. The paper [74]
provided a comprehensive review on different optimization methods available to find
solutions for a combined economic emission dispatch problem. Liaquat et al. [75] made a
comprehensive literature review on several developed optimization techniques and dis-
cussed the nature of the objective functions engaged in various dispatch problems. Tapas
et al. [76] listed different techniques which were suggested by various authors for combined
economic operation and environmental impact. B. Y. Qu et al. [77] in his literature survey
covered the topics of typical MOEAs, classical EED problems, Dynamic EED problems
which incorporated wind power, EED problems which incorporated electric vehicles, and
EED problems within microgrids. Liaquat et al. [78] suggested the firefly method which
succeeded fruitfully in solving a highly non-linear and multi-modal dispatch problem
by assigning the optimum power sharing for every energy source in different scheduling
time limits. Nazari-Heris et al. [79] explained the interconnection of gas, water, and power
generation systems initially and then presented the mathematical formulation in a later
stage and listed its advantages.

When utilizing these various meta-heuristic approaches, the primary faults at an idle
are particularly aware for the initial value of the control parameters. While combining
optimizers yields acceptable results, identifying the optimal point of inclusion between
two meta-heuristics is challenging. Furthermore, hybrid systems’ intrinsic complexity
demands a non-eligible rise in the amount of work necessary to appropriately manage the
control parameters.
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To address the issue of economic load dispatch, the following are the primary contri-
butions of this article which are based on a few limitations pointed in this section: firstly, it
analyses the objective functions implicated in each problem and considers different types
of constraints and goal functions. Secondly, it goes through the nature of the objective
function that each dispatch problem involves and highlights the most important decision
variables and suggests ways to update the situation. Lastly, it provides suggestions on
how to enhance the present forms of common ED issues. Thus, this study proposes a new
meta-heuristic method called the Slime Mould Optimization (SMA). Slime mould behavior
is replicated using a unique meta-heuristics Slime mould method [80–82]. This approach
includes a number of techniques that may be used to effectively balance the exploration
and exploitation stages. This method deals with engineering design optimization and
real-world issues. In this work, SMA is used to identify solutions to economic load dispatch
problems on a variety of test systems. Other new and popular approach outcomes are
compared to analyze the results.

3. Mathematical Formulation for Single-Area Economic Load Dispatch

The goal of the economic load dispatch problem is to lower the entire fuel cost of the
power system by finding the optimum combination of power outputs from all generating
units while congregating load demand and operational constraints.

3.1. Single-Area Economic Load Dispatch

The fuel cost for unit generation is represented as a quadratic function, with the
assumption that the collective cost curves of the generating units develop as linear functions
over time. The math for the single-area economic load dispatch for an hour is as follows in
Equation (1):

f c(Pg) =
ng

∑
n=1

[an

(
Pg

n

)2
+ bnPg

n + cn] (1)

here, n ∈ ng
The dispatching of power generating units for ‘Hr’ Hours can be represented as:

f c(Pg) =
Hr

∑
hr=1

(
ng

∑
n=1

[an

(
Pg

n

)2
+ bnPg

n + cn]) (2)

here n ∈ ng; hr ∈ Hr
The right mathematics for ED is Equation (2). Because load demand changes over

time, ‘hr’ is changed from a single hour to ‘Hr’ hours.
The above objective functions are subjected to the following equality and inequal-

ity constraints:

3.1.1. Power Balance Constraint

Total power generation is equal to total power demand plus system power loss.

ng

∑
n=1

Pg
n = Pd + Pl (3)

here, Pd indicates requirement of power
here, the power loss, Pl , might be written as:

Pl =
ng

∑
n=1

ng

∑
m=1

Pg
n BnmPg

m (4)
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In presence of loss coefficients Bi0 and B00 matrices, the Equation (4) can be written as:

Pl = Pg
n BnmPg

m +
ng

∑
n=1

Pg
n × Bi0 + B00 (5)

The extension of Equation (5) is as follows:

Pl = [P1 P2 . . . . Png]

 B11 B12 B1n
B21 B22 B2n
Bn1 Bn2 Bnn

 P1
P2
Png

+
[

P1 P2 Png
] B01

B02
B0ng

+ B (6)

3.1.2. Generator Limit Constraint

The true power output of each generator is controlled by the upper and lower opera-
tional limits.

Pg
n(minimum)

≤ Pg
n ≤ Pg

n(maximum)
n = 1, 2, 3, . . . , ng (7)

where Pg
n(minimum)

implies the lowest real power allocated at unit n and Pg
n(maximum)

implies
the highest real power allotted at unit n.

3.1.3. Ramp Rate Limits

The output power of the generating unit is boosted between the lower and higher
limits of active power generation. Figure 1 depicts ramp rate limits.

Figure 1. Ramp rate limits (a) Increasing generator power (b) Reducing generator power (c) Generated
power within upper and lower limits.

(a) By increasing generated power,

Pg
n − Pg0

0 ≤ urn n = 1, 2, 3, . . . , ng (8)

(b) By reducing the amount of generated power,

Pg0
n − Pg

n ≤ drn n = 1, 2, 3, . . . , ng (9)

As a consequence, the generator ramp rate is shown in the following equation.

maximum[Pg
n(maximum)

,
(

urn − Pg
n

)
]≤ minimum[Pg

n(minimum)
,
(

Pg0
n − drn

)
(10)

where n = 1, 2, 3, . . . , ng, Pg0
n is the current active power of the nth generation unit, Pg

n is
the previous result of the active power of the nth generation unit, drn and urn are the lower
and upper range for nth generation unit ramp rate limits.

Figure 1 [65] depicts the ramp limitations requirement.
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3.1.4. Prohibited Operating Zones

Prohibited Operating Zones (POZ) are allocated to the graph for input–output powers
in the generating unit, which may discontinue due to functional constraints of the generator
produced by a defective mistake in the machine parts or the machine itself. As tracing
genuine performance curves becomes increasingly difficult, the competent economy is
calculated by disregarding performance curves in these areas. Figure 2 [46] depicts curves
of prohibited operating zones. The discontinuous input–output power limitations are as
follows in Equation (11):

Pn(minimum) ≤ Pn ≤ PPOZ
n(minimum),1

PPOZ
n(maximum),m−1 ≤ Pn ≤ PPOZ

(minimum),m
PPOZ

n(maximum),m ≤ ni ≤ Pn(maximum); m = npoz

; m = 2, 3, . . . npoz (11)

where m denotes overall operating zones of nth generator,

PPOZ
n(maximum),m−1 indicates upper limit of (m − 1)thpoz of nth generator

PPOZ
(minimum),m shows the lower limit of mthpoz of nth generator

npoz stands for overall operating zones.
Figure 2 [46] shows a sketch of the prohibited operating zones.

Figure 2. Curves of POZ.

4. Slime Mould Algorithm

There are numerous species in nature, each with their own distinctive behavior;
however, only a handful of these characteristics draw attention and may be easily adopted
and statistically molded to confront non-convex models. Many analysts aspire to emulate
the working process for computational and algorithm evolution because of this flexibility.
Slime moulds have been approved for the past few years based on this concept. The living
style, characteristic behaviour of moulding structure based on the conditions, physical
nature adjustments in food by estimating the distance, future plans for safeguarding by
shifting to new regions of food sources before foraging based on the available information
for moving towards rich food centres, and having the capability of stretching its biomass to
various places to reach rich food are the key features to adopt in a SMA technique. Because
of tremendous global search capabilities, SMA provides superior results.

It is known that the behavior of the organism can be imitated and molded to tackle the
mathematics of unconstrained and non-convex characteristics. Researchers have tried to
imitate the guiding principles to develop computations and algorithms. The slime moulds
have received considerable attention over the past few years. Scientifically, the slime mould
is titled Physarum polycephalum [83]. The slime mould undergoes a few changes in its
structure, i.e., it repositions its front position into a fan shape model and its interconnected
venous network allows the cytoplasm to flow inside at some level in a relocation series.
This stretchable venous network helps in searching for food in multiple places and grabs
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the food from food points. The slime mould has the ability to creep up to 900 sq. meters if
it finds rich food points in the environment.

If there is no food, the slime mould creeps brilliantly. This natural behavior of slime
moulds explains how it searches, travels, and reaches the food point according to environ-
mental changes [84]. When the slime mould is approaching the target, it has the ability
to judge its positive and negative wave propagation to discover a faster route to grab the
food. This indicates that the slime mould can build a perfect path to reach the food point.
It always selects a rich food area [85]. Based on the food availability and environmental
changes, it changes speed and reaches a new location from an old location before foraging.
The slime mould gathers the information about available food on empirical rules and plans
to start the new search. Though the current region is rich in food, it divides its biomass
to search for other resources which have high-quality food. According to the availability
of the food point, the slime mould adjusts its search patterns. Figure 3 [86] displays slime
mould moving towards food source.

Figure 3. Slime mould creeping towards food.

4.1. Mathematical Modeling of SMA

The mathematical modeling of SMA is discussed in three stages, namely approaching
food, wrapping food, and food grabble.

4.1.1. Technique of Approaching Food

Step1: Slime mould identifies the food based on the smell present in the air. The
mathematics to explicate contraction phase and update its position during food search
process are presented in the below expression which depends on x and p.

−−−−−→
Y(τ + 1) =

−−−→
Yb(τ) +

→
vb× (

→
W ×

−−−→
YA(τ)−

−−−→
YB(τ)), x > p (12)

−−−−−→
Y(τ + 1) =

→
vc×

−−−→
Y(τ) , x > p (13)

where
→
vb is the parameter which ranges from [−d, d],

→
vc is the parameter which reaches

zero linearly. τ is the current iteration,
→
Yb is the position of every particle in that area where

aroma is maximum,
→
Y is the position of slime mould, randomly picked variables are

→
YA,

→
Yb, and

→
W is the weight.

The maximum limit p is as follows:

p = tanh|F(t)− b f | (14)

where t = 1, 2, . . . , n, F(t) is the fitness of slime mould’s location, b f is the fitness value

from all the steps. Equation (4) describes the range of the parameter
→
vb.

→
vb = [−d, d] (15)
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d = arctanh
[
−
(

τ

maxτ

)
+ 1
]

(16)

The equation
→
W is expressed as follows:

−−−−−−−−−−−−−→
W[StenchIndex(τ)] =

 1 + xlog
(

OpF−F(t)
OpF−lF + 1

)
1− xlog

(
OpF−F(t)
OpF−lF + 1

) (17)

StenchIndex = sort(F) (18)

Here, F(t) ranks the first half of the population, random value x lies in the interval
[0, 1], optimal fitness value and least fitness value of the present iteration is given by OpF
and lF, sorting the fitness value is done by sort(F). Figure 4a,b [86] depicts the outcomes
of the Equations (12) and (13) and the possible positions of the slime mould in 2D and
3D view.

Figure 4. (a): 2D view of possible position; (b) assessment of fitness.

4.1.2. Technique of Wrapping Food

The slime mould’s updated location is numerically given as:

→
Y I =


rand× (Uub −Ulb) + Ulb, rand < z

−−→
Yb(τ) +

→
vb× (

→
W ×

−−→
YA(τ)−

−−−→
YB(τ)), x > p

→
vc×

−−→
Y(τ) , x > p

(19)

The upper and lower bounds of search ranges are given as Uub, Ulb, rand, and x
indicates the random value in the interval [0,1]. Figure 5a,b [86] depicts the slime mould’s
fitness value assessment process.
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Figure 5. (a) Slime mould fitness assessment in 2D view and (b) Slime mould fitness assessment in
3D view.

4.1.3. Technique of Food Grabble

The slime mould’s location gets upgraded in the search process and the value of
→
vb

varies within the limits [−d, d], and
→
vc fluctuates between [−1, 1] and falls to zero.

The PSEUDO code for the proposed SM algorithm is exposed in Algorithm 1 and
Figure 6 [86] presents the flow chart.

Figure 6. Flow Chart of SMA Algorithm.
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Algorithm 1 PSEUDO Code for Slime Mould Algorithm.

Initialize the parameter popsize, Max_iteration;

Initialize the positions of slime mould
→
Y I (I = 1,2,3, . . . ,n)

While (τ ≤ Maxiteration)
Calculate the fitness of all slime mould;
update bestfitness, OpF
Calculate the W by Equation (17);
For each search portion

Update p,
→
vc,
→
vb;

Update positions by Equation (19);
End For
τ = τ + 1;
End while
Return Bestfitness, OpF;

5. Economic Load Dispatch Flow Chart Using Slime Mould Optimizer

Next, load the slime mould algorithm’s input factors. The number of generations in
which the system optimizes to achieve a lower price by meeting all of the constraints is
based on the initial data loaded. Every objective function’s fitness value is established by
fulfilling the search space’s bounds. Using Equation (19), the performance of the economic
load dispatch issue is evaluated until the best price is found. SMA chooses the values
within boundaries, especially for inequality constraints if the results generated in any
iteration go out of range, and it adds a penalty factor for equality constraints, exactly like
any other method. This procedure is continued until the last iteration has been finished
and the best outcomes have been achieved. The algorithm steps are:

Step 1: Initiate by loading the system parameters and SMA factors; Step 2: Place
the preliminary data at random to equal the entire number of generators present; Step 3:
Optimize for the random point of every search agent and deliver back when diverging from
the search space; Step 4: Verify each main function’s fitness value; Step 5: Set t determined
fitness in an array; Step 6: Adapt the best and worst fitness values; Step 7: Regulate for
slime mould’s flexible weight; Step 8: Revise the locations of search agents; Step 9: Evaluate
slime mould’s weight in the phases of wrapping and grabbling food; Step 10: Search agents
find two locations randomly in the phase of food approach; Step 11: Return to exploring
fitness; Step 12: Find the optimum cost-effective fuel price; Step 13: Put an end to the
program.

Figure 6 [86] depicts the slime mould algorithm flow chart.
The flowchart in Figure 6 describes the functioning of slime mould algorithm in which

the position of slime mould is initialized. The fitness is calculated and sorted to update
the best and worst fitness. The slime mould is actually based on the propagation wave
generated by the biological oscillator to alter the cytoplasm flow in veins in order to reach

the better location of food. To show the venous width variations in the slime mould,
→
W,

→
vb,

→
vc are used which recognize the variations. The value of

→
W is calculated to upgrade

the best position and best-fitness values.
→
vb lies between [−d,d] and reaches zero as the

iteration increases.
→
vc remains in the interval [−1,1] and tends to zero.

→
vb plays a key role

in deciding to reach a food source. Thus, finally the slime mould reaches the best location
of food point by the iterative process.

6. Test System Results and Discussion

In this section of the paper, the IEEE bus systems in small-, medium-, and large-size
test systems are considered, and comparisons are done with other methods to see how well
the slime mould optimization algorithm performed on the economic load dispatch issue.
The goal of implementing this approach was to lower the cost of fuel. The recommended
method was implemented in MATALB R2016a on a laptop with an Intel Core i3 CPU,



Sustainability 2022, 14, 2586 12 of 36

7th generation, and 8GB RAM in order to discover a solution for the economic load
dispatch issue. Search agents considered 50 and 500 iterations, and 30 maximum runs while
implementing SMA. The effectiveness of the proposed approach was tested on a variety of
test systems, including constraints such as with and without valve-point loading effects,
which are addressed in Section 6.

To validate the efficacy of the proposed SMA technique, it was implemented on 3-, 5-,
6-, 10-, 13-, 15-, 20-, 38-, and 40- unit systems to find solution for the economic load dispatch
issue. Overall, the obtained fuel cost results of SMA were compared with other already
existing economic load dispatch solution methods from standard papers. The conditions
considered for the analysis to solve economic load dispatch by SMA include: (a) without
valve-point effect; (b) with valve-point effect; (c) with transmission losses; and (d) without
transmission losses. The following are the test cases discussed.

6.1. Test System-I (Small-Scale Power System)

This section covers six different cases without valve-point loading and two different
cases with valve-point loading:
I—Case Study

The input test data, as well as loss coefficient matrices, were obtained from [87]. A
three-generator test system with a power requirement of 150 MW was assessed, which
is given in Appendix A in Table A1. In this case, the ELD issue was cracked without
the valve-point effect. Table 1 indicates that the slime Mould algorithm’s fuel price was
1590.627083 Rs./h, which was the lowest of all the algorithms while still satisfying the
system constraints. Figure 7a depicts the convergence curve of SMA obtained by simulation
which was stable.

Table 1. (Case-I) Slime mould algorithm results for economic dispatch of a 3-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required Power in
Demand (MW) G1 G2 G3 Loss in Power,

PLoss (MW)

Grey Wolf Optimizer [88] 1597.4815 150 30.4998 64.6208 54.8994 2.3444

Quadratic Programming [89] 1596 150 32.8116 64.5973 54.9329 2.3419

Lambda Method [87] 1599.98 150 33.4701 64.0974 55.1011 2.6686

Particle Swarm Optimization [87] 1597.48 150 32.8101 64.595 54.9369 2.342

Genetic Algorithm [87] 1600 150 34.4895 64.0299 54.1534 2.6728

Slime Mould Algorithm 1590.627083 150 10 76.42812 64.24508 0.336600019
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Figure 7. Convergence curve of slime mould algorithm for economic load dispatch for small-scale
power systems (3-generating unit systems and 6-generating unit systems) without valve-point
loading effect; (a) Case-I (3-unit system) convergence curve, (b) Case-II (3-unit system) convergence
curve.,(c) Case-III (3-unit system) convergence curve, (d) Case-IV (3-unit system) convergence curve,
(e) Case-V (6-unit system) convergence curve, (f) Case-VI (6-unit system) convergence curve.

II—Case Study
The input data for this system were drawn from [90] and loss coefficient matrices. A

three-generator test system with a power requirement of 125 MW was used which was
needed to assess the comparable transmission given in Table A2. In this case, the ELD
issue was cracked without the valve-point effect. Table 2 indicates that the slime mould
algorithm’s fuel price was 1413.990605 Rs./h, which was the best of all algorithms while
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still satisfying the system constraints. Figure 7b depicts the convergence curve of SMA
obtained by simulation which was stable.

Table 2. (Case-II) Slime Mould algorithm results for economic dispatch of a 3-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required Power
in Demand (MW) G1 G2 G3 Loss in Power,

PLoss (MW)

Lambda Algorithm [90] 1422.159458 125 - - - 2.084005739

Firefly Algorithm [90] 1421.561972 125 - - - 1.964774407

Slime Mould Algorithm 1413.990605 125 10 70.21971 45.41896 0.319332527

III—Case Study
The input data for this system were drawn from [90] and loss coefficient matrices. A

three-generator test system with a power requirement of 150 MW was assessed which is
given in Table A3. In this case, the ELD issue was cracked without the valve-point effect.
Table 3 indicates that the slime mould algorithm’s fuel price was 1608.866334 Rs./h, which
was the best of all algorithms while still satisfying the system constraints. Figure 7c depicts
the convergence curve of SMA obtained by simulation which was stable.

Table 3. (Case-III) Slime mould algorithm results for economic dispatch of a 3-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./hr)

Required Power
in Demand (MW) G1 G2 G3 Loss in Power,

PLoss (MW)

Lambda Algorithm [90] 1625.4586 150 - - - 2.813864755

Firefly Algorithm [90] 1616.921725 150 32.729 63.843 56.151 2.721760653

Slime Mould Algorithm 1608.866334 150 10 80 60.74528 0.372641

IV—Case Study
The input data for a three-unit test system were drawn from [91], with 250 MW

power need, as well as loss coefficient matrices which were required to assess comparable
transmission and are displayed in Table A4. Table 4 indicates that the slime mould technique
yielded a fuel price of 2957.909554 Rs./h, which was the best fuel price among all known
algorithms while still satisfying all the constraints. Figure 7d depicts the convergence curve
of SMA obtained by simulation which was stable.

Table 4. (Case-IV) Slime mould algorithm results for economic dispatch of a 3-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required Power
in Demand (MW) G1 G2 G3 Loss in Power,

PLoss (MW)

Particle Swarm
Optimization [91] 2959.98 250 151.09 42.04 56.87 0

Slime Mould Algorithm 2957.909554 250 165.7781 29.85793 54.36396 0

V—Case Study
With a power demand of 1263 MW, a six-unit test system without valve-point load

effect was taken from [92], which is given in Table A5. The loss coefficients matrix was zero.
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Table 5 shows that the slime mould algorithm obtained a best fuel price of 15,275.9304 Rs./h,
beating already existing algorithms by satisfying all the constraints. The convergence curve
of SMA obtained by simulation which was stable is shown in Figure 7e.

Table 5. (Case-V) Slime mould algorithm results for economic dispatch of a 6-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method
Fuel
Price

(Rs./h)

Required
Power in
Demand

(MW)
G1 G2 G3 G4 G5 G6

Loss in
Power,

PLoss (MW)

New Particle Swarm Optimization-local
random search [93] 15,450 1263 446.96 173.3944 262.3436 139.5120 164.7089 89.0162 12.9361

Differential Evaluation [94] 15,445.90 1263 400.00 186.55 289.00 150.00 200.00 50.00 12.52

New Particle Swarm Optimization [93] 15,450 1263 447.4734 173.1012 262.6804 139.4156 165.3002 87.9761 12.9470

Simulated Annealing Algorithm [92] 15,466.00 1263 447.08 173.18 263.92 139.06 165.58 86.63 12.47

Classical Particle Swarm Optimization
2(CPSO2) [24] 15,446 1263 434.4295 173.3231 274.4735 128.0598 179.4759 85.9281 12.9582

Particle Swarm Optimization [95] 15,450 1263 447.50 173.32 263.47 139.06 165.48 87.13 12.958

Genetic Algorithm [96] 15,459 1263 474.81 178.64 262.21 134.28 151.90 74.18 13.022

New Modified Particle Swarm
Optimization [97] 15,447 1263 446.71 173.01 265.00 139.00 165.23 86.78 12.733

Particle Swarm Optimization –local
random search [93] 15,450 1263 47.4440 173.3430 263.3646 139.1279 165.5076 87.1698 12.9571

Firefly Algorithm [92] 15,443 1263 445.08 173.08 264.42 139.59 166.02 87.21 12.4

Classical Particle Swarm Optimization
1(CPSO1) [24] 15,447 1263 434.4236 173.4385 274.2247 128.0183 179.7042 85.9082 12.9583

Biogeography-Based Optimization [98] 15,443.0963 1263 447.3997 173.2392 263.3163 138.0006 165.4104 87.07979 12.464

Iteration Particle Swarm Optimization
(IPSO) [24] 15,444 1263 440.5711 179.8365 261.3798 131.9134 170.9823 90.8241 12.548

Artificial Bee Colony Optimization [99] 15,445.90 1263 438.65 167.90 262.82 136.77 171.76 97.67 12.52

Self-Organizing Hierarchical
Particle Swarm

Optimization [100]
15,446.02 1263 438.21 172.58 257.42 141.09 179.37 86.88 12.55

Slime Mould Algorithm 15,275.9304 1263 446.6889 171.254 264.1159 125.2018495 172.1444773 83.59471703 0

VI—Case Study
This system was comprised of a six-unit test system with a total power requirement

of 700 MW, as well as loss coefficient matrices which were needed to assess comparable
transmission, and the input data were drawn from [91], which is given in Table A6. Table 6
indicates that the fuel cost using the slime mould algorithm was 36,003.12394 Rs./h, which
was the best of all methods satisfying the constraints. Figure 7f depicts the convergence
curve of SMA obtained by simulation which was stable.

Table 6. (Case-VI) Slime mould algorithm results for economic dispatch of a 6-unit system (without
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required
Power in
Demand

(MW)
G1 G2 G3 G4 G5 G6

Loss in
Power,
PLoss
(MW)

Conventional
Method [91] 36,914.01 700 28.33 10 118.95 118.67 230.75 212.80 19.50

Particle Swarm
Optimization [91] 36,912.16 700 28.28 10 119.02 118.79 230.78 212.56 19.43

Slime Mould Algorithm 36,003.12394 700 24.9763 10 102.6661 110.6311
238

232.677
8302

219.0486
296 0
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VII—Case Study
A three-generator test system with valve-point loading effect was utilized with a

850 MW power demand, and the input test information is given in Table A7 which was
acquired from [4] with the loss coefficient matrix set to zero. Table 7 indicates that the
best fuel price across all algorithms was 8234.07173 Rs./h when utilizing the slime mould
algorithm that satisfied all the constraints. Figure 8a depicts the convergence curve of SMA
obtained by simulation which was stable.

Table 7. (Case-VII) Slime mould algorithm results for economic dispatch of a 3-unit system (with
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required Power in
Demand (MW) G1 G2 G3 Loss in Power,

PLoss(MW)

CPSO [4] 8234.07 850 300.267 400 149.733 NR

GA [101] 8575.64 850 382.2552 340.3202 127.4184 NR

EP-SQP [4] 8234.07 850 300.264 400 149.733 NR

DE [49] 8234.07173 850 300.2668999 400 149.7331001 NR

PSO [4] 8234.07 850 300.267 400 149.733 NR

ABC [101] 8253.10 850 300.266 400 149.733 NR

PSO-SQP [4] 8234.07 850 300.268 400 149.733 NR

EP [4] 8234.07 850 300.264 400 149.736 NR

Lambda [101] 8575.68 850 382.258 340.323 127.419 NR

CPSO–SQP [4] 8234.07 850 300.266 400 149.734 NR

Slime Mould Algorithm 8234.07173 850 300.2668998 400 149.7331002 0

Figure 8. Convergence curve of slime old algorithm for economic load dispatch for small-scale
power systems (3-generating unit system and 5-generating unit system) with valve-point loading
effect, (a) Convergence curve for Case-VII (3-unit system), (b)Convergence curve for Case-VIII
(5-unit system).

VIII—Case Study
With a power demand of 730 MW, a five-unit test system with valve-point loading

effect was used, and its input test information was taken from [101] with the loss coefficient
matrix set to zero, which is given in Table A8. Table 8 shows that the slime mould algorithm
obtained a fuel price of 2034.972427 Rs./h, satisfying all the constraints and was the best
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fuel price among all algorithms. The convergence curve of SMA obtained by simulation
which was stable is shown in Figure 8b.

Table 8. (Case-VIII) Slime mould algorithm results for economic dispatch of a 6-unit system (with
valve-point effect).

Transfer of Power Generating Units

Method Fuel Price
(Rs./h)

Required Power in
Demand (MW) G1 G2 G3 G4 G5 Loss in Power, PLoss

(MW)

Genetic Algorithm [101] 2412.538 730 218.0184 109.0092 147.5229 28.37844 227.0275 NR

Particle Swarm
Optimization [101] 2252.572 730 229.5195 125 175 75 125.4804 NR

Lambda [101] 2412.709 730 218.028 109.014 147.535 28.380 272.042 NR

APSO [101] 2140.97 730 225.3845 113.020 109.4146 73.11176 209.0692 NR

Slime Mould Algorithm 2034.972427 730 229.5195832 102.9830227 112.6813882 74.9999977 209.816008 0

6.2. Test System-II (Medium-Scale Power System)

Under medium-size power systems, four distinct test systems were tested. Two of the
cases were examined without the effect of valve-point loading, whereas the other two were
tested with the influence of valve-point loading.
I—Case Study

For a 15-unit test system with a power demand of 2630 MW, the input test information
was obtained from [102], coupled with loss coefficient matrices which were essential to
predict comparable transmission and are given in Table A9. In this case, the ELD issue
was cracked without valve-point effect. Table 9 indicates that the best fuel price across
all algorithms was 32,259.69352 Rs./h when utilizing the slime mould algorithm which
satisfied all the constraints. Figure 9a depicts the convergence curve of SMA obtained by
simulation which was stable.

Table 9. (Case-I) Slime mould algorithm results for economic dispatch of a 15-unit system (without
valve-point effect).

Method CPSO1
[24]

ETQ
[102]

PSO
[102]

ESO
[102]

SOH_PSO
[24]

PSO(4)
[102]

CPSO2
[24]

IPSO
[24]

ABC
[103]

ES
[102]

Hybrid
GAPSO

[24]
GA

[102]
Slime
Mould

Algorithm

Fuel price (Rs. /h) 32,835 32,507.5 32,858 32,506.632,751.39 32,508.12 32,834 32,709 32,707.85 32,568.54 32,724 33,113 32,259.69325

Required Power in
Demand

(MW)
2630 2630 2630 2630 2630 2630 2630 2630 2630 2630 2630 2630 2630

G1 450.05 450 439.12 456 455 440.499 450.02 455 455 455 436.8482 415.31 455

G2 454.04 450 407.97 456 380 179.5947 454.06 380 380 380 409.6974 359.72 454.7336

G3 124.82 130 119.63 130 130 21.0524 124.81 129.97 130 130 117.0074 104.42 130

G4 124.82 130 129.99 130 130 87.1376 124.81 130 130 150 128.2705 74.98 129.9999991

G5 151.03 335 151.07 304.24 170 360.7675 151.06 169.93 169.9997 168.92 153.3361 380.28 288.3104957

G6 460 455 459.99 460 459.96 395.833 460 459.88 460 459.34 457.4078 426.79 459.9767033

G7 434.53 465 425.56 465 430 432.0085 434.57 429.25 430 430 424.4400 341.32 465

G8 148.41 60 98.56 60 117.53 168.9198 148.46 60.43 71.9698 97.42 101.1949 124.79 60.19352401

G9 63.61 25 113.49 25 77.90 162 63.59 74.78 59.1798 30.61 116.1186 133.14 25

G10 101.13 20 101.11 20 119.54 138.4343 101.12 158.02 159.8004 142.56 102.2243 89.26 25.24209

G11 28.656 20 33.91 29.15 54.50 52.6294 28.655 80 80 80 35.0317 60.06 20.04263

G12 20.912 55 79.96 59.24 80 66.8875 20.914 78.57 80 85 78.8482 50 61.37133

G13 25.001 25 25. 25 25 62.7471 25.002 25 25.0024 15 27.1292 38.77 25.00313

G14 54.418 15 41.41 17.28 17.86 47.5574 54.414 15 15.0056 15 37.1594 41.94 15.09977

G15 20.625 15 35.61 15 15 27.6065 20.624 15 15.0014 15 37.0390 22.64 15.04694

Loss in Power,
PLoss

(MW)
32.1302 15.8 32.42 13.79 32.28 13.6745 32.1303 30.858 13 23.85 31.75 38.28 0.010082332
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Figure 9. Convergence curve of slime mould algorithm for economic load dispatch for medium-
scale power systems (15-generating unit system and 20-generating unit system) without valve-point
loading effect, (a) Convergence curve for Case-I (15-unit system), (b) Convergence curve for Case-II
(20-unit system).

II—Case Study
For a twenty generator test system with a power requirement of 2500 MW, the input

test data were obtained from [102], which is shown in Table A10 along with loss coefficient
matrices which are essential to predict comparable transmission. In this case, the ELD issue
was cracked without valve-point effect. Table 10 indicates that the slime mould algorithm
yielded a fuel price of 60,152.72915 Rs./h, which was the lowest of all methods. Figure 9b
depicts the convergence curve of SMA obtained by simulation which was stable.

Table 10. (Case-II) Slime mould algorithm results for economic dispatch of a 20-unit system (without
valve-point effect).

Method Hopfield Neural Network [104] Lambda-Iteration Method [102] Slime Mould Algorithm

Fuel Price (Rs./h) 62,456.6341 62,456.6391 60,152.72915

Required Power in Demand
(MW) 2500 2500 2500

G1 512.7804 512.7805 599.9962

G2 169.1035 169.1033 127.2091

G3 126.8897 126.8898 50.01089

G4 102.8656 102.8657 50

G5 113.6836 113.6836 92.80191

G6 73.5709 73.5710 20.00047

G7 115.2876 115.2878 124.9982

G8 116.3994 116.3994 50

G9 100.4063 100.4062 112.1931

G10 106.0267 106.0267 43.44606

G11 150.2395 150.2394 289.1196

G12 292.7647 292.7648 433.1905

G13 119.1155 119.1154 122.9385

G14 30.8342 30.8340 72.39983

G15 115.8056 115.8057 95.40311

G16 36.2545 36.2545 36.15509

G17 66.8590 66.8590 30.01615

G18 87.9720 87.9720 39.79051

G19 100.8033 100.8033 80.33078

G20 54.3050 54.3050 30

Loss in Power, PLoss(MW) 91.9669 91.9670 0
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III—Case Study
The input test information was obtained from [105] with the loss coefficient matrix

set to zero, and a ten generator test system with valve-point loading effect was used with
a power demand of 2000 MW, which is shown in Table A11. Table 11 shows that when
utilizing the slime mould algorithm, the fuel price was 106170.418 Rs./h, which was the best
fuel price among all algorithms. The convergence curve of SMA obtained by simulation
which was stable is shown in Figure 10a.

Table 11. (Case-III) Slime mould algorithm results for economic dispatch of a 10-unit system (with
valve-point effect).

Method PDE
[106]

FPA
[106]

MODE
[106]

PSO
[105]

NSGAII
[106]

GSA
[106]

PSO-TVAC
[107]

ABC_PSO
[106]

EMOCA
[106]

MSCO
[106]

SPEA-2
[106]

Slime Mould
Algorithm

Fuel Price
(Rs./h) 113,510 113,370 113,484 107,620 113,539 113,490 107,620 113,420 113,445 110,870 113,520 106,170.418

Power in
Demand

(MW)
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

G1 54.9853 53.188 54.9487 53.1000 51.9515 54.9992 53.8 55 55 52.8995 52.9761 54.99996

G2 79.3803 79.975 74.5821 79.2000 67.2584 79.9586 78.9 80 80 74.9428 72.813 79.9999

G3 83.9842 78.105 79.4294 112 73.6879 79.4341 109 81.14 83.5594 97.4068 78.1128 89.30891

G4 86.5942 97.119 80.6875 121 91.3554 85.0000 125 84.216 84.6031 95.9554 83.6088 79.87863

G5 144.4386 152.74 136.8551 98.8000 134.0522 142.1063 98.8 138.3377 146.5632 131.8702 137.2432 66.48786

G6 165.7756 163.08 172.6393 100 174.9504 166.5670 90.4 167.5086 169.2481 200.5119 172.9188 70.00002

G7 283.2122 258.61 283.8233 299 289.4350 292.8749 298 296.8338 300 227.9224 287.2033 290.7383

G8 312.7709 302.22 316.3407 320 314.0556 313.2387 330 311.5824 317.3496 303.6511 326.4023 328.5865

G9 440.1135 433.21 448.5923 467 455.6978 441.1775 468 420.3363 412.9183 366.3189 448.8814 470

G10 432.6783 466.07 436.4287 356 431.8054 428.6306 351 449.1598 434.3133 470.0000 423.9025 470

Loss in
Power, PLoss

(MW)
83.9 84.3 84.33 NR 84.25 83.9869 NR 84.1736 83.56 21.4789 84.1 0

Figure 10. Convergence curve of slime mould algorithm for economic load dispatch for medium-
scale power systems (10-generating unit system and 13-generating unit system) with valve-point
loading effect, (a) Convergence curve for Case-III (10-unit system), (b) Convergence curve for Case-IV
(13-unit system).

IV—Case Study
With a power demand of 2520 MW, a thirteen generator test system with valve-point

loading effect was used and the input test data were obtained from [62], with the loss
coefficient matrix set to zero and shown in Table A12. Table 12 shows that when utilizing
the slime mould algorithm, the fuel price was 24,177.23727 Rs./h, which was the best fuel
price among all known algorithms. The convergence curve of SMA obtained by simulation
which was stable is shown in Figure 10b.



Sustainability 2022, 14, 2586 20 of 36

Table 12. (Case-IV) Slime mould algorithm results for economic dispatch of a 13-unit system (with
valve-point effect).

Method GWO
[108]

JAYA
[108]

NGWO
[108]

EP-SQP
[62]

SA
[62]

GA
[62]

PSO-SQP
[62]

CJAYA
[62]

GWOII
[108]

GWOI
[108]

GA-SA
[62]

CPSO
[4]

Slime
Mould

Algorithm

Fuel Price
(Rs./h) 24,231.18 24,220.752924,185.45 24,266.44 24,970.91 24,418.99 24,261.05 24,178.8040 24,198.47 24,244.69 24,275.71 24,211.56 24,177.23727

Required
Power in
Demand

(MW)
2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520

G1 647.3842 628.3185 630.9951 628.3136 668.40 627.05 628.3205 628.3185 630.9811 645.5569 628.23 682.32 628.3184973

G2 306.3995 299.2009 297.9355 299.1715 359.78 359.40 299.0524 299.1992 300.8038 306.9539 299.22 299.83 298.0415722

G3 309.6117 306.9105 299.9253 299.0474 358.20 358.95 298.9681 299.1993 302.7475 306.5356 299.17 299.17 298.9244776

G4 175.1400 159.7339 157.9267 159.6399 104.28 158.93 159.4680 159.7330 160.1702 169.6878 159.12 159.70 159.7225373

G5 66.8791 159.7337 159.6433 159.6560 60.36 159.73 159.1429 159.7331 161.0252 168.4922 159.95 159.64 159.6885214

G6 162.7466 159.7338 159.2335 158.4831 110.64 159.68 159.2724 159.7331 160.9845 174.9721 158.85 159.67 159.72331

G7 174.3111 109.8673 159.7630 159.6749 162.12 159.53 159.5371 159.7330 159.1231 167.1394 157.26 159.64 159.4163763

G8 61.2250 159.7342 159.6615 159.7265 163.03 158.89 158.8522 159.7330 110.4278 116.8800 159.93 159.65 159.6905

G9 175.1400 159.7340 159.4265 159.6653 161.52 110.15 159.7845 159.7331 159.7720 116.8800 159.86 159.78 159.7157

G10 116.7600 114.8012 76.8790 114.0334 117.09 77.27 110.9618 110.0403 116.8577 116.8800 110.78 112.46 76.2922

G11 116.7600 114.8001 79.5038 75 75 75 75 114.7994 77.0418 109.9096 75 74 114.166

G12 99.9167 92.4018 86.8040 60 60 60 60 55 91.4990 59.0347 60 56.50 55.00003

G13 108.5598 55.0027 94.1941 87.5884 119.58 55.41 91.6401 55 88.6915 66.5129 92.62 91.64 91.30029

PLoss
(MW) NR NR NR NR NR NR NR NR NR NR NR NR 0

6.3. Test System-III (Large-Scale Power System)

Two test systems were examined in this section, one without valve-point loading and
the other with valve-point loading.
I—Case Study

The input test information was taken from [88] with the loss coefficient matrix set
to zero, and a thirty-eight generator test system with a power demand of 6000 MW was
evaluated. The input test data are given in Table A13. Table 13 shows that the fuel price
using the slime mould algorithm was 9402608.045 Rs./h, which was the best fuel price
among all algorithms. The convergence curve of SMA obtained by simulation which was
stable is depicted in Figure 11.

Figure 11. Convergence curve of slime mould algorithm for economic load dispatch for large-scale
power systems (38-generating unit system) without valve-point loading effect.
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Table 13. (Case-I) Slime mould algorithm results for economic dispatch of a 38-unit system (without
valve-point effect).

Method
Grey Wolf
Optimizer

(GWO)
[88]

Pattern
Search

(PS) [88]

Biogeography
Based Optimization

(BBO)
[88]

SPSO
[109]

PSO_Crazy
[109]

λ-Logic-
Based

Method [88]
PSO_TVAC

[109]
New PSO

[109]
Slime
Mould

Algorithm

Fuel Price
(Rs./h) 9,417,226 9,543,984.8 9,417,633.6 9,543,984.777 9,520,024.601 9,417,235.8 9,500,448.307 9,516,448.312 9,402,608.045

Required
Power in
Demand

(MW)
6000 6000 6000 6000 6000 6000 6000 6000 6000

G1 429.7056 258.3397 550 519.097 366.631 426.6061 443.659 550.000 550

G2 416.2439 258.3397 550 437.920 550.000 426.6061 342.956 512.263 324.723

G3 408.4052 238.3397 500 374.789 467.129 429.6633 433.117 485.733 326.8208

G4 412.4527 238.3397 500 394.877 370.471 429.6633 500.000 391.083 327.2394159

G5 433.6422 238.3397 375.6216 356.603 425.712 429.6633 410.539 443.846 326.6712585

G6 425.6522 238.3397 200 380.358 415.226 429.6633 482.864 358.398 326.5721853

G7 435.6207 238.3397 200 300.234 339.872 429.6633 409.483 415.729 327.0354

G8 437.6536 238.3397 200 335.871 289.777 429.6633 446.079 320.816 327.5622428

G9 115.2751 196.2345 114 238.171 195.965 114 119.566 115.347 114

G10 116.883 196.2345 114.6486 218.563 170.608 114 137.274 204.422 114

G11 130.7939 196.2345 162.1622 196.630 138.984 119.7681 138.933 114.000 114

G12 153.2393 196.2345 114 234.500 262.350 127.0729 155.401 249.197 114

G13 110 196.2345 129.2432 111.529 114.008 110 121.719 118.886 110

G14 90.028 196.2345 90 100.731 92.393 90 90.924 102.802 90

G15 82.0111 196.2345 153.2432 122.464 89.044 82 97.941 89.039 82.00004

G16 120 196.2345 120 125.310 130.555 120 128.106 120.000 120.0000328

G17 157.1682 196.2345 204.3243 155.981 167.850 159.5981 189.108 156.562 147.205372

G18 65 196.2345 65 65.000 65.754 65 65.000 84.265 65.00016196

G19 65.0326 196.2345 65 70.071 65.000 65 65.000 65.041 65

G20 271.9524 196.2345 120 263.950 199.594 272 267.422 151.104 272

G21 271.959 196.2345 182.4324 245.065 272.000 272 221.383 226.344 272

G22 259.81 196.2345 110 191.702 130.379 160 130.804 209.298 260

G23 120.8832 190 187.2973 99.123 173.544 130.6487 124.269 85.719 96.81893

G24 12.3567 150 27.027 15.058 13.263 10 11.535 10.000 10.00006

G25 107.634 125 125 60.060 112.161 113.3051 77.103 60.000 84.92456

G26 92.4117 110 110 91.140 105.898 88.0669 55.018 90.489 72.26642

G27 39.6668 75 75 41.006 35.995 37.5051 75.000 39.670 35.00027

G28 20.005 70 70 20.399 22.335 20 21.682 20.000 20

G29 20.0014 70 70 34.650 30.045 20 29.829 20.995 20.00028

G30 20.0302 70 70 20.957 24.112 20 20.326 22.810 20

G31 20.013 70 70 20.219 20.494 20 20.000 20.000 20.00006

G32 20.007 60 60 25.424 20.011 20 21.840 20.416 20

G33 25.0032 60 60 26.517 27.440 35 25.620 25.000 25.00003

G34 18.008 60 60 18.822 18.000 18 24.261 21.319 18

G35 8.006 60 60 9.173 8.024 8 9.667 9.122 8.000021

G36 25.002 60 60 26.507 25.000 25 25.000 25.184 25

G37 22.4379 38 38 24.344 20.000 21 31.642 20.000 20

G38 20.0048 38 38 27.181 24.371 21 29.935 25.104 20.00002

Loss in
power, PLoss

(MW)
NR NA NR NA NA NR NA NA 0

II—Case Study
With a power demand of 10,500 MW, a forty generator test system with valve-point

loading effect was used and the input test information was taken from [108] with the loss
coefficient matrix set to zero, which is shown in Table A14. Table 14 shows that when
utilizing the slime mould algorithm, the fuel price was 121,658.6656 Rs./h, which was the
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best fuel price among other known algorithms. The convergence curve of SMA obtained
by simulation which was stable is seen in Figure 12.

Table 14. (Case-II) Slime mould algorithm results for economic dispatch of a 40-unit system (with
valve-point effect).

Method MPSO
[108]

GWO
[108]

NGWO
[108]

PSO-LRS
[108]

IGA
[108]

NPSO
[108]

GWOII
[108]

CJAYA
[108]

GWOI
[108]

Slime
Mould

Algorithm

Fuel Price
(Rs./h) 122,252.265 122,602.37 121,881.81 122,035.7946 121,915.93 121,704.7391 122,430.74 122,581.85 122,678.91 121,658.6656

Required
Power in
Demand

(MW)
10,500 10,500 10,500 10,500 10,500 10,500 10,500 10,500 10,500 10,500

G1 114 109.0947 111.3177 111.9858 110.97 113.9891 107.6544 114 109.7268 112.3525188

G2 114 112.0471 112.7551 110.5273 110.88 113.6334 109.2161 111.6651 111.7342 112.4688984

G3 120 115.4584 118.6377 98.5560 98.17 97.5500 94.7874 119.9876 119.2197 97.49149956

G4 182.222 179.8333 183.3649 182.9622 178.85 180.0059 182.3441 188.2606 181.6041 179.7415579

G5 97 46.1649 91.8097 87.7254 87.78 97 86.9731 96.9763 89.8836 93.71705917

G6 140 83.1571 104.3697 139.9933 140 140 109.1907 139.9488 125.1816 139.99945

G7 300 261.6345 297.6533 259.6628 260.37 300 259.4910 264.0949 265.0775 260.4361978

G8 299.021 292.4025 289.4349 297.7912 286.83 300 284.1803 299.9814 290.2216 289.743

G9 300 284.7149 298.4044 284.8459 285.14 284.5797 285.1526 284.9042 285.2586 296.0535

G10 130 132.9049 129.35 130 204.86 130.0517 129.3500 130.0908 134.9231 130.0189

G11 94 101.6726 241.9702 94.6741 165.98 243.7131 317.4787 94.0011 167.9983 168.7887

G12 94 319.8174 166.9113 94.3734 167.75 169.0104 157.3563 94 183.6314 168.7212

G13 125 215.0746 214.849 214.7369 214.31 125 300.6095 125.1028 219.5396 125.0003

G14 304.485 394.9259 215.669 394.1370 305.65 393.9662 305.0848 394.2529 394.9259 394.2872

G15 394.607 398.1829 305.69 483.1816 393.66 304.7586 395.3099 484.1262 212.7154 304.5919405

G16 305.323 304.1546 394.6479 304.5381 394.60 304.5120 203.9544 304.5950 484.5572 394.3118

G17 490.272 490.0842 494.7618 489.2139 489.22 489.6024 489.6721 490.8265 494.3478 489.2914608

G18 500 493.2515 493.1559 489.6154 489.25 489.6087 492.3490 489.3438 491.2367 489.881

G19 511.404 511.4229 512.7416 511.1782 511.23 511.7903 514.3882 51.3775 514.3755 511.2385

G20 512.174 511.9422 520.8929 511.7336 510.69 511.2624 511.7323 512.1395 514.3755 511.2866

G21 550 532.3762 526.1137 523.4072 524.74 523.3274 532.2046 523.6621 522.6016 523.3004

G22 523.655 532.2484 532.1443 523.4599 525.52 523.2196 527.3193 523.3534 523.6988 523.2929

G23 534.661 530.7732 536.8421 523.4756 522.98 523.4707 527.3193 524.9677 523.6988 523.3215

G24 550 526.1112 524.4669 523.7032 522.22 523.0661 539.9336 524.2850 536.1385 523.2599

G25 525.057 524.4545 525.2461 523.7854 523.26 523.3978 526.6306 522.9279 523.5451 523.3046

G26 549.155 523.4934 529.3289 523.2757 523.32 523.2897 524.8658 523.2298 524.0780 523.2675

G27 10 11.5028 9.95 10 10 10.0208 9.95 10 14.8568 10.00489

G28 10 9.9541 9.95 10.6251 10 10.0927 9.95 10.0047 21.0962 10

G29 10 10.3272 9.95 10.0727 10 10.0621 9.95 10 13.1286 10.00001

G30 97 91.6019 88.4106 51.3321 88.86 88.9456 90.3385 97 88.5089 92.73674

G31 190 188.8475 188.9088 189.8048 162.30 189.9951 159.6875 190 188.0180 189.9981

G32 190 165.2531 188.8126 189.7386 177.94 190 188.9923 189.9503 166.2968 190

G33 190 188.9197 186.9624 189.9122 160.18 190 173.1974 190 182.0808 190

G34 200 189.2968 195.0897 199.3258 166.54 165.9825 189.6808 169.8860 164.9636 195.8292

G35 200 180.4605 171.5047 199.3065 164.80 172.4153 192.1671 199.8549 172.6948 200

G36 200 184.2698 176.1085 192.8977 170.68 191.2978 157.5027 199.9896 191.0765 200

G37 110 89.6748 89.5297 110 108.17 109.9893 104.4095 109.9712 108.8942 89.89076

G38 110 90.1485 89.3589 109.8628 100.68 109.9521 86.74132 109.9977 100.8804 91.73751

G39 110 57.0464 109.3222 92.8751 109.34 109.8733 100.2970 109.9871 27.8744 109.9905

G40 512.964 514.3622 512.5412 511.6883 511.28 511.5671 512.43873 511.2250 511.7717 511.2371

Loss in
Power, PLoss

(MW)
NR NR NR NR NR NR NR NR NR 0
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Figure 12. Convergence curve of slime mould algorithm for economic load dispatch for large-scale
power systems (40-generating unit system) with valve-point loading effect.

It can be observed that the SMA technique reported minimum fuel cost when com-
pared with other methods. Thus, the proposed SMA method presented an excellent
performance compared to the competition. As per the condition considered in solving the
ED problem, it has been proven that the SMA technique was best suited for all cases and
situations in this paper.

In order to intuitively analyze the location and fitness changes of the slime mould
during foraging, the qualitative analysis findings of SMA in lowering the fuel cost in
economic load dispatch are provided in Figures 7–12. During the iteration phase, the
convergence curve reveals the ideal fitness value in the slime mould. The convergence
curve shows how the average fitness of the slime mould’s ideal fitness value changes over
time. We can see the slime mould’s convergence rate and the moment when it transitions
between exploration and exploration gradation by looking at the decline of the curve.

On an Intel Core i3, 7th Gen, with 8GB RAM, the suggested SMA method was tested.
The capacity of the search agents to get closer to the origin determines the search procedure
for the best position. During the search process by various agents, there is a chance of
being entrapped far or near, which is characterized in terms of exploration and exploitation.
The suggested algorithm’s stochastic nature was justified and studied by running it for
30 maximum runs and 500 iterations. The approach was tested on typical benchmark
functions, and it was shown that it increases the rate of convergence and has a high capacity
to escape from local minima. The convergence rate was higher than that of other globally
certified systems, and the system outperformed them. A comparison of SMA and other
approaches is shown in Figure 13, and it was observed that the convergence curves of
unimodal benchmark functions show that the proposed approach reaches the optimal state
substantially sooner.
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Figure 13. Convergence curve for unimodal functions showing comparison of slime mouldalgorithm)
with other existing algorithms, (a) Convergence curve for F1 function, (b) Convergence curve for
F2 function, (c) Convergence curve for F3 function, (d) Convergence curve for F4 function, (e) Con-
vergence curve for F5 function, (f) Convergence curve for F6 function, (g) Convergence curve for
F7 function.
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7. Conclusions

The slime mould optimization technique was utilized in this paper to tackle economic
load dispatch problems in electric power networks. The proficiency of this method was
studied on standard IEEE bus systems of 3-, 5-, 6-, 10-, 13-, 15-, 20-, 38-, and 40-generating
unit systems under small-, medium-, and large-sized power systems. According to the data,
the slime mould optimizer is obviously best appropriate to handle economic load dispatch
problems due to its lower fuel costs and minimal transmission loss. Its convergence rate
was greater than that of other well-known optimizers. The slime mould optimizer achieves
maximum avoidance in the local optimum by striking a balance between exploration and
exploitation. As a result, this algorithm delivers better solutions for economic load dispatch
issues. It has the potential to be utilized in the future to solve economic load dispatch
problems in multiple areas and in a variety of sectors.
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Abbreviations

Pg = Generating units’ output power; Pg
n = the active power of the nth generator; ng = number

of generators in total; an, bn, cn are the fuel coefficients for power producing units; fc(Pg) = the total
cost of fuel for all power plants; Pd, Pl are total power demand and system power loss; drn, urn are
the lower and upper ranges of nth generator unit ramp rate limitations; Bi0, B00 are the loss coefficient
matrices; Pg0

n is the current active power of the nth generation unit.

Appendix A

Table A1. Data for the 3-unit generator test system.

Total Units Pmin
(MW) c ($/h) b ($/MWh) a

($/(MW)2h) Pmax (MW)

1 10 200 7.00 0.008 85

2 10 180 6.3 0.009 80

3 10 140 6.8 0.007 70

Matrix of Transmission loss coefficient for three-unit system:

B0 =
[

0.0003 0.0031 0.0015
]
; B00 = [0.00030523]; B = 10−3

 0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179
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Table A2. Data for the 3-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 10 200 7.02 0.00816 85

2 10 180 6.35 0.00900 80

3 10 140 6.97 0.00782 70

Matrix of Transmission loss coefficient for 3-unit system:

B0 =
[

0.0003 0.0031 0.0015
]
; B00 = [0.00030523]; B = 10−3

 0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179


Table A3. Data for the 3-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 10 200 7.02 0.00816 85

2 10 180 6.35 0.00900 80

3 10 140 6.97 0.00782 70

Matrix of Transmission loss coefficient for 3-unit system:

B0 =
[

0.0003 0.0031 0.0015
]
; B00 = [0.00030523]; B = 10−3

 0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179


Table A4. Data for the 3-unit generator test system.

Total Units Pmin (MW) c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 50 328.13 8.663 0.00525 250

2 5 136.91 10.04 0.00609 150

3 15 59.16 9.76 0.00592 100

Matrix of Transmission loss coefficient for 3-unit system:

B0 =
[

0 0 0
]
; B00 = [0]; B =

 0.000136 0.0000175 0.000184
0.000175 0.0001540 0.000283
0.000184 0.0002830 0.001610
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Table A5. Data for the 6-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 100 240 7.0 0.0070 500

2 50 200 10.0 0.0095 200

3 80 220 8.5 0.0090 300

4 50 200 11.0 0.0090 150

5 50 220 10.5 0.0080 200

6 50 190 12.0 0.0075 120

Table A6. Data for the 6-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 10 756.79886 38.53973 0.15240 125

2 10 451.32513 46.15916 0.10587 150

3 35 1049.9977 40.39655 0.02803 225

4 35 1243.5311 38.30553 0.03546 210

5 130 1658.5596 36.32782 0.02111 325

6 125 1356.6592 38.27041 0.01799 315

Matrix of Transmission loss coefficient for 6-unit system:

B0 =
[

0 0 0
]
; B00 = [0]; B =



0.000140 0.000017 0.000015 0.000019 0.000026 0.000022

0.000017 0.000060 0.000013 0.000016 0.000015 0.000020

0.000015 0.000013 0.000065 0.000017 0.000024 0.000019

0.000019 0.000016 0.000017 0.000071 0.000030 0.000025

0.000026 0.000015 0.000024 0.000030 0.000069 0.000032

0.000022 0.000020 0.000019 0.000025 0.000032 0.000085



Table A7. Data for the 3-unit generator test system.

Total Units Pmin
(MW)

e
(1/MW)

d
($/h)

c
($/hr)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 100 0.0315 300 561 7.92 0.001562 600

2 100 0.042 200 310 7.85 0.00194 400

3 50 0.063 150 78 7.97 0.00482 200

Table A8. Data for the 5-unit generator test system.

Total Units Pmin
(MW)

e
(1/MW)

d
($/h)

c
($/hr)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 50 0.035 200.0 40.0 1.8 0.0015 300

2 20 0.040 140.0 60.0 1.8 0.0035 125

3 30 0.038 160.0 100.0 2.1 0.0012 175

4 10 0.042 100.0 25.0 2.0 0.0080 75

5 40 0.037 180.0 120.0 2.0 0.0010 250
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Matrix of Transmission loss coefficient for 15-unit system:

B00 = [0.0055]; B = 10−3



1.4 1.2 0.7 −0.1 −0.3 −0.1 −0.1 −0.1 −0.3 −0.5 −0.3 −0.2 0.4 0.3 −0.1

1.2 1.5 1.3 0.0 −0.5 −0.2 0.0 0.1 −0.2 −0.4 −0.4 0.0 0.4 1.0 −0.2

0.7 1.3 7.6 −0.1 −1.3 −0.9 −0.1 0.0 −0.8 −1.2 −1.7 0.0 −2.6 11.1 −2.8

−0.1 0.0 −0.1 3.4 −0.7 −0.4 1.1 5.0 2.9 3.2 −1.1 0.0 0.1 0.1 −2.6

−0.3 −0.5 −1.3 −0.7 9.0 1.4 −0.3 −1.2 −1.0 −1.3 0.7 −0.2 −0.2 −2.4 −0.3

−0.1 −0.2 −0.9 −0.4 1.4 1.6 0.0 −0.6 −0.5 −0.8 1.1 −0.1 −0.2 −1.7 0.3

−0.1 0.0 −0.1 1.1 −0.3 0.0 1.5 1.7 1.5 0.9 −0.5 0.7 0.0 −0.2 −0.8

−0.1 0.1 0.0 5.0 −1.2 −0.6 1.7 16.8 8.2 7.9 −2.3 −3.6 0.0 0.5 −7.8

−0.3 −0.2 −0.8 2.9 −1.0 −0.5 1.5 8.2 12.9 11.6 −2.1 −2.5 0.7 −1.2 −7.2

−0.5 −0.4 −1.2 3.2 −1.3 −0.8 0.9 7.9 11.6 20.0 −2.7 −3.4 0.9 −1.1 −8.8

−0.3 −0.4 −1.7 −1.1 0.1 1.1 −0.5 −2.3 −2.1 −2.7 14.0 0.1 0.4 −3.8 16.8

−0.2 0.0 0.0 0.0 −0.2 −0.1 0.7 −3.6 −2.5 −3.4 0.1 5.4 −0.1 −0.4 2.8

0.4 0.4 −2.6 0.1 −0.2 −0.2 0.0 0.0 0.7 0.9 0.4 −0.1 10.3 −10.1 2.8

0.3 1.0 11.1 0.1 −2.4 −1.7 −0.2 0.5 −1.2 −1.1 −3.8 −0.4 −10.1 57.8 −9.4

−0.1 −0.2 −2.8 −2.6 −0.3 0.3 −0.8 −7.8 −7.2 −8.8 16.8 2.8 2.8 −9.4 128.3


B0 = 10−3

[
−0.1 −0.2 2.8 −0.1 0.1 −0.3 −0.2 −0.2 0.6 3.9 −1.7 0.0 −3.2 6.7 −6.4

]

Table A9. Data for the 15-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 150 671 10.1 0.000299 455

2 150 574 10.2 0.000183 455

3 20 374 8.8 0.001126 130

4 20 374 8.8 0.001126 130

5 150 461 10.4 0.000205 470

6 135 630 10.1 0.000301 460

7 135 548 9.8 0.000364 465

8 60 227 11.2 0.000338 300

9 25 173 11.2 0.000807 162

10 25 175 10.7 0.001203 160

11 20 186 10.2 0.003586 80

12 20 230 9.9 0.005513 80

13 25 225 13.1 0.000371 85

14 15 309 12.1 0.001929 55

15 15 323 12.4 0.004447 55
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Matrix of Transmission loss coefficient for 20-unit system:

B = 10−3



8.70 0.43 −4.61 0.36 0.32 −0.66 0.96 −1.60 0.80 −0.10 3.60 0.64 0.79 2.10 1.70 0.80 −3.20 0.70 0.48 −0.70

0.43 8.30 −0.97 0.22 0.75 −0.28 5.04 1.70 0.54 7.20 −0.28 0.98 −0.46 1.30 0.80 −0.20 0.52 −1.70 0.80 0.20

−4.61 −0.97 9.00 −2.00 0.63 3.00 1.70 −4.30 3.10 −2.00 0.70 −0.77 0.93 4.60 −0.30 4.20 0.38 0.70 −2.00 3.60

0.36 0.22 −2.00 5.30 0.47 2.62 −1.96 2.10 0.67 1.80 −0.45 0.92 2.40 7.60 −0.20 0.70 −1.00 0.86 1.60 0.87

0.32 0.75 0.63 0.47 8.60 −0.80 0.37 0.72 −0.90 0.69 1.80 4.30 −2.80 −0.70 2.30 3.60 0.80 0.20 −3.00 0.50

−0.66 −0.28 3.00 2.62 −0.80 11.8 −4.90 0.30 3.00 −3.00 0.40 0.78 6.40 2.60 −0.20 2.10 −0.40 2.30 1.60 −2.10

0.96 5.04 1.70 −1.96 0.37 −4.90 8.24 −0.90 5.90 −0.60 8.50 −0.83 7.20 4.80 −0.90 −0.10 1.30 0.76 1.90 1.30

−1.60 1.70 −4.30 2.10 0.72 0.30 −0.90 1.20 −0.96 0.56 1.60 0.80 −0.40 0.23 0.75 −0.56 0.80 −0.30 5.30 0.80

0.80 0.54 3.10 0.67 −0.90 3.00 5.90 −0.96 0.93 −0.30 6.50 2.30 2.60 0.58 −0.10 0.23 −0.30 1.50 0.74 0.70

−0.10 7.20 −2.00 1.80 0.69 −3.00 −0.60 0.56 −0.30 0.99 −6.60 3.90 2.30 −0.30 2.80 −0.80 0.38 1.90 0.47 −0.26

3.60 −0.28 0.70 −0.45 1.80 0.40 8.50 1.60 6.50 −6.60 10.7 5.30 −0.60 0.70 1.90 −2.60 0.93 −0.60 3.80 −1.50

0.64 0.98 −0.77 0.92 4.30 0.78 −0.83 0.80 2.30 3.90 5.30 8.00 0.90 2.10 −0.70 5.70 5.40 1.50 0.70 0.10

0.79 −0.46 0.93 2.40 −2.80 6.40 7.20 −0.40 2.60 2.30 −0.60 0.90 11.0 0.87 −1.00 3.60 0.46 −0.90 0.60 1.50

2.10 1.30 4.60 7.60 −0.70 2.60 4.80 0.23 0.58 −0.30 0.70 2.10 0.87 3.80 0.50 −0.70 1.90 2.30 −0.97 0.90

1.70 0.80 −0.30 −0.20 2.30 −0.20 −0.90 0.75 −0.10 2.80 1.90 −0.70 −1.00 0.50 11.0 1.90 −0.80 2.60 2.30 −0.10

0.80 −0.20 4.20 0.70 3.60 2.10 −0.10 −0.56 0.23 −0.80 −2.60 5.70 3.60 −0.70 1.90 10.8 2.50 −1.80 0.90 −2.60

−3.20 0.52 0.38 −1.00 0.80 −0.40 1.30 0.80 −0.30 0.38 0.93 5.40 0.46 1.90 −0.80 2.50 8.70 4.20 −0.30 0.68

0.70 −1.70 0.70 0.86 0.20 2.30 0.76 −0.30 1.50 1.90 −0.60 1.50 −0.90 2.30 2.60 −1.80 4.20 2.20 0.16 −0.30

0.48 0.80 −2.00 1.60 −3.00 1.60 1.90 5.30 0.74 0.47 3.80 0.70 0.60 −0.97 2.30 0.90 −0.30 0.16 7.60 0.69

−0.70 0.20 3.60 0.87 0.50 −2.10 1.30 0.80 0.70 −0.26 −1.50 0.10 1.50 0.90 −0.10 −2.60 0.68 −0.30 0.69 7.00



B0 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
, B00 = 0

Table A10. Data for the 20-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h) Pmax(MW)

1 150 1000 18.19 0.00068 600

2 50 970 19.26 0.00071 200

3 50 600 19.80 0.00650 200

4 50 700 19.10 0.00500 200

5 50 420 18.10 0.00738 160

6 20 360 19.26 0.00612 100

7 25 490 17.14 0.00790 125

8 50 660 18.92 0.00813 150

9 50 765 18.27 0.00522 200

10 30 770 18.92 0.00573 150

11 100 800 16.69 0.00480 300

12 150 970 16.76 0.00310 500

13 40 900 17.36 0.00850 160

14 20 700 18.70 0.00511 130

15 25 450 18.70 0.00398 185

16 20 370 14.26 0.07120 80

17 30 480 19.14 0.00890 85

18 30 680 18.92 0.00713 120

19 40 700 18.47 0.00622 120

20 30 850 19.79 0.00773 100
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Table A11. Data for the 10-unit generator test system.

Total Units Pmin
(MW)

e
(1/MW)

d
($/h)

c
($/hr)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 10 0.0174 33 1000.403 40.5407 0.12951 55

2 20 0.0178 25 950.606 39.5804 0.10908 80

3 47 0.0162 32 900.705 36.5104 0.12511 120

4 20 0.0168 30 800.705 39.5104 0.12111 130

5 50 0.0148 30 756.799 38.539 0.15247 160

6 70 0.0163 20 451.325 46.1592 0.10587 240

7 60 0.0152 20 1243.531 38.3055 0.03546 300

8 70 0.0128 30 1049.998 40.3965 0.02803 340

9 135 0.0136 60 1658.569 36.3278 0.02111 470

10 150 0.0141 40 1356.659 38.2704 0.01799 470

Table A12. Data for the 13-unit generator test system.

Total Units Pmin
(MW)

e
(1/MW)

d
($/h)

c
($/hr)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 0 0.035 300 550 8.10 0.00028 680

2 0 0.042 200 309 8.10 0.00056 360

3 0 0.042 200 307 8.10 0.00056 360

4 60 0.063 150 240 7.74 0.00324 180

5 60 0.063 150 240 7.74 0.00324 180

6 60 0.063 150 240 7.74 0.00324 180

7 60 0.063 150 240 7.74 0.00324 180

8 60 0.063 150 240 7.74 0.00324 180

9 60 0.063 150 240 7.74 0.00324 180

10 40 0.084 100 126 8.6 0.00284 120

11 40 0.084 100 126 8.6 0.00284 120

12 55 0.084 100 126 8.6 0.00284 120

13 55 0.084 100 126 8.6 0.00284 120
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Table A13. Data for the 38-unit generator test system.

Total Units Pmin
(MW)

c
($/h)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 220 64,782 796.9 0.3133 550

2 220 64,782 796.9 0.3133 550

3 220 64,670 795.5 0.3127 550

4 220 64,670 795.5 0.3127 550

5 220 64,670 795.5 0.3127 550

6 220 64,670 795.5 0.3127 550

7 220 64,670 795.5 0.3127 550

8 220 64,670 795.5 0.3127 550

9 114 172,832 915.7 0.7075 500

10 114 172,832 915.7 0.7075 500

11 114 176,003 884.2 0.7515 500

12 114 173,028 884.2 0.7083 500

13 110 91,340 1250.1 0.4211 500

14 90 63,440 1298.6 0.5145 365

15 82 65,468 1298.6 0.5691 365

16 120 77,282 1290.8 0.5691 325

17 65 190,928 238.1 2.5881 315

18 65 285,372 1149.5 3.8734 315

19 65 271,676 1269.1 3.6842 315

20 120 39,197 696.1 0.4921 272

21 120 45,576 660.2 0.5728 272

22 110 28,770 803.2 0.3572 260

23 80 36,902 818.2 0.9415 190

24 10 105,510 33.5 52.123 150

25 60 22,233 805.4 1.1421 125

26 55 30,953 707.1 2.0275 110

27 35 17,044 833.6 3.0744 75

28 20 81,079 2188.7 16.765 70

29 20 124,767 1024.4 26.355 70

30 20 121,915 837.1 30.575 70

31 20 120,780 1305.2 25.098 70

32 20 104,441 716.6 33.722 60

33 25 83,224 1633.9 23.915 60

34 18 111,281 969.6 32.562 60

35 8 64,142 2625.8 18.360 60

36 25 103,519 1633.9 23.915 60

37 20 13,547 694.7 8.482 38

38 20 13,518 655.9 9.693 38
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Table A14. Data for the 40-unit generator test system.

Total Units Pmin
(MW)

e
(1/MW)

d
($/h)

c
($/hr)

b
($/MWh)

a
($/(MW)2h)

Pmax
(MW)

1 36 0.084 100 94.705 6.73 0.00690 114

2 36 0.084 100 94.705 6.73 0.00690 114

3 60 0.084 100 309.54 7.07 0.02028 120

4 80 0.063 150 369.03 8.18 0.00942 190

5 46 0.077 120 148.89 5.35 0.01140 97

6 68 0.084 100 222.33 8.05 0.01142 140

7 110 0.042 200 287.71 8.03 0.00357 300

8 135 0.042 200 391.98 6.99 0.00492 300

9 135 0.042 200 455.76 6.60 0.00573 300

10 130 0.042 200 722.82 12.9 0.00606 300

11 94 0.042 200 635.20 12.9 0.00515 375

12 94 0.042 200 654.69 12.8 0.00569 375

13 125 0.035 300 913.40 12.5 0.00421 500

14 125 0.035 300 1760.4 8.84 0.00752 500

15 125 0.035 300 1728.3 9.15 0.00708 500

16 125 0.035 300 1728.3 9.15 0.00708 500

17 220 0.035 300 647.85 7.97 0.00313 500

18 220 0.035 300 649.69 7.95 0.00313 500

19 242 0.035 300 647.83 7.97 0.00313 550

20 242 0.035 300 647.81 7.97 0.00313 550

21 254 0.035 300 785.96 6.63 0.00298 550

22 254 0.035 300 785.96 6.63 0.00298 550

23 254 0.035 300 794.53 6.66 0.00284 550

24 254 0.035 300 794.53 6.66 0.00284 550

25 254 0.035 300 801.32 7.10 0.00277 550

26 254 0.035 300 801.32 7.10 0.00277 550

27 10 0.077 120 1055.1 3.33 0.52124 150

28 10 0.077 120 1055.1 3.33 0.52124 150

29 10 0.077 120 1055.1 3.33 0.52124 150

30 47 0.077 120 148.89 5.35 0.01140 97

31 60 0.063 150 222.92 6.43 0.00160 190

32 60 0.063 150 222.92 6.43 0.00160 190

33 60 0.063 150 222.92 6.43 0.00160 190

34 90 0.042 200 107.87 8.95 0.0001 200

35 90 0.042 200 116.58 8.62 0.0001 200

36 90 0.042 200 116.58 8.62 0.0001 200

37 25 0.098 80 307.45 5.88 0.0161 110

38 25 0.098 80 307.45 5.88 0.0161 110

39 25 0.098 80 307.45 5.88 0.0161 110

40 242 0.035 300 647.83 7.97 0.00313 550
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