
Wireless Networks 9, 239–247, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Cost-Efficient Scheduling Algorithm of On-Demand Broadcasts

WEIWEI SUN ∗, WEIBIN SHI and BOLE SHI
Department of Computing and Information Technology, Fudan University, PR China

YIJUN YU
Department of Electrical Engineering, Gent University, Belgium

Abstract. In mobile wireless systems data on air can be accessed by a large number of mobile users. Many of these applications including
wireless internets and traffic information systems are pull-based, that is, they respond to on-demand user requests. In this paper, we study the
scheduling problems of on-demand broadcast environments. Traditionally, the response time of the requests has been used as a performance
measure. In this paper we consider the performance as the average cost of request composed of three kinds of costs – access time cost,
tuning time cost, and cost of handling failure request. Our main contribution is a self-adaptive scheduling algorithm named LDFC, which
computes the delay cost of data item as the priority of broadcast. It costs less compared with some previous algorithms in this context, and
shows good adaptability as well even in pure push-based broadcasts.

Keywords: scheduling algorithm, cost modeling, data broadcast, wireless network, mobile computing

1. Introduction

In a client/server architecture with fixed networks, clients
would send requests when they want to retrieve data from
the server. Then the server will respond to the requests and
send data to clients. Compared with fixed networks, wireless
networks have low bandwidth and low communication qual-
ity [7,10]. To support numerous mobile users to access data in
server concurrently, a new method of data-transmission is put
forward, that is, the server broadcasts data on air and clients
acquire data that way, which is called data broadcasting.

Data broadcast technology has many applications in the
field of public information dissemination, such as stock mar-
ket quotation or traffic and landmark information. One impor-
tant issue in broadcast technology is to determine an optimal
broadcast sequence according to the access probability distri-
bution of mobile users, i.e. the data broadcast scheduling. To
evaluate the effectiveness of one broadcast scheduling strat-
egy, we need to consider two basic aspects:

(1) Access Time (shortened as AT). It indicates the time
elapsed between the query submission and receipt of the
response. AT determines the response time of query made
by mobile users. We need to concentrate on the arrange-
ment of frequency and location of data items in one
broadcast period, so as to make the average AT smaller,
according to various access probabilities of data items.
The study on this issue includes [1–3,5,9,14,17], etc.

(2) Tuning Time (shortened as TT). It indicates the total time
that mobile users spend actively listening to the channel
in a complete access period. TT determines the power
consumption of mobile users because they could slip into

∗ Corresponding author.
E-mail: wwsun@fudan.edu.cn

doze (stand by) mode when they are not actively listen-
ing on the channel. As most of mobile users depend on
limited battery supply, the reduction of TT would also be
an important issue in data broadcast technology. A wide-
spread method is to insert index segments into broadcast
period in order to reduce TT . The study on this issue in-
cludes [11,13,16], etc.

In on-demand broadcasts, we cannot obtain the access pro-
files of mobile users, that is to say, their access pattern would
have some unpredictable changes. Thus, we need a kind of
new scheduling algorithm, to determine the contents and or-
ganization of data broadcast on the basis of circumstances of
recent access and scheduling.

The study of on-demand broadcast scheduling problem in-
cludes [4,8], etc. In this broadcast environment, mobile users
communicate with the server via wireless channels. These
channels include an uplink channel and a downlink channel.
Mobile users use this uplink channel to send data access re-
quest, and the contents of broadcast will reach the mobile
users through downlink channel. First, mobile users make
the access request; second, the server considers all pending
requests to decide the contents of next broadcast. One core
issue is to determine the priorities of data items to be broad-
casted, that is, which data items should be broadcasted in the
next period. A FCFS (First-Come-First-Served) scheduling
algorithm is put forward in [5], which sequences data items
according to their requested time. Because of its time se-
quencing principle, any access request would get responded
after waiting for a finite period. There does not exist any
case of endless waiting. But it has the deficiency of low av-
erage performance, because it considers only the requested
time, and does not take into account the difference of access
frequency of various data items. MRF (Most-Request-First)
scheduling algorithm will broadcast those data items with the

240 SUN ET AL.

largest number of request. As there are most-frequent data
items in every broadcast, every broadcast will have the high-
est response ratio (number of requests responded/number of
total requests), and we could get much lower AT . But it has its
own shortcoming: if some data items have few requests, they
will always line up behind several most-frequently-requested
items, so that the request on these data items could always be
unsatisfied and end in endless waiting. In [6], LWF (Long-
Wait-First) algorithm is suggested, which chooses the data
item that has the largest waiting time (the sum of the total
time that all pending requests for that item have been waiting
for) to broadcast. It considers both the number of requests
and the waiting time, so as to reduce the occurrence of end-
less waiting. In [4], LTSF (Longest-Total-Stretch-First) algo-
rithm is put forward, which considers the factor of variable-
size data items. In [8], a set of self-adaptive broadcast pro-
tocols – CBS/VBS protocols (including server broadcast pro-
tocol and client receipt protocol) is proposed, and the idea is
raised of dynamic adjusting in priority computing formula.

But all these papers mentioned above do not take into ac-
count handling of requests waiting for quite a long time. They
only consider some measures to reduce the probability of
waiting for quite a long time. Being unable to deal with those
requests that do not get responded for quite a long time, i.e.,
the permission of endless waiting, will lead to serious prob-
lems. For example, the server would not receive the access
requests because of transmission errors, in this case mobile
users (the request senders) will wait for impossible responses;
responding to an access request sent a long time ago would
also lead to ineffectiveness of the response, because the mo-
bile user who sent this request could probably have left the
area covered by broadcast, or it would not listen to the chan-
nel for the reason of saving power.

Therefore, we should set up a Response Time Limit (RTL)
for every access request. The mobile user sends one request
and starts to listen to the contents of broadcast. If it does not
get responded within the RTL, this request would be identified
as a failure and the mobile user would not continue to listen
to. Similarly, after the broadcast server received the request
sent by the mobile user, if it could not add corresponding data
item to broadcast contents within the RTL, it would delete the
request from the request sequence.

Besides, in the determination of which item should be
added to broadcast, the priority computing formula seems un-
able to explain the exact reason why those data items with low
priority should be delayed. And the significance of those cost
computing models is vague.

In this paper, we put forward a self-adaptive scheduling
algorithm of on-demand broadcast – LDCF (Largest-Delay-
Cost-First). It computes the delay cost for every data item and
uses it as the priority to schedule the data items, taking into
account three kinds of costs – AT, TT and request failure. The
parameters of delay cost computing formula will be adjusted
automatically according to recent scheduling circumstances.

The rest of the paper is organized as follows. Section 2
shows the on-demand broadcast model and defines the prob-
lem of broadcast scheduling. We also make some basic as-

sumptions here. Section 3 shows the delay cost computing
formula of data items, which indicates the increased cost if
every data item would not be broadcasted in the following
period, including access time cost, tuning time cost and re-
quest failure cost. On the basis of this formula, we describe
LDCF scheduling algorithm. We describe the simulation ex-
periments and discuss their results in section 4. We make
some conclusions in section 5.

2. Problem definition and preliminaries

A typical on-demand broadcast system could be shown as fig-
ure 1 [4].

The relationship between radio transmitter (base station)
and mobile users could be viewed as server and clients. Mo-
bile users are clients, and radio transmitter is the server. To
the convenience of our study, we make some restrictions on
the broadcast environment. Our basic assumptions are as fol-
lows.

Mobile users communicate with the server via wireless in-
formation channels. These channels include an uplink chan-
nel and a downlink channel. Mobile users use this uplink
channel to send data access request, and the contents of broad-
cast will arrive at mobile users through downlink channel. Af-
ter the broadcast server receives an access request, it will re-
spond to this request within a predetermined response time
limit, and add the requested data item in broadcasting con-
tents; otherwise this request would be regarded as a failure.
(The disposal of a failed request could be in two ways: either
the server would do nothing, waiting the mobile user to send
request again if the mobile user still want to access the data
item; or it could create a separate wireless link to send data
item to the mobile user.)

Broadcast server does not know the probability distribution
of the access of various data items by mobile users. There-
fore, the server could determine suitable broadcast scheduling
only after it received those requests. (In that case if we say the
server does not know the access pattern of mobile users, we
do not mean that the access by mobile users has not any reg-
ular patterns; actually, the access by various mobile users do
have some patterns.)

The minimal unit of broadcast is data item, and all data
items are of identical size.

Figure 1. A typical on-demand broadcast system.

COST-EFFICIENT SCHEDULING ALGORITHM OF ON-DEMAND BROADCASTS 241

Figure 2. The structure of data broadcast.

Data broadcast uses a kind of constant-period method, that
is to say, no matter what changes have taken place in the con-
tent of broadcast, the size of every broadcast is fixed.

Mobile users access one data item in each request, and any
two accesses are independent.

The following are some definitions and notions that we
may use in our further discussion.

• Unit Time: suppose the broadcast time of one data item
is 1.

• Data: the number of data items in one broadcast period.

• Index: the index length in one broadcast period.

• BP: Broadcast Period. BP = Data + Index. The structure
of data broadcast: see figure 2. The former is index seg-
ment Index, and the latter is data segment Data. The size
of Index and Data is fixed.

• Di : data item, i = 1, . . . ,M . M indicates the total num-
ber of all data items.

• Q〈D,Treq〉: indicates one access request. D is the data
item that Q requests to be broadcasted; Treq is the time
when that request is sent.

• RTL: Response Time Limit. It indicates the longest time
elapsed between the time when the mobile user sends an
access request of data item and the time when the server
responds to that request. If the server could not add the
requested data item to broadcast contents within this time
limit, we should say that this request failed. The server
could create a separate wireless link and send data item
to mobile user. If one mobile user sends a request at T0,
and at T1 (T1 � T0 + RTL) it finds in broadcast index that
the requested data item would appear at T2 (T2 > T0 +
RTL). In this case, we consider that the request gets valid
response.

• CAT : access time cost for mobile users to obtain data item
(on the basis of unit time). If one mobile user waits for
100 unit time to obtain his requested data item, then total
access time cost would be 100 CAT .

• CTT : tuning time cost for mobile users to search for the
location of one data item in the index segment. If one
mobile user waits for 10 broadcast periods to obtain one
data item, and he searches the index for 10 times, then
total tuning time cost would be 10 CTT .

In a pure push-based data dissemination scheduling, we
have two main performance metrics: access time and tuning
time. In on-demand broadcast scheduling, we should consider
not only AT and TT , but the cost of handling failed requests as
well, because we have introduced the notion of request fail-
ure.

• CF: Cost of handling a failed request. If the server could
not respond to the access request within a determined re-
sponse time RTL, we should use CF as the cost of creating

a separate wireless link between server and mobile user to
obtain data item.

3. LDCF self-adaptive broadcast scheduling algorithm

3.1. Delay cost computing model

The key of LDCF (Largest-Delay-Cost-First) scheduling al-
gorithm is its Delay-Cost computing model. We can compute
the cost of every request delayed one broadcast period, ac-
cording to such parameters as the length of broadcast period,
tuning time cost for mobile users to search for needed data
item in the index section of broadcast, failure probability of
access request, and the cost of handling failed request, etc.
This cost is composed of three aspects: access time, tuning
time, and request failure.

Some description of several notions is given below. Then
we could illustrate the formulas of Delay Cost in our discus-
sion.

• PFT
D: the popularity factor of data item D at time T , which

indicates there are PFT
D number of mobile users requesting

to access data item D. The initial value of PFT
D is zero;

every time when a new request for data item D arrives,
PFT

D will increase by 1; when one request is not satisfied
within one RTL, PFT

D will decrease by 1; if the data item
D appears in the broadcast line, PFT

D will be set as zero
again.

• SFT
Q: the safety factor, expressed by remaining broadcast

periods, which indicates there are SFT
Q number of oppor-

tunities (excluding the next one) to satisfy request Q by
broadcast at time T . The formula of SFT

Q is

SFT
Q =

⌊
Treq + RTL − T

BP

⌋
.

• Treq stands for the sending time of request Q. One thing
that we need to mention is that T stands for the time next
broadcast begins. If the safety factor is zero, it means that
if server does not broadcast the data item Q needs in the
next period, then request Q fails. We name it as safety fac-
tor, because we want to use it to express the “distance” of
request Q to the failure. Obviously, in order to minimize
failed requests, the server should respond to those requests
with small SFT

Q .

• ReqNum(SF). It indicates the total number of pending re-
quests whose safety factor equals to SF.

• RemReqNum(SF). It indicates the total number of re-
mained requests that could not be satisfied in the next
broadcast period, whose safety factor equals to SF.

• BroReqNum(SF). It indicates the total number of requests
that could be satisfied in the next broadcast period, whose
safety factor equals to SF. Obviously,

ReqNum(SF) = RemReqNum(SF) + BroReqNum(SF).

242 SUN ET AL.

• RR(SF). It indicates the ratio of requests that could not be
satisfied in the next broadcast period, whose safety factor
equals to SF:

RR(SF) = RemReqNum(SF)

ReqNum(SF)
.

• RF(SF). It indicates the failure probability of the requests
whose safety factor equals to SF, if they could not be sat-
isfied in the next broadcast period.
Apparently, if one request Q〈T ,D〉 with SF = 0 could
not be satisfied in the next period, then Q will fail, i.e.,
RF(0) = 1.
When SF > 0, for request Q〈T ,D〉, if D could not be
satisfied in the next broadcast period, the SF of Q will de-
crease by 1; the probability of those requests (safety fac-
tor = SF − 1) that could not be satisfied immediately is
RF(SF), the probability of those requests that could not be
satisfied immediately and finally got failed is RF(SF − 1),
thus,

RF(SF) = RR(SF − 1) · RF(SF − 1).

• CD(Q): the increased cost if request Q is delayed and
could not be satisfied in the next broadcast period.

• PD : the increased cost if data item D is delayed and does
not appear in the next broadcast period, i.e., the priority
of data item D. Data numbers of data items with highest
priority would be broadcasted in the next period.

Lemma 1. The cost of request Q if it would be delayed

CD(Q) = BP · CAT + CTT + RF
(
SFT

Q

) · CF.

CD(Q) is composed of three parts: the first part indicates
the access time cost increased because of delay, the second
part indicates the tuning time cost increased because of de-
lay, and the third part indicates the estimated cost of request
failure because of delay.

Theorem 1. The cost of data item D if it would be delayed

PD =
∑

Q〈D,Treq〉
CD(Q)

= PFT
D · (BP · CAT) + PFT

D · CTT

+
∑

Q〈D,Treq〉
RF

(
SFT

Q〈D,Treq〉
) · CF.

Both PD and CD(Q) include three parts: Access Time
Cost, Tuning Time Cost, and Request Failure Cost.

BP, CAT , CTT , CF are predetermined constants, while
PFT

D,RF(SFT
Q〈D,Treq〉) will change along with recent circum-

stances of access and broadcast. When the failure rate in-
creases, those requests with low SF will be satisfied first;
when the failure rate decreases, those data items with high
PF will be broadcasted priorly.

If CF = 0, the priority of data item D,PD , is in direct
proportion to the number of pending requests for data item
D, PFD , and thus, LDCF degenerates to MRF.

3.2. LDCF scheduling algorithm

We describe LDCF scheduling algorithm as follows:

Algorithm 1 (LDCF).

Input: request sequence;
Output: a broadcast scheduling;
Proceeding:
main()
{

fail_rate[]:=[1,0,0, . . . ,0]
time = 0;
while true do
{

for i := 1 to BP
{time = time + 1;

receive the new requests {req〈Di, time〉},
and add them to RequestSequence;

}
LDCF(time);

}
}
procedure LDCF(time)
{

for each data item Di
DataItem[Di].priority := 0;

for each pending request req〈Di, req_time〉
in RequestSequence

{

SF :=
⌊

req_time + RTL − time

BP

⌋
;

DataItem[Di].priority :=
DataItem[Di].priority + BP ∗ CAT

+ CTT + fail_rate[SF] ∗ CF;
}
select Data number of data items with largest

priority from DataItem[];
add these data items into broadcast period sorted

by the value of PF (in descending order), and
make the index;

compute fail_rate[] once again;
delete those requests that have been responded or

failed in RequestSequence;
}

In the above description, we mainly focus on the illus-
tration of LDCF algorithm, therefore, some implementation
details have been omitted. For example, when one request
req〈Di, req_time〉 would not get responded and failed because
of time out, we did not make a concrete analysis on creating
direct wireless link between server and mobile user to send
requested data items. Also, we will not fully explain how to
select data items with largest priority, how to add broadcast
contents and make index, etc.

COST-EFFICIENT SCHEDULING ALGORITHM OF ON-DEMAND BROADCASTS 243

4. Experiments and comparisons

We intend to use simulation method to compare LDCF
scheduling algorithm with MRF, FCFS and LWF algorithms,
so as to evaluate the performance of LDCF scheduling algo-
rithm. And in experiments 6 and 7, we also try to use LDCF
in pure push-based broadcasts and compare LDCF to other
push-based scheduling algorithms. By studying its perfor-
mance, we may analyze the adaptability of LDCF.

At each time, the server will receive access requests from
mobile users, compute the priority of every data item on the
basis of all pending requests, then select Data number of data
items with largest priority and add them to broadcast contents.

4.1. Experimental data

4.1.1. The numerical distribution of newly-arriving requests
during one time period

Suppose the probability that mobile user will send request
during one time period is p (0 � p � 1), the number of
mobile users is m, then the probability that number of new
requests equals to r is:

pr · Cr
m · (1 − p)m−r · Cm−r

m .

4.1.2. The numerical distribution of data items required by
new requests during one time period

We use function Zipf (k) to describe the skewed distribution of
data access. In generating the distribution of data access with
Zipf (k), we suppose the skewness k at any time could change
randomly in one interval. Besides, we would randomly se-
lect 10% data items, multiply their distribution results by a
random number between 0 to 10.

4.1.3. Benchmark random numbers
We use the randomizer provided by http://www.
randomizer.org to generate benchmark random numbers
for our experiments.

4.2. Experiment results and analysis

4.2.1. Parameter settings
The following are some common parameters:

• M: the number of data items that the server could use
to broadcast. Suppose it is 1000 in the following
experiments.

• Data: the number of data items in one broadcast period.

• Index: the length of index section in one broadcast period.
Suppose it is 6 in the following experiments.

• RN: the average number of requests that the server would
receive at each time.

• k: parameter of function Zipf , indicating the skewness
of data access distribution.

• RTL: response time limit.

• CAT : cost of AT per unit time. Suppose it is 1 in the fol-
lowing experiments.

Parameter Value
Data 100
RN 10.10
k 0
RTL 1500–3500

Figure 3. Performance for various algorithms when fail rate of request is low.

• CTT : cost of TT per seeking index. Suppose it is 20 in the
following experiments.

• CF: cost of handling a failed request. Suppose it is 2000
in the following experiments.

4.2.2. Experiment 1: Performance when fail rate of request is
low

First, we discuss the performance comparison of LDCF algo-
rithm with the other three algorithms in the situation of low
workloads. We will consider the effect of various RTL on
Average Cost of request. The setting of parameters and the
results are shown in figure 3.

As RTL increases, Average Cost of request will decrease.
When RTL � 2500, there are not any failed requests and all
requests are satisfied in MRF scheduling, that is, all data items
whose SF = 0 belongs to those data items with largest PF. In
LDCF scheduling, all data items with SF = 0 belong to those
data items with largest PD , too. Therefore, at this time LDCF
and MRF are identical, of which both are optimal scheduling
algorithm having the least average AT and TT . The perfor-
mance of LWF is a little worse than LDCF and MRF, while
FCFS is the worst.

In short, LDCF and MRF occupy the first place, LWF
comes the second, and FCFS is the worst.

4.2.3. Experiment 2: Performance when fail rate of request is
high

In this experiment, we discuss the performance comparison
between LDCF and the other three algorithms when fail rate
of request is high. The setting of parameters and the results
are shown in figure 4.

If the skewness k of data access randomly changes be-
tween [−1.5, 1.5], lots of requests will get failed when there
are many requests at each unit time.

The fail rate of LDCF scheduling is the lowest, and its
average cost is the lowest, too. The performance of LWF
scheduling is a little worse than that of LDCF.

244 SUN ET AL.

Parameter Value
Data 120
RN 247.15
k −1.5–1.5
RTL 1500

Figure 4. Performance for various algorithms when fail rate of request is
high.

FCFS scheduling has much higher fail rate and larger av-
erage cost. It shows that the average performance of FCFS
scheduling is unsatisfactory, because it considers only the
time factor, not the number of requests.

The performance of MRF scheduling still lags behind
LDCF and LWF. It also shows that it is insufficient to con-
sider only the number of requests, not the time factor.

We will not compare FCFS and MRF with our algorithm
in further discussion.

In short, LDCF could efficiently reduce the number of
failed requests, and it has the least average cost. Consider-
ation of only one factor (request number or time, as in the
case of MRF and FCFS) will lead to lots of request failures.

4.2.4. Experiment 3: Effect of Data
In this experiment, we discuss the effect of length of data seg-
ment in one broadcast period. The setting of parameters and
the results are shown in figure 5.

In this experiment, our conclusion is: the number of data
items contained in one broadcast period should be moderate.
Too small a value will drastically increase the average cost,
but once its value increases above one certain point, average
cost will rise instead. Still, the performance of LDCF is better
than that of LWF.

Parameter Value
Data 60–200
RN 98.86
k 0
RTL 1500

Figure 5. Effect of Data.

Parameter Value
Data 100
RN 98.86
k −1.5–1.5
RTL 800–2000

Figure 6. Effect of RTL.

4.2.5. Experiment 4: Effect of RTL
In this experiment, we discuss the effect of Response Time
Limit. The setting of parameters and the result are shown in
figure 6.

In this experiment, we conclude that the larger RTL is,
the lower the average cost is. When RTL > 1200, the per-
formance gap between two algorithms is very small. Again,
LDCF shows some advantages over LWF.

4.2.6. Experiment 5: Effect of skewness of data access
distribution

In this experiment, we discuss the effect of skewness k of data
access distribution.

First, we will consider the cases when the value of skew-
ness k is certain. The setting of parameters is shown as fol-
lows. The result is shown in figure 7.

Second, we consider the cases when skewness k is a ran-
dom number in a certain interval centered on zero. The skew-
ness k might be different at any time.

COST-EFFICIENT SCHEDULING ALGORITHM OF ON-DEMAND BROADCASTS 245

Parameter Value
Data 100
RN 98.86
k 0–1.5
RTL 1000

Figure 7. Effect of skewness k of a certain value.

Parameter Value
Data 100
RN 98.86
k [0, 0], . . . , [−1.5, 1.5]
RTL 1000

Figure 8. Effect of skewness k in a certain interval.

The setting of parameters and the results are shown in fig-
ure 8.

In this experiment, our conclusion is: when skewness k

holds one certain value, the average cost of LDCF will de-
crease as k increases. Its overall performance is superior to
that of LWF.

When skewness k is a random number in a certain inter-
val centered on zero, the average cost of LDCF shows little
influence of interval size.

The LDCF algorithm is designed for on-demand broad-
casts where the server does not have the access profiles of
mobile users. The experiments and analyses above show that
LDCF has good performance. In a pure push-based data dis-
semination scheduling, we often assume that the access pat-
tern of mobile users is certain and predictable. We try to apply
LDCF to pure push-based broadcasts where the access pat-
tern of mobile users is certain and compare LDCF with the
flat schedule (FS) and the skewed schedules (such as MDS
– Multi-disk schedule) [1]. Different from the previous ex-
periments, the requests used in the next two experiments are

Parameter Value
Data 160
k 0
RTL 2000

Figure 9. Comparing LDCF with FS in pure push-based broadcasts.

generated according to the access pattern without any distur-
bance.

4.2.7. Experiment 6: Comparing with FS in pure push-based
broadcasts with uniform access

In a pure push-based information system, if each data item
has the same access probability, FS is used to disseminate
the information; if the access pattern of mobile users is not
available, usually we assume that each data item has the same
access probability, and FS is also used.

In this experiment, we make the condition that each data
item has same access probability, adopt (1,m) index [11] to
insert index segments into broadcasts and set a sufficient RTL
so that in FS no access failure will occur. Apparently, in this
case, FS is the best schedule. The setting of parameters of
LDCF is shown in figure 9 and the unlisted parameters are
set as in the previous experiments. The result is shown in
figure 9.

In this experiment, when m = √
M/Index = 10, average

cost of FS is minimal [11], and equals to

M + m · Index

2
+ CTT = 550 + 20 = 570.

Average cost of LDCF is

CAT + CTT + CF = 557 + 68 + 0 = 625.

The CAT of LCDF is very close to the CAT of FS, and the
CTT of LCDF is several times larger than the CAT of FS, just
because each index segment in LDCF includes the addresses
of the data items only in the subsequent data segment. In or-
der to find a data item the MU often needs to read several
index segments, while in the (1,m) index each index segment
includes the addresses of all data items, so in FS we can ob-
tain the address of the data item by reading only one index
segment.

LDCF’s performance is related to Data’s value. To the
proper Data, its performance is close to the theoretically best
schedule – FS, in this case.

246 SUN ET AL.

4.2.8. Experiment 7: Comparing with skewed schedules in
pure push-based broadcasts with skewed access

When the access probability of data item is different from
each other, we should use other more efficient schedules to
replace FS. One of the most famous approaches is MDS pro-
posed by Acharya et al. in [1]. However, MDS counts little on
index and optimizing, Li improves MDS and proposes HMDS
in [12] which has greatly optimized its AT, Sun et al. propose
a new skewed schedule named NAS in [15], whose average
AT is close to the theoretical minimum.

Different from FS, the broadcast period of MDS and
HMDS can not be pre-set, various access pattern and parame-
ter values will cause different broadcast periods, so LDCF’s
RTL and MDS and HMDS’s broadcast period cannot be sim-
ply set equally.

The 80–20 pattern is a most typical access pattern in data-
base system, i.e., the 80% accesses concentrate on the 20%
data items, nearly close to the distribution of Zipf (0.95), so
we make contrast between LDCF and MDS, HMDS, NAS
with this access pattern.

There’s little discussion on index in Acharya’s paper, and
we imitate (1,m) index to insert index segments. With
skewed access, we use Data to indicate the broadcast pe-
riod without index, and make the indexless average AT to be
α · Data, so if m = √

Data/(2α · Index) and AT is minimal,
we can see that this formula is still correct in FS with uniform
access.

The setting of parameters of LDCF is shown in figure 10
and the unlisted parameters are set as in the previous experi-
ments. The result is shown in figure 10.

In Figure 10, we select the best results of MDS and HMDS
with the varying num_disks. Set a sufficient RTL so that in
these skewed schedules no access failure will occur. The de-
duction of theoretical optimizing is mentioned in [12]. Aver-
age cost of LDCF is counted according to various RN from
51.82 to 1340.65.

In the two above experiments, we conclude that LDCF per-
forms well even in pure push-based broadcasts. Its average
cost is close to the schedules with access pattern preset, which
proves its fine adaptability.

5. Conclusions

In this paper, we have studied the problem of scheduling on-
demand broadcasts. Compared with pure push-based data
scheduling, we need uplink channel to send data access re-
quest in an on-demand broadcast-based environment. The
server would not know the access profiles of mobile users,
and it should take into account the situation when request fails
because of time out.

Previous works in this context mainly discuss how to re-
duce the average AT of mobile users. In practical applica-
tions, the handling of a request waiting for quite a long time
must be considered and we introduce the notion request fail-
ure. While discussing the performance of a scheduling al-
gorithm of on-demand broadcasts, we take into account not

Parameter Value
Data 160
RN 51.82–1340.65
k 0.95
RTL 2000

Figure 10. Comparing LDCF with other skewed schedules in pure push-
based broadcasts.

only AT, but also TT and request failure. We put forward a
self-adaptive scheduling algorithm – LDCF, which computes
the delay cost for every data item and uses it as the prior-
ity to schedule the data items. The parameters of delay cost
computing formula will be adjusted automatically according
to recent scheduling circumstances.

Our work raises the open algorithmic problem of deter-
mining a schedule that minimizes the average cost of re-
quest considering all kinds of cost – AT , TT and failure. We
compare LDCF with LWF, FCFS and MRF through several
experiments, which indicate the average cost of LDCF be
the least. We also make contrast between LDCF and some
skewed schedules in pure push-based broadcasts, and LDCF
acts well and shows fine adaptability.

Acknowledgement

This work was supported by the National Natural Science
Foundation of China under Grant No. 69933010.

References

[1] S. Acharya, R. Alonso, M.J. Franklin and S.B. Zdonik, Broadcast
Disks: Data management for asymmetric communications environ-
ments, in: SIGMOD Conference (1995) pp. 199–210.

[2] S. Acharya, M.J. Franklin and S.B. Zdonik, Disseminating updates on
Broadcast Disks, in: VLDB (1996) pp. 354–365.

[3] S. Acharya, M.J. Franklin and S.B. Zdonik, Dissemination-based data
delivery using Broadcast Disks, IEEE Personal Communications 2(6)
(1995) 50–60.

[4] S. Acharya and S. Muthukrishnan, Scheduling on-demand broadcasts:
New metrics and algorithms, in: MOBICOM (1998) pp. 43–54.

[5] D. Aksoy and M.J. Franklin, Scheduling for large-scale on-demand
data broadcasting, in: INFOCOM, Vol. 2 (1998) pp. 651–659.

[6] M.A. Bender, S. Chakrabarti and S. Muthukrishnan, Flow and stretch
metrics for scheduling continuous job streams, SODA (1998) 270–279.

[7] C. Dhawan, Mobile Computing (McGraw-Hill, 1997).

COST-EFFICIENT SCHEDULING ALGORITHM OF ON-DEMAND BROADCASTS 247

[8] A. Datta, D.E. Vandermeer, A. Celik and B.V. Kumar, Broadcast proto-
cols to support efficient retrieval from database by mobile users, ACM
Transactions on Distributed Systems 24(1) (1999) 1–79.

[9] V.A. Gondhalekar, Scheduling periodic wireless data broadcast, MS
thesis, University of Texas at Austin (1995).

[10] T. Imielinski and B.R. Badrinath, Mobile wireless computing: Chal-
lenges in data management, Communications of the ACM 37(10)
(1994) 18–28.

[11] T. Imielinski, S. Viswanathan and B.R. Badrinath, Energy efficient in-
dexing on air, in: SIGMOD Conference (1994) pp. 25–36.

[12] L. Li, The research on data broadcast and data replication/caching in
mobile database systems, Ph.D. thesis, National University of Defense
Technology, PR China (1999).

[13] N. Shivakumar and S. Venka, Efficient indexing for broadcast-based
wireless systems, Mobile Networks and Applications 1(4) (1996) 433–
446.

[14] C. Su and L. Tassiulas, Broadcast scheduling for information distribu-
tion, in: INFOCOM, Vol. 1 (1997) pp. 109–117.

[15] W. Sun, W. Shi and B. Shi, Optimizing the access time of data broadcast
in mobile computing environments, Mini-Micro Systems (to appear).

[16] S. Viswanathan and T. Imielinski, Pyramid broadcasting for video on
demand service, Technical report DCS TR-311, Rutgers University
(1994).

[17] J.W. Wong, Broadcast delivery, Proceedings of the IEEE 76(12) (1988)
1566–1577.

Weiwei Sun is a Ph.D. candidate in the Department
of Computing and Information Technologies, Fudan
University, Shanghai, China. He received M.S. de-
gree in computer science from Fudan University in
1999. His current research is broadcast scheduling
for wireless mobile computing systems.
E-mail: wwsun@online.sh.cn

Weibin Shi is a Ph.D. candidate in the Department
of Computing and Information Technologies, Fu-
dan University, Shanghai, China. He received M.S.
degree from Shanghai University for Science and
Technology in 1992. His research interests include
object-oriented database systems, mobile databases
and query evaluation techniques for XML data.
E-mail: ly008136@online.sh.cn

Bole Shi is a Chief Professor of the Department of
Computing and Information of Fudan University, Su-
perintendent of Computer Science Research Institute
of Fudan University, Director of Shanghai Interna-
tional Research Center, Vice Chairman of Computer
Science Education Guide Commission of Education
Ministry of China. His research area includes re-
lational databases, knowledge bases, object-oriented
databases, and mobile databases.
E-mail: bshi@fudan.edu.cn

Yijun Yu graduated from the Computer Science De-
partment of Fudan University, China (B.S., 1992).
After graduation, he participated the Laboratory of
Software Engineering in Fudan University and did
R&D for the Jadebird CASE tools. After receiv-
ing his M.S. degree in 1995, he continued his post-
graduate course on computer software in Fudan Uni-
versity and did research work on parallel processing
at the Institute of Parallel Processing. In July, 1998,
he received his Ph.D. from Fudan University. Since

1999, he joined the ELIS research group in University of Ghent, Belgium.
His research interests include compilers, distributed systems, wireless net-
works, computer graphics and visualization.
E-mail: yijun@linmp1.elis.rug.ac.be

