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A B S T R A C T

Urban public transport operations in peak periods are characterized by highly uneven demand
distributions and scarcity of resources. In this work, we propose a rule-based method for sys-
tematically generating and integrating alternative lining options, such as short-turning and in-
terlining lines, into the frequency and resource allocation problem by considering the dual ob-
jective of (a) reducing passenger waiting times at stops and (b) reducing operational costs. The
bus allocation problem for existing and short-turning/interlining lines is modeled as a combi-
natorial, constrained and multi-objective optimization problem that has an exponential compu-
tational complexity and a large set of decision variables due to the additional set of short-
turning/interlining options. This constrained optimization problem is approximated with an
unconstrained one with the use of exterior point penalties and is solved with a Genetic Algorithm
(GA) meta-heuristic. The modeling approach is applied to the bus network of The Hague with the
use of General Transit Feed Specification (GTFS) data and Automated Fare Collection (AFC) data
from 24 weekdays. Sensitivity analysis results demonstrate a significant reduction potential in
passenger waiting time and operational costs with the addition of only a few short-turning and
interlining options.

1. Introduction

Ideally, public transport supply will perfectly correspond and scale to passenger demand. However, this is impossible in real-
world operations due to the uneven distribution of demand over time and space. This results in inefficiencies for both passengers and
operators and creates the need to re-dimension the fleet and circulate vehicles between demand areas.

Planning decisions regarding public transport services in general, and bus networks in particular, are typically made at the
strategic, tactical and operational planning level (Ibarra-Rojas et al., 2015). At the strategic level, the network and route-design
problem is addressed where the alignment of the bus lines and the location of the bus stops are determined (Mandl, 1980; Ceder and
Wilson, 1986; Pattnaik et al., 1998; Szeto and Wu, 2011; Borndörfer et al., 2007). Subsequently, at the tactical planning level, the
sub-problems of bus frequency settings (Gkiotsalitis and Cats, 2017), timetable design (Ceder et al., 2001; Gkiotsalitis and Maslekar,
2018a; Gkiotsalitis and Maslekar, 2018b), vehicle scheduling (Ming et al., 2013), driver scheduling (Wren and Rousseau, 1995) and
driver rostering (Moz et al., 2009) are typically addressed in a sequential order.

Apart from the strategic and tactical planning, bus operators can take decisions over the course of the daily operations. In the
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operational planning phase, near real-time control measures such as stop-skipping (Sun and Hickman, 2005; Yu et al., 2015; Chen
et al., 2015), dispatching time changes (Gkiotsalitis and Stathopoulos, 2016) or bus holdings at specific stops (Newell, 1974;
Hernández et al., 2015; Wu et al., 2017; Gavriilidou and Cats, 2018) can be deployed. Notwithstanding, bus holding tends to increase
the inconvenience of on-board passengers who are held at stops (Fu and Yang, 2002) and stop-skipping increases the inconvenience
of passengers who cannot board the bus that skips their stop (Liu et al., 2013).

Typically, the strategic, tactical and operational planning problems are addressed at different levels with the exception of a
number of works that solve together the strategic-level problem of route design and the tactical-level problems of frequency settings
and timetable design (Yan et al., 2006; Zhao and Zeng, 2008). Especially, the simultaneous solution of the route design and the
frequency settings problem has the potential of improving the efficiency of the operations by modifying the bus routes and the
corresponding frequencies to better cater for the passenger demand imbalances.

The frequency settings problem has been studied by several works in literature (Yu et al., 2009; Shireman, 2011; Gkiotsalitis and
Cats, 2018). Unlike frequencies, modifying bus routes on a regular basis for improving the demand matching (i.e. operating different
routes on different times of the day) and reducing the operational costs is not practical because passengers rely heavily on the pre-
defined routes of the bus network. Therefore, frequent route changes increase significantly the passenger inconvenience even if they
are properly communicated (Kepaptsoglou and Karlaftis, 2009; Daganzo, 2010). Given the above, bus operators tend to modify the
frequencies of bus lines, but they are reluctant to modify the bus routes that cover specific segments of bus lines which exhibit
significant demand imbalances (examples of which are illustrated in Fig. 1).

In Fig. 1, one can observe that the average bus-load can be significantly higher at specific segments of a bus line. As a result, if the
bus frequencies are set according to the well-known maximum loading point rule (Ceder, 2016) which ensures that the frequency is
such that the bus load at the most heavily-used point along the route does not exceed the bus capacity, then buses will be significantly
underutilized for the remaining parts of their routes.

Fig. 1 presents the average bus occupancy levels of two bus lines (line 3 and line 5 in The Hague) from 4 pm until 5 pm and
indicates the problem of vehicle underutilization when modifying frequencies is the only option. For instance, the buses of the
outbound direction of line 3 serve more than 20 passengers between stops 7 and 11 but are significantly underutilized at stops 1–6
and 12–38 which account for 87% of the route. Instead, the generation of new routes for serving only this specific segment can
resolve this problem in a more efficient way than a mere modification of bus frequencies.

It should be noted here that the passenger utilization of route segments presented in Fig. 1 can be inferred from smartcard data
(Munizaga and Palma, 2012). Moreover, the recurrence of travel patterns and related user profiles and user preferences can be
inferred using clustering and choice modelling techniques (Ma et al., 2013; Gkiotsalitis and Stathopoulos, 2015; Goulet-Langlois
et al., 2016; Yap et al., 2018). This information can then be instrumental in identifying systematic patterns in relation to the cor-
respondence between supply and demand.

Given the practical and public acceptance issues associated with bus route variants, other flexible approaches which consider the
deployment of short-turning and interlining can be considered. The works of Verbas and Mahmassani (2013) and Verbas et al. (2015)
provide a first step in this direction since they do not allocate bus frequencies at a line level, but at a segment level considering a pre-
defined set of short-turning options.

This work leverages on the potential flexibility embodied in short-turning and interlining lines in catering more efficiently to the
prevailing passenger demand variations. First, observed passenger demand variations are used for generating a set of potential switch
points along existing bus service lines where short-turning and interlining operations are allowed. The switch points are a subset of
the bus stops of the network. Short-turning and interlining options are permitted at each switch point; thus, there is an additional set
of (sub-) lines which can serve a set of targeted line segments. We denote the generated candidate short-turning and interlining lines
as “virtual lines” for which vehicles can be allocated if deemed desirable. With this approach, we introduce an additional flexibility in
allocating buses to lines because apart from the originally planned lines, buses can also be allocated to the set of virtual lines in order
to match the passenger demand variation at different segments of bus lines without serving unnecessarily all the stops of the ori-
ginally planned lines.

Fig. 1. Average bus-load per bus stop for bus line 3 and bus line 5 in The Hague from 4 pm to 5 pm.
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The generation of virtual short-turning and interlining lines enables the allocation of vehicles at specific line segments with
significant passenger demand, but at the same time increases dramatically the number of lines where buses may be allocated. Given
the combinatorial nature of the vehicle allocation problem and the vast number of potential bus allocation combinations to originally
planned and virtual lines, the combinatorial solution space cannot be exhaustively explored for obtaining a globally optimal solution.
To this end, this work contributes by (a) modeling the above-mentioned problem for the first time and introducing an automated,
rule-based scheme for generating switch point stops for short-turning and interlining “virtual lines”, (b) introducing an exterior point
penalization scheme for penalizing the violation of constraints and approximating the constrained optimization problem with an
unconstrained one, (c) developing a problem-specific genetic algorithm that returns improved solutions without performing an
exhaustive exploration of the combinatorial solution space and (d) investigating the potential gains in operational costs and pas-
senger waiting times by applying the set of the above-described methods at the bus network of The Hague, the Netherlands.

2. Related studies

The frequency settings problem has been extensively studied by several works in the literature (Farahani et al., 2013; Ceder, 2007;
Barra et al., 2007; Cipriani et al., 2012; Fan and Machemehl, 2008). Most works on setting the optimal bus frequencies address the
problem as an exercise of balancing the passenger demand with the available supply of buses (Furth and Wilson, 1981; Cipriani et al.,
2012) or utilize the passenger load profile/maximum loading point rule-based techniques (Ceder, 1984; Ceder, 2007; Hadas and
Shnaiderman, 2012)).

Examining in more detail the works on bus frequency settings, Yu et al. (2009) determined the optimal bus frequencies subject to
the fleet size constraints using a bi-level model, which consisted of a genetic algorithm and a label-marking method. Hadas and
Shnaiderman (2012) used AVL and automatic passenger counting (APC) data to construct the statistical distributions of passenger
demand and travel time by time of day and used them for determining the bus frequencies based on the minimization of empty-seats
and the avoidance of passenger overload. Bellei and Gkoumas (2010) and Li et al. (2013) also considered stochastic demand and
travel times when optimizing the bus frequencies.

dellOlio et al. (2012) developed a bi-level optimization model for determining the bus sizes and the frequency settings. In their
work, the upper-level model allowed buses of different sizes to be assigned to public transport lines and the lower-level optimized the
frequency of each line according to the passenger demand using the Hooke-Jeeves algorithm. Huang et al. (2013) developed a bi-level
programming model for optimizing bus frequencies while considering uncertainties in bus passenger demand. They used a genetic
algorithm (GA) to solve the model for an example network in the city of Liupanshui, China resulting in a 6% reduction in the total
cost of the transit system.

Another line of works has jointly addressed the route design and the frequency settings problem. Arbex and da Cunha (2015)
solved both the route design and the frequency setting problem with the use of a genetic algorithm aiming at minimizing the sum of
passengers’ and operators’ costs. Similarly, Szeto et al. (2011) addressed the same problem by using a genetic algorithm for opti-
mizing the route design problem and a neighborhood search heuristic for optimizing the frequency setting problem for a suburban
bus network in Hong Kong. Both Arbex and da Cunha (2015) and Szeto et al. (2011) design the routes and bus frequencies at the
strategic planning level and do not permit any route modification (such as the inclusion of short-turning or interlining lines) at the
tactical planning stage.

This lack of consideration of short-turning and interlining lines poses a substantial limitation since allocating the optimal amount
of resources (i.e., buses) to originally planned service lines does not guarantee the optimal utilization of vehicles. This is supported by
several studies such as Furth and Wilson (1981) and Hadas and Shnaiderman (2012) that explore the issue of bus underutilization
(empty-seats) when setting frequencies according to load profile-based techniques or techniques that try to match the passenger
demand with the available bus supply without allowing route alterations.

The introduction of a flexible route design and vehicle allocation scheme in the tactical planning phase (where service frequencies
are not set per line, but per line segment based on the automatically generated short-turning and interlining lines that serve those
segments) is a key feature of the approach adopted in this study. The works of Delle Site and Filippi (1998), Cortés et al. (2011),
Verbas and Mahmassani (2013) and Verbas et al. (2015) focus on generating short-turning lines for serving the demand variation at
specific line segments and are therefore the most relevant studies to our work. Cortés et al. (2011) showed that short turning lines can
yield large savings of operational costs even if they require more deadheading for performing the short-turning routes. In Verbas and
Mahmassani (2013) and Verbas et al. (2015) the frequencies of buses were not allocated at the line level, but at the segment level
using also short-turning lines. Previous studies considered only pre-defined short-turning lines that can cover the spatiotemporal
demand variations at different segments of the service lines based on historical passenger demand data. In contrast, in this work sub-
lines and inter-lines are generated automatically by introducing a framework that allows not only for short-turning lines but in-
terlining options as well as detailed in the following section.

3. Methodology

3.1. Overall framework

Before presenting the overall framework, we first clarify the use of the terms short-turning lines (also referred to as sub-lines) and
interlining lines (also referred to as interlines). In the context of this work, a short-turning line is a line that serves all stops of a
segment of an originally planned line (in both directions). The bus stops in that segment are served in the same order as they would

K. Gkiotsalitis et al. Transportation Research Part C 98 (2019) 14–36

16



have been served by the originally planned line service. In contrast, an interlining line serves one direction of a segment of an
originally planned line and another segment from another originally planned line (see Fig. 2). The interlining line serves those two
segments uni-directionally resulting in a loop form.

Given the above conventions, we can have an initial indication of whether a short-turning or interlining line fits a particular
scenario of passenger demand. First, a short-turning line must always serve all stops in both directions of a segment of an originally
planned line. Hence, a short-turning line is more suitable for accommodating segments of an originally planned line which exhibit
significantly higher ridership levels in both directions. In contrast, an interlining line is beneficial for line segments with significant
bus loads at one direction only since they will serve only that direction and then serve a series of stops of another originally planned
line segment.

For the generation of potential short-turning and interlining lines from the existing bus lines, one needs to establish first a set of
switch point stops. Theoretically, the number of switch points for an originally planned bus line can be equal to the number of its bus
stops. Nevertheless, generating all possible sub-lines and inter-lines considering each bus stop as a potential switch point is a
computationally complex task and may result in a service that is difficult to operate and communicate to passengers. For this reason,
works such as Verbas and Mahmassani (2013) and Verbas et al. (2015) propose to pre-define a limited set of switch stops at bus stops
where a significant demand variation is observed while others, such as Cortés et al. (2011) and Ghaemi et al. (2017), consider the
selection of switch points as a decision variable of the short-turning problem.

In this work, we follow the approach of Verbas and Mahmassani (2013, 2015) in determining the switch stops based on the
observed variations in passenger demand. Notwithstanding, since our work focuses on generating also inter-lines (and not only sub-
lines) we examine transfer stops as well because such stops can be used for interlining without inducing additional deadheading
times. An illustration of potentially generated sub-lines and inter-lines based on the switch points is presented in Fig. 2.

Given the fact that some transfer stops might be very close to bus stops where a significant variation of passenger demand is
observed, for each bus line l L with stops sequentially numbered as S s S{1, 2, , , , | |}l l= … … if s Sl is a switch stop and other bus
stops in close vicinity of stop s are also potential switch stops, then the bus operator is inclined to merge them into one representative
switch point stop for simplifying the practical implementation of short-turning and interlining lines. This “close vicinity” can be
defined on a case-by-case basis based on the specific settings and the preferences of the bus operator. For instance, if a bus operator is
willing to exclude a1 preceding stops (s a s a s, 1, , 11 1 + … ) and a2 following stops (s s a s a1, , 1, ,2 2+ … + … + ) of a switch
stop s from the set of switch stop candidates because they are too close to stop s, then a set A s a s s s s a( , , 1, , 1, , )s 1 2= … + … +

can be used for excluding such bus stops from further consideration. In the boundary case where the switch point stop is s 1= , then
there is no stop preceding stop s 1= and the set of excluded switch point stop candidates is A s s s s a( , 1, 2, , )s 2= + + … + . Note that
stop s is excluded because it is already a switch point stop. The other boundary case where the switch point stop is the last stop at the
end of the line is solved following a similar approach.

To generalize, we include boundary conditions in set As by defining the following dummy variables:

a
a s a

s

if 1

1 otherwise
1

1 1
=

(1)

and

a
a s a S

S s

if | |

| | otherwise

l

l

2

2 2
=

+

(2)

Fig. 2. Originally planned lines (black) and a potential generation of short-turning lines (blue dashed) or interlining lines (red) at specific switch
stops (orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To incorporate the boundary conditions, set As becomes A s a s a( , , )s 1 2= … + . An illustrative example of this is provided in
Fig. 3.

This ad hoc rule helps to reduce the number of switch points without affecting significantly the final outcome (i.e., short-turning
lines that perform short-turns at neighboring stops are not expected to perform much differently).

In addition to the above, we establish the following assumptions for (a) the determination of the switch points and (b) the
generation of potential sub/inter-lines:

(1) All transfer stops are considered as potential switch points. Bus stops where a significant ridership change is observed (i.e., bus
stops at which the on-board passenger change is greater than a pre-defined percentage of z%) are also considered as potential
switch points.

(2) Neighboring bus stops, As, of a switch stop s that belong to the same line cannot be considered as switch points.
(3) Interlining connections are required to return to the origin station after completing their trip (as illustrated in Fig. 2).
(4) Interlining lines can serve segments of at most two originally planned bus lines.
(5) Any interlining line which serves segments of two originally planned lines cannot have a total trip travel time which exceeds a

pre-defined limit of y minutes (which may be defined by the transit agency and prevents the generation of excessively long
interlining lines).

(6) Lengthy deadheading times may not be allowed by transit agencies; thus, an upper limit of k minutes for total deadheading times
is applied for each of the virtual lines.

Furthermore, this work is situated at the tactical planning stage where the round-trip travel times of bus trips which are used for
allocating buses to originally planned and short-turning/interlining lines are based on historical values. Such values contain implicit
information on congestion. In future work, our methodology can be expanded to online resource reallocation (i.e., in short-term
horizons), by integrating information from the road traffic.

Before proceeding further into the analysis of the problem, the notation presented in Tables 1 and 2 is introduced.

3.2. Generating the set of switch stops

Using the above notation and the rules described in assumptions (1)–(2), an exhaustive, rule-based graph search is devised for de-
termining the switch points of the bus network. The rule-based graph search for determining the switch points is presented in Algorithm 1.

Algorithm 1. Rule-based graph search for determining the switch points

1: function Rule-based graph search

2: Initialize an empty set of switch point stops S ;

3: for each originally planned line l Lo do 4: for each bus stop s S{2, , | | 1}l… do

5: if bus stop s is a transfer stop and s S s S then

5: Set S S s{ };

7: for each neighboring stop s As do

8: if s S then

9: S S s{ };

10: end if
11: end for
12: end if
13: if the on-board occupancy rl s, varies by more than z% from rl s, 1 then

14: if s is not an excluded switch point candidate and s S then

15: Set S S s{ }

16: end if
17: end if
18: end for
19: end for
20: end function

Fig. 3. [Left] The set of excluded switch point stop candidates around switch point stop s when a 21 = and a 12 = is A s s s s{ 2, 1, , 1}s = + ;
[Right] The set of excluded switch point stop candidates around switch stop s when a s 1 2 1 11 = = = and a 12 = is A s s s{ 1, , 1}s = + .
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The 5-th line in Algorithm 1 states that if a stop s is a transfer stop, it does not belong already to the set of switch points and does
not belong to the set of stops that cannot be used as switch points due to regulatory constraints; then, it can be added to the set of
switch points. After this, it is checked whether there are any neighboring stops of the examined bus stop, s, that are already allotted to
the switch points’ set and, if this is the case, bus stop s is excluded from the set of switch stops (lines 7–11 of Algorithm 1).

A bus stop s can also be a switch point even if it is not a transfer stop as described in lines 13–17 of Algorithm 1. In more detail, if
bus stop s is not yet a switch point and the ridership change between stop s and s 1+ is more than z%; then, this bus stop can be added
to the switch points’ set. Before adding bus stop s to the switch points’ set, the algorithm checks whether (a) bus stop s is not already
in the set S and (b) bus stop s is not an excluded switch point candidate (these requirements are expressed in the 14th line of
Algorithm 1).

One should note that the number of switch points that are generated through this process is not fixed a priori and it can vary based
on the value of z% that determines the threshold value of ridership change upon which a bus stop can be considered as a candidate for
the switch points’ set. This flexible formulation allows transit agencies to control the generation of sub-lines and inter-lines by
reducing or increasing the number of potential switch point stops according to their preferences. Once the value of z% is determined,
the deterministic rule-based graph search of Algorithm 1 will be executed. The proposed algorithm always returns a unique solution
(the computed set of switch stops is unique and the rule-based search of Algorithm 1 prioritizes always the same solution based on the
above-mentioned rules even if multiple solutions with different switch stop sets are equally good).

Table 2
Nomenclature (2/2).

a percentage denoting the lowest bound for the number of buses that should be allocated to the originally planned lines;

a constant denoting the total number of virtual lines that can be operational (i.e., operated by at least one bus);
k maximum allowed limit of deadheading times for each virtual line (min);
y maximum total trip travel time for inter-lining lines (min);
Q discrete set of values from which one can select the number of buses allocated to an originally planned line;

Q discrete set of values from which one can select the number of buses allocated to a virtual line;

z a percentage beyond which a change in passenger ridership (i.e., on-board occupancy) between two consecutive bus stops can justify the generation of
sub/inter-lines;

1
unit time value associated with the passenger-related waiting time cost (€/h);

2
unit time value associated with the total vehicle travel time for serving all lines (€/h);

3
unit time value associated with the depreciation cost of using an extra bus (€/bus);

S the set of the generated switch points (note: S S S S = );
the planning period, a constant.

Table 1
Nomenclature (1/2).

L S{ , } is a bus network with L L{1, 2, , | |}= … bus lines including original and virtual lines. Virtual lines represent sub-lines and inter-lines of the
originally planned ones;

L L{1, 2, , | |}o o= … is the set of the originally planned lines;

S S{1, 2, , | |}= … is the set of stops of the bus network;

S S{1, 2, , | |}l l= … a set denoting the bus stops of line l L in a sequential order starting from the first stop;

S S set of stops that cannot be used as switch points due to regulatory or operational constraints;

T
S S| | | |
+

× a S S| | | |× dimensional matrix where each t Ti j, denotes the planned travel time between the bus stop pair i j, including the dwell time

component (boarding and alighting times) at stop j;

U
S S| | | |
+

× a S S| | | |× dimensional matrix where each u Ui j, denotes the planned travel time between the bus stop pair i j, excluding the dwell times

for boarding/alighting (utilized for estimating the deadheading times);

r
L| |
+

vector where each r rl denotes the total round-trip time required for completing the round-trip of line l L in hours;

n
L| |
+

vector where each n nl denotes the number of buses required for operating line l L for a given frequency fl;

f
L| |
+ vector where each f fl denotes the frequency of bus line l L in vehicles per hour (note: f l L,l

nl

rl
= );

h
L| |
+ vector where each h hl denotes the dispatching headway of bus line l L (note: h l L,l

min h

fl

60 /
= );

B
Lo S S| | | | | |× × a matrix where each b Blo i j, , denotes the passenger demand between each pair of bus stops i j, for each originally planned line l Lo o;

D
Lo S| | | |× a matrix where each d Dlo s, denotes the average on-board occupancy for the segment starting at stop s for an originally planned line

l Lo o;

l lo i j, , ,
a dummy variable where 1l lo i j, , , = if line l L is able to serve the passenger demand blo i j, , and 0l lo i j, , , = if not;

a constant denoting the total number of available buses (note: n
l L l for ensuring that the total number of buses utilized from all

lines l L is within the allowable number of buses);

O
Lo S S| | | | | |
+

× × a matrix where each O Olo i j, , denotes the passenger-related waiting cost for every Origin–Destination (OD) pair of the originally

planned line lo;
e an L| |-valued vector of dummy variables where e 1l = denotes that at least one vehicle has been assigned to bus line l L and e 0l =

denotes that no vehicles are assigned to that line (in such case, n 0l = );
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3.3. Generating candidate short-turning and interlining lines

Given the switch points determined by Algorithm 1, short-turning and interlining lines are generated using an exhaustive graph
search. For generating short-turning lines, for each originally planned line, l Lo o, we define as set ofVlo the set that contains the first
and last stop of line lo and all switch point stops that are served by line lo. Each short-turning line is generated by considering a pair of
stops that belong to the setVlo as the origin and destination of that short-turning line. In case that the origin and destination bus stops
of a short-turning line are neither the first nor the last stop of the corresponding originally planned line, then a deadhead is needed
after the completion of each trip to allow bus drivers to rest at one of the two terminals of the originally planned line before starting
their next trip. The automated procedure for generating short-turning lines based on the switch point stops is detailed in the flow
diagram of Fig. 4.

Fig. 4. Process of generating short-turning lines at specific switch points.
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From the flow diagram of Fig. 4, one can note that the process starts from the first stop of each originally planned line and new
short-turning lines are generated by using as destination stop each switch point stop which belongs to that originally planned line.
The procedure continues until all stops that belong to the set Vlo are used as destination stops for generating new short-turning lines.
After that, a new stop from the set Vlo is used as a first stop from which we generate short-turning lines and the procedure continues
until exhausting the set of stops that belong to Vlo.

The process of generating inter-lining lines involves further steps for finding routes that serve segments of two originally planned
lines. If an inter-line serves segments of two originally-planned lines and the transfer occurs at a transfer stop between those lines,
then the inter-line does not incur any deadheading costs. In any other case, an inter-line induces a deadheading cost for transferring
from one originally planned line to another. Following assumption (4) which states that an inter-lining line should serve segments of
two originally planned lines, assumption (5) which states that the total trip travel time of an inter-line should not exceed a maximum
time limit of y minutes and assumption (6) which states that the incurred deadheading time of a generated virtual line should not be
greater than k minutes, the potential inter-lines of a bus network are generated via a rule-based enumeration as presented in the flow
diagram of Fig. 5.

3.4. Vehicle allocation and frequency determination

The vehicle allocation problem to originally planned and virtual lines is formulated considering the inherently contradictory
objectives of reducing the waiting cost of passengers at bus stops and reducing the operational costs. The operational costs are
expressed in the form of (a) vehicle running times and (b) depreciation costs for each extra vehicle allocated to the bus network. In
this work, we formulate a single, compensatory objective function by introducing the weight factors, , ,

1 2 3 that convert the
passengers’ waiting costs and the operational costs into monetary values.

Given that the dummy variable l l i j, , ,o denotes whether a bus line l L serves the passenger demand bl i j, ,o or not, the joint headway
of all lines serving the i j, demand pair of the originally planned line l Lo o is:

n

r
l L

l l i j, , ,

1

o

(3)

Fig. 5. Process of generating inter-lining lines at specific switch points.
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In addition, if each O Ol i j, ,o denotes the passenger-related waiting cost for each OD pair of the originally planned line lo and
passenger arrivals at stops are random (an assumption that is commonly used for high-frequency services Osuna and Newell (1972));
then,

O
b n

r2
l i j

l i j

l L

l l i j, ,

, ,

, , ,

1

o

o

o=

(4)

The decision variables of the optimization problem are the number of buses n n nn ( , , , )L1 2= … that can be allocated to each line
l L. In addition, bus operators have to conform to a set of constraints. First, the total number of allocated buses to all lines, n

l L l,
should not exceed the number of available buses :

n

l L

l

(5)

Furthermore, a minimum percentage % of the total number of available buses should be allocated to the originally planned lines
to ensure a minimum level of service for the originally planned lines. This constraint is introduced because in many cases the bus
operators have a contractual commitment for operating at least a number of buses at the original lines:

n

l L

l

o (6)

In addition, in this study the average waiting of passengers is constrained by an upper threshold value to ensure that the bus
operator does not reduce the operational costs to such an extent that the quality of service for passengers is significantly compro-
mised:

b n

r
b

2
/ ( )

l L i S j S

l i j

l L

l l i j

l L i S j S

l i j
, ,

, , ,

1

, ,

o o

o

o

o o

o

(7)

Finally, it is possible to set the lowest and highest bounds for the number of buses that can be allocated to the original and virtual
lines. The number of buses nl that are allocated to each original line Lo can take values from an admissible set Q and the buses that are
allocated to virtual lines L Lo can take values from another setQ since the original and virtual lines can have different distinct core
requirements. For instance, all originally planned lines should be operational and a minimum number of buses should be allocated to
them. In contrast, virtual lines that do not improve the service might not be used; thus, the setQ permit refraining from assigning any
vehicles to a virtual line.

The sets Q and Q can be defined by the bus operator according to the lowest and highest frequency that is permitted for each
virtual and original line. For instance, some virtual lines might be set to have a frequency value equal to zero (inactive virtual lines)
whereas all originally planned lines might need to have a frequency of at least three vehicles per hour to satisfy service requirements.

The resulting optimization program considering the passengers’ waiting times and the operational costs is:

f
b n

r
n r

r
nnargmin ( )

2
l L i S j S

l i j

l L

l l i j

l L

l l
l l L

l
n

1

, ,
, , ,

1

2 3

o o

o

o + +

(8)

c nnsubject to: ( ) 0
l

L

l1

1= (9)

c nn( ) 0

l L

l2

o (10)

c
b

n( )
( )

0
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b

l L

l l i j

n

r
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l i j

3
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1

, ,

o o

lo i j

o

o o

o

, ,

(11)

n Q l L,l o (12)

n Q l L L,l o (13)

e

l L L

l

o (14)

The first term of the objective function computes the waiting times of passengers at all stops for a given allocation of n vehicles to
originally planned and virtual lines. The second term computes the total vehicle running times for serving all bus lines within a
planning period where the round-trip travel time rl of any line l L contains the required layover times (i.e., deadheading and
resting times of drivers). Finally, the third term corresponds to the depreciation costs when using n

l L l vehicles.
The inequality constraint of Eq. (9) ensures that the total number of allocated vehicles to originally planned and virtual lines,
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n
l L l, should not exceed the number of available buses, . The inequality constraint of Eq. (10) denotes that at least a percentage %

of the total number of available vehicles, , should be allocated to the originally planned lines l Lo.
The inequality constraint of Eq. (11) introduces an upper limit, , to the average waiting time per passenger ensuring that

solutions which yield significantly longer passengers’ waiting times are not considered even if they reduce the operational costs. Eq.
(12) and (13) ensure that the number of buses allocated to each line is selected from a discrete set of values determined by the transit
agency. Finally, the inequality constraint of Eq. (14) ensures that the number of operational virtual lines, e

l L L l
o
, does not surpass

the maximum allowed number of operational virtual lines, .
The above constrained optimization problem of allocating buses to originally planned and virtual lines has a fractional, nonlinear

objective function and one fractional constraint together with other linear constraints. In addition, the problem of allocating buses to
lines is an integer programming problem since the number of buses that can be allocated at each originally planned or virtual line is a
discrete variable.

Lemma 3.1. The exploration of the entire solution space for finding a globally optimal solution for the vehicle allocation to originally planned
and short-turning/interlining lines has an exponential computational complexity.

Proof. To each bus line l L we can allocate any number of vehicles that belongs to the set Q if l is an originally planned line orQ if
it is a virtual one. If we have two bus lines (i.e., two originally planned lines) the number of potential combinations for the allocation
of buses is Q| |2. Let Q| | be the minimum of Q| | and Q| |. Then, evaluating the performance of all potential combinations of allocated
buses to L lines requires at least Q| |L computations. Therefore, the solution space increases exponentially with the number of lines
(regardless whether they are originally planned or virtual lines) prohibiting an exhaustive search of a globally optimal solution even
for small-scale scenarios.

Given that we cannot explore the solution space exhaustively, other exact optimization methods can be considered. Because of the
fractional, nonlinear objective function, our problem cannot be solved with linear or quadratic programming methods. An alternative
is the use of sequential quadratic programming which starts from an initial solution guess and can find a local optimum of the
mathematical program by solving its continuous relaxation. Then, the results from the sequential quadratic programming can be
combined with a branch-and-bound method for converging to a discrete solution based on the lower and upper bounds derived from
the sequential quadratic programming method. This approach though has two disadvantages. First, the enumeration tree of the
branch-and-bound method can grow in an unsustainable manner if the decision variables are too many (which is the case when we
allow the allocation of buses to a vast number of virtual lines) resulting in a computationally intractable problem. Second, there is no
guarantee that the local optimum computed at each iteration by the sequential quadratic programming method is a globally optimal
solution because this depends on the convexity of the objective function. We therefore develop an approximation of the combina-
torial, constrained optimization problem as detailed in the following section.

4. Solution method

Given the computational intractability of the proposed bus allocation optimization problem, a solution method is introduced
based on the approximation of the constrained bus allocation optimization problem by an unconstrained one which can be solved
with the use of evolutionary optimization for obtaining an improved solution.

4.1. Approximating the constrained vehicle allocation problem using exterior point penalties

The constrained bus allocation optimization problem of Eq. (8)–(14) can be simplified by using a penalty method which yields an
unconstrained formulation. This approximation is structured such that its minimization favors the satisfaction of the constraints
through prescribing a high cost for any constraint violation Bertsekas (1990). Given the highly constrained environment within which
service providers operate, we introduce exterior penalties so that the satisfaction of constraints is prioritized.

By introducing a penalty function, n( ), which approximates the constrained optimization problem of Eq. (8)–(14), the following
unconstrained one is obtained:

f w c w c w c

n Q l L

n Q l L L

e

n n n n nargmin ( ) ( ) (min[ ( ), 0]) (min[ ( ), 0]) (min[ ( ), 0])

subject to: ,

,

l o

l o

l L L

l

n

1 1
2

2 2
2

3 3
2

o

+ + +

(15)

where w w,1 2 and w3 are used to penalize the violation of constraints and are positive real numbers with sufficiently high values to
ensure that priority is given to the satisfaction of constraints. The penalty function n( ) is equal to the score of the objective function
f n( ) if at some point we reach a solution n for which w c w c w cn n n(min[ ( ), 0]) (min[ ( ), 0]) (min[ ( ), 0]) 01 1

2
2 2

2
3 3

2
+ + = , in-

dicating that all constraints are satisfied for such solution. The penalty terms are added to the objective function of the constrained
optimization problem and dictate that if a constraint c n( )i has a negative score, then min c cn n[ ( ), 0] ( )i i= and the constraint is
violated for the current set of variables n. In that case, the objective function f n( ) is penalized by the term w c n( ( ))i i

2 where the
weight factor wi expresses the violation importance of this constraint in relation to all others.
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Formulating the penalty function n( ) ensures that violating constraints c n( ) 0i < penalize progressively the penalty function by
adding their squared value c n( )i

2 to its score. Therefore, the penalty function is over-penalized if some violating constraints c n( ) 0i <

are significantly greater than zero.
In addition, adding different weights, w w w, ,1 2 3, to the constraints is useful in the case of problem infeasibility because in such

case all constraints cannot be satisfied simultaneously; therefore, with the use of different weight factor values, the bus operator can
prioritize the most important constraints at the expense of others.

4.2. Solving the unconstrained problem with a problem-specific Genetic Algorithm

To solve the unconstrained optimization problem of Eq. (15) one needs to explore a vast, discrete solution space resulting in a
significant computational burden. For instance, as discussed in Section 3, applying a classical exact optimization method for discrete
optimization problems such as the brute-force algorithm requires an exponential number of problem evaluations in order to find a
globally optimal solution.

As an alternative to classical exact optimization methods, metaheuristics from the area of evolutionary optimization can be
employed. In contrast to the classical exact optimization methods, evolutionary algorithms perform fewer calculations for finding a
generally good (but inexact) solution to a combinatorial optimization problem (Simon, 2013).

For combinatorial optimization problems several evolutionary optimization algorithms can be applied such as simulated an-
nealing (Kirkpatrick et al., 1983) or tabu search (Glover, 1986). In this work, we employ a problem-specific genetic algorithm (GA)
which considers a pool of solutions rather than a single solution at each iteration although other heuristic optimization methods may
also be used for solving this problem.

One of the first works on GAs was the book of Holland (1975) that detailed the principal stages of a GA as: (1) encoding the initial
population; (2) evaluating the fitness of each population member; (3) parent selection for offspring generation; (4) crossover; and (5)
mutation. In the following sub-sections we detail the stages of the problem-specific GA that yields an (inexact) solution of the
optimization problem of Eq. (15).

4.2.1. Encoding
A typical GA contains a number of strings which form the population at each of the iterations. Each string is a population member

(individual) and represents a potential solution to the optimization problem. The first decision that needs to be made at the in-
itialization stage of the GA is the population size. This parameter can be determined based on the trade-off between solution space
exploration and computational cost since a GA with a larger population size is expected to conduct a more comprehensive exploration
of the solution space but requires also more time for evaluating all possible solutions and performing the corresponding crossover/
mutation operations.

For solving the unconstrained optimization problem of Eq. (15), an initial population P with P{1, 2, , | |}… members is introduced.
Each population member, Pm , is a vector m m mm ( , , , , )l L1 | |= … … with L| | elements (known as genes) where each elementm ml

represents the number of buses allocated to the corresponding line l L in case this solution is adopted. Each gene m ml of an
individualm is allowed to take an integer value from the set Q (when line l is an originally planned line) or setQ (when line l is a sub-
line or inter-line).

Therefore, a random initial population P can be generated as follows:

For m 1= to P| |

Introduce the mth population member m m mm ( , , , , )l L1 | |= … …

For l 1= to L| |

If l L m random choice Q: . ( )o l

If l L L m random choice Q: . ( )o l

Next l
Next i

wherem random choice Q. ( )l denotes thatml can take any value from the discrete set Q andm random choice Q. ( )l denotes that
ml can take any value from the set Q .

4.2.2. Evaluating the fitness of individuals and selecting individuals for reproduction
A GA requires only the existence of a fitness function which can be evaluated and does not consider the properties of the function

such as convexity, smoothness or existence of derivatives (Bakirtzis et al., 2002). GAs are typically designed to maximize fitness.
Notwithstanding, given the fact that our problem of Eq. (15) is casted as a minimization problem, in our study a population member
m is considered more fit when its fitness function value, m( ), is lower.

In the parent selection stage the fittest population members (individuals) are selected for reproduction and they pass their genes
to the next generation. At each parent selection, two individuals from the population are selected where individuals with better
fitness values have a higher probability of being selected for producing an offspring. This can be achieved by using the well-known
roulette-wheel selection method (Goldberg and Deb, 1991). In the roulette-wheel selection method, each individual m has a prob-
ability of being selected which is proportional to its fitness value divided by the fitness values of all other population members.
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After selecting one parent using the roulette-wheel selection method, another parent is selected with the same method and the
two parents cross over to produce two offsprings. The same process is repeated until the number of parents which are selected for
reproduction is the same as the population size P| |.

4.2.3. Crossover and mutation
At the crossover stage, two parents exchange their genes at a randomly selected crossover point selected from the set L{1, 2, , | |}…

for generating two offsprings. For instance, if the crossover point of two parents m m m mm ( , , , , , )l l L1 1 | |= … …+ and
m m m mm ( , , , , , )l l L1 1 | |= … …

+
which are selected for reproduction is l L; then, the two generated offsprings will have the set of

genes m m m m( , , , , , )l l L1 1 | |… …
+

and m m m m( , , , , , )l l L1 1 | |… …+ .
After the crossover stage follows the mutation stage. The mutation can be potentially applied to any generated offspring after the

crossover stage to facilitate the exploration of new information that is not contained in the pair of parents that were used at the
crossover stage. In our case, we specify a small probability, p

c
, for replacing each gene of the generated offspring with a random value

from the set Q if that gene corresponds to an originally planned line and set Q if it corresponds to a virtual one.
The procedure described above continues iteratively until a pre-determined number of population generations, µmax , is reached.

The population member with the best performance is then selected as the final solution and its genes represent the number of buses
that should be allocated to each original or virtual line, where, for many virtual lines, this number can be equal to zero (resulting in
inactive virtual lines). This procedure is summarized in Algorithm 2.

In Algorithm 2, lines 10–11 denote the parent selection step according to the roulette-wheel approach, line 12 is the crossover step
that produces two new offsprings and lines 13–22 express the mutation step for each newly generated offspring. In lines 13–22 one
can note that a mutation occurs if a randomly selected number from the continuous set [0, 1] is lower than the mutation probability p

c
.

Algorithm 2.

1: function Genetic Algorithm search

2: Initialize a random population P P{1, 2, , | |}= … where each population member Pm has L| | genes;
3: for each population member Pm do

4: Calculate its fitness: m( );
5: end for
6: Initialize the counter of generation evolutions as generation 1;

7: while µgeneration max do

8: Initialize the population of the next generation P =

9: while P P| | | |< do
10: Select one parent Pm using the roulette-wheel method;

11: Select another parent Pm where Pm m{ } using the roulette-wheel method;

12: Exchange the genes of parent m and m at a randomly selected crossover point l L and generate two offsprings m m m m( , , , , , )l l L1 1 | |… …+ and

m m m m( , , , , , )l l L1 1 | |… …+ ;

13: for each one of the two offsprings do
14: for each l L

15: If l Lo and random choice p. ([0, 1]) c< then

16: Replace the value of the lth gene of the offspring with random choice Q. ( );
17: end if

18: if l L Lo and random choice p. ([0, 1]) c< then

19: Replace the value of the lth gene of the offspring with random choice Q. ( );
20: end i
21: end for
22: end for

23: Expand set P by adding the two generated offsprings to it;
24: end while

25: Replace the previous generation with the new one: P P ;
26: Update the number of generation evolutions: generation generation 1+ ;
27: end while
28: return the fittest population member;
29: end function

The number of population members P| |, the mutation rate, p
c
, and the maximum number of population generations, µmax , are

parameters of the GA which should be externally defined and can affect the performance of the computed solution. For this reason,
several scenarios with different parameter options can be conducted for increasing the probability of finding a solution which is more
close to a globally optimal one.

5. Numerical experiments

5.1. Case study description

The proposed methodology for the allocation of buses to originally planned and virtual lines is tested for the bus network of The
Hague. The Hague is a mid-sized European city and its bus network consists of L| | 8o = originally planned urban bus lines,
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complementing and interfacing with the tram network. The originally planned bus lines cover a compact geographical area that
enables the generation of several interlining lines without requiring long deadheading times. As presented in Fig. 6, seven of the bus
lines are bi-directional and one is circular (bus line 8). The circular line serves two of the main train stations in the city and all bus
lines operate under high frequencies since they serve the central city. For ease of reference, the eight bus lines in the Hague are named
1, 2, …, 8. The actual identification numbers of the eight bus lines can be found at: https://www.htm.nl/media/498240/17066htm_
a4haltekrttrambus_va01juli17_web.pdf.

In our case study, we analyze a 6-h period of the day that was empirically found to exhibit a relatively stable ridership pattern
(from 07:00 to 13:00). The total number of available buses for operating the service trips from 07:00 to 13:00 is = 220. For the
optimal allocation of buses to the eight originally planned bus lines, we use the parameter values summarized in Table 3.

For such parameter values, the optimal allocation of buses to originally planned lines is the one that minimizes the value of the
penalty function n( ) in Eq. (15). Because the mathematical program in Eq. (15) considers also virtual lines and we want to allocate
buses to originally planned lines only, we exclude all virtual lines by enforcing the total number of virtual lines that can be op-
erational, , to be equal to zero. In such case, a solution to the mathematical program of Eq. (15) represents an optimal allocation of
buses to originally planned lines only.

After applying the GA presented in Algorithm 2 for finding an optimal bus allocation to the 8 originally planned lines, the solution
with the lowest total cost is presented in Table 4. This bus allocation: (a) requires a total bus travel time of 21,616min (360.26 h); (b)
results in an average waiting time of 1.78 minutes per passenger; and (c) requires the use of 111+88=199 buses out of the 220
available ones.

It is important to indicate that because of the parameter values of Table 3 the optimal allocation of buses to originally planned
lines uses only 111+88=199 out of the 220 available buses. The reasons behind this are the high vehicle running time and
depreciation costs that favor the use of less resources.

5.2. Allocating buses to short-turning and interlining lines

In this study, we used detailed smartcard data logs from 24 weekdays in order to analyze the spatio-temporal passenger demand
variation from 07:00 until 13:00. The smartcard logs contain information about the origin and destination station of each passenger
that used one of the eight originally planned lines in The Hague during the analysis period (2nd of March 2015–2nd of April 2015).
The smartcard logs are used for constructing passenger OD matrices per bus line and were instrumental in (a) understanding the
temporal variation of demand within the day for each bus line by splitting the day into 6-h periods; (b) investigating the spatial
demand variations at the line level; and (c) identifying potential switch stops for generating short-turning and interlining lines based
on variations in the cumulative ridership at each stop.

For instance, from the average hourly passenger load of bus line 3 from 07:00 to 13:00 which is presented in Fig. 7, one can
observe that bus stops 6 and 12 are potential switch stops because of a passenger load change of more than z 20%= occurring at these

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Fig. 6. Illustration of the bus network in The Hague.

Table 3
Parameter Values for the allocation of the available buses to the eight originally planned lines of the bus network in The Hague.

(total number of available buses) 220
z (minimum percentage of passenger ridership change to justify the generation of a switch stop) 20%

1
(unit time value associated with the passenger-related waiting time cost) 4 (€/h)

2
(unit time value associated with the total vehicle travel time for serving all lines) 60 (€/h)

3
(unit time value associated with the depreciation cost of using an extra bus) 20 (€/bus)

Q (number of buses that can be allocated to an original line from 07:00 to 13:00) {6, 7, 8, , 41}…
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stops. In addition, the bus stops 11, 13, 14, 23, 24, 25, 27, 28 and 29 of bus line 3 which are marked with yellow are transfer stops;
thus, they are also switch stop candidates. Following the steps detailed in the deterministic Algorithm 1 for a 21 = and a 22 = , only 5
out of the 11 switch stop candidates are selected as switch stops for bus line 3 (namely, the bus stops 6, 11, 14, 23 and 27). Bus stop
11 is selected instead of bus stop 12 where a significant passenger load change is observed - bus stop 11 is a transfer stop and has a
higher priority than other neighboring switch stop candidates.

The deployment of Algorithm 1 for generating the switch stops for all bus lines and the algorithms presented in Figs. 4 and 5 for
generating the short-turning and interlining lines yielded 29 short-turning lines and 323 interlining lines out of 4344 possible
combinations.

By allocating buses to originally planned and short-turning/interlining lines, this study investigates the potential of improving the
weighted sum of Eq. (8) which consists of the (a) passenger waiting times, (b) total vehicle running times and (c) depreciation costs
from the use of additional vehicles. The allocation of buses to short-turning and interlining lines is performed by using the GA
presented in Algorithm 2.

When performing an optimal vehicle allocation to originally planned and virtual lines, the bus operator can determine several
parameter values. In particular, the minimum percentage of buses that should be allocated to originally planned lines, , and the total
trip travel time limit for interlining lines, y, among others. This provides an extra flexibility to the bus operator that can tailor the use
of the interlining and short-turning lines to its operational needs by adjusting the problem parameters accordingly.

Initially, we allocate buses to originally planned and short-turning lines following the scenario of Table 5 which depicts the values
of the problem parameters.

Table 4
Round-trip times and initial bus allocation to the originally planned lines from 07:00 to 13:00.

rl: Round-trip time in minutes Allocated buses rl: Round-trip time in minutes Allocated buses

Line 1 108 29 Line 5 110 31
Line 2 107 22 Line 6 50 22
Line 3 112 21 Line 7 79 25
Line 4 172 39 Line 8 138 10

Total: 111 88

Fig. 7. Enumeration of all possible switch stops for bus line 3.

Table 5
Parameter Values

(total number of available buses) 220

(minimum percentage of buses that should be allocated to the originally planned lines) 60%

(total number of virtual lines that can be operational) 20
k (maximum allowed limit of deadheading times for each virtual line) 20min
y (maximum total trip travel time for inter-lining lines) 1 h 30min
z (percentage of passenger ridership change that justifies the generation of a switch stop) 20%
(upper limit of the average waiting time of passengers) 3 min

1
(unit time value associated with the passenger-related waiting time cost) 4 (€/h)

2
(unit time value associated with the total vehicle travel time for serving all lines) 60 (€/h)

3
(unit time value associated with the depreciation cost of using an extra bus) 20 (€/bus)

Q (number of buses that can be allocated to an original line from 07:00 to 13:00) {6, 7, 8, , 41}…

Q (number of buses that can be allocated to a virtual line from 07:00 to 13:00) {0, 3, 4, , 15}…
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Using the existing service provision as the starting point, we allow the re-allocation of buses to the 8 original, Lo, and
(29+ 323)=352 virtual lines, L Lo. Given the large number of decision variables and the combinatorial nature of the bus allo-
cation problem, we employ the GA proposed in this study. For the implementation of the GA, we use the Distributed Evolutionary
Algorithms in Python (Deap) package (Fortin et al., 2012). From this package, we use the eaSimple() algorithm with the hy-
perparameter values of P| | 200= population members; p 0.2

c
= mutation probability; and µ 40

max
= maximum population genera-

tions. For the evaluation of the fitness of each population member, the penalty function of Eq. (15) is programmed in Python 2.7 and
the tests are implemented in a general-purpose computer with 2.40 GHz CPU and 16 GB RAM.

The GA algorithm is applied for the re-allocation of buses to originally planned and virtual lines and the convergence results are
presented in Fig. 8. The goal of the convergence is the minimization of the penalty function score of Eq. (15) which is the weighted
sum of the objective function and the constraint violation penalties.

The fittest population member (solution) in the initial population has a penalty function value of 86, 396€ and an objective
function value of 76, 531€. The initial 9, 865€ gap between the objective and the penalty function values indicates that the solution of
the fittest population member of the initial population violates some of the constraints of the bus allocation problem.

After six iterations, we reach a point where all constraints are satisfied (at this point, the penalty function value is equal to the
objective function value). At this stage, the first feasible solution is obtained. Then, the iterations continue until we reach the pre-
defined maximum number, µ 40

max
= , of allowed population generations. The fittest solution at the 40th population generation has a

penalty function value of 64, 066€ and satisfies all constraints.
As discussed in the solution method section, the use of a GA for solving the problem of allocating buses to both originally planned

and short-turning/interlining lines is one option. Other heuristic solution methods for discrete problems (which are appropriate for
solving a problem more quickly when classic methods are too slow) can be employed. For our specific scenario, we provide results
regarding the performance of other heuristic solution methods, such as simulated annealing and hill-climbing, in Table 6. In Table 6
we report the results of the best performing vehicle allocation solutions computed by different heuristic algorithms.

Notably, the hill-climbing method terminates its search significantly faster than the other methods. However, this fast con-
vergence occurs because the algorithm is trapped in a local optimum without being able to move to another “hill” for continuing its
exploration.

Using the vehicle allocation of the GA, Table 7 summarizes the potential benefits of the bus allocation optimization when buses
are allocated not only to originally planned lines, but also to short-turning/interlining lines. The optimal bus allocation to both
originally planned and virtual (short-turn and interlining) lines to the bus network of The Hague demonstrated a potential reduction
of 13.85% in operational costs and 4.85% in the average waiting time per passenger.

The resulting bus allocation to originally planned and virtual lines using the GA is presented in Fig. 9. As expected, the lion share
of the 352 virtual lines remain inactive in the solution attained as GA solution filtered out 346 out of the 352 virtual lines. This
solution involves 3 interlining and 3 short-turning operations. The interlining involves a relatively small number of buses and is used
to circulate buses between busy lines that have an asymmetric passenger demand. Short-turning is deployed for lines that have to be
partitioned due to a noticeably uneven demand pattern.

To provide more details on the performance improvement after the introduction of short-turning and interlining lines, Fig. 10
presents the overall waiting time costs, the vehicle running costs and depreciation costs when (a) only originally planned lines are
considered; and (b) when short-turning/interlining lines are also considered. In the latter case, the overall waiting time costs are
reduced from 43, 436€ to 41, 445€ and the vehicle running costs from 21, 616€ to 18, 621€. Because only the depreciation costs

Fig. 8. Improvement of the exterior point penalty function score after a number of µmax population generations. The horizontal line represents the
area below which all constraints are satisfied (feasible solution space).

Table 6
Genetic Algorithm, Stochastic Annealing and Hill Climbing: solution approximation results

Best-performing total cost of the computed solution Computational time

Genetic Algorithm 64,066€ 21.17min
Hill-climbing 74,531€ 3.52min
Simulated Annealing 64,438€ 24.42min

K. Gkiotsalitis et al. Transportation Research Part C 98 (2019) 14–36

28



Table 7
Performance improvement when using short-turning and interlining lines for

1
=4€/h,

2
=60€/h and

3
=20€/bus.

Originally planned lines only Considering short-turning and interlining lines Improvement

Average waiting time per passenger 1.785min 1.703min 4.58%
Total running time of buses 360.26 h 310.35 h 13.85%
Number of buses 199 200 −0.50%

Total costs f n( ) 69,032€ 64,066€ 7.19%

Fig. 9. Bus allocation to originally planned and active virtual lines.

Fig. 10. Costs when using (a) originally planned lines only and (b) originally planned lines along with interlining and short-turning lines.
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increase slightly from 3, 980€ to 4, 080€ the reduction of the total costs is 7.19% (from 69,032€ to 64,066€).
For performing a sensitivity analysis of the total costs to the changes in passenger demand, we compare the performance of the

optimal bus allocation at the scenario with the nominal passenger demand against the performance of the optimal bus allocation at
scenarios with 10% and 25% passenger demand increase. The results are summarized in Table 8 demonstrating an increase in the
vehicle running costs and the depreciation costs due to the use of more vehicles. Note that because of the 25% increase in passenger
demand, the respective bus allocation uses all 220 available buses for limiting the increase of the passenger waiting time costs.

5.3. Sensitivity analysis of cost parameters

As previously discussed, some stakeholders might place more emphasis on reducing the waiting times of passengers while others
might focus on reducing the operational costs. For this reason, we investigate the trade-off between the passenger-related and the
operational-related costs by modifying the values of the weight factors , ,

1 2 3.
First, we increase the weight factor value of

1
which is multiplied by the passenger-related waiting time costs from 4(€/h) to

12(€/h) and 20(€/h) while the weight factor values of
2
and

3
remain the same (

2
remains always 60(€/h) and

3
=20(€/bus)).

Then, for each of the three generated scenarios we allocate buses to the originally planned and short-turning/interlining lines in order
to investigate the impact of changes in the passenger-related costs and the operational-related costs when the bus operator places
more emphasis on reducing the overall waiting time of passengers.

The results of this analysis are summarized in Fig. 11 which presents the changes in the average waiting time per passenger, the
number of running buses and the total running times of the buses.

The main observations from Fig. 11 are:

• to obtain a slight reduction of 0.41% on the average waiting time per passenger (from 1.703min to 1.696min), 4 additional buses
are needed and the total running times of buses increase significantly (by 6.98%);

• reducing further the average waiting time per passenger from 1.696min to 1.694min increases the total running times of buses by
2.11% and requires 16 extra buses.

The above analysis can facilitate the decision-making process of the bus operators by providing them information regarding the
required sacrifices in terms of vehicle running costs for a slight reduction of the passenger waiting times.

Second, we analyze the performance of the operations when more importance is attached to reducing bus running times. For this
reason, we generate three scenarios where the weight factor

2
, which is the unit time value associated with the total vehicle travel

times, increases from 60
2
= (€/h) to 90

2
= (€/h) and 120

2
= (€/h) respectively. In all three scenarios the weight factors

1
and

3

remain the same (
1
is always 4 (€/h) and 20

3
= (€/bus)). The sensitivity of the passenger waiting times, the number of deployed

buses and bus running times to the changes in the weight factor
2
is presented in Fig. 12.

Table 8
Performance sensitivity to a 10% and 25% passenger demand increase.

Nominal passenger demand 10% passenger demand increase 25% passenger demand increase

Average Waiting Time per passenger 1.703min 1.698 1.694min
Total running time of buses 310.35 h 324 339.10 h
Number of used buses 200 209 220

Waiting time costs 41,445€ 45,846€ 50,820€
Vehicle running costs 18,621€ 19,440€ 20,340€
Depreciation costs 3980€ 4180€ 4400€

Total costs f n( ) 64,066€ 69,466€ 75,560€

Fig. 11. Sensitivity to changes of weight factor
1
which is related to the passenger waiting time costs.
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The main observations from Fig. 12 are:

• the improvement of the vehicle running costs after doubling the value of 2
is 6.17 h in total (or 1.99%) whereas the average

waiting time per passenger increases by 0.365min or 20%;

• the total number of allocated buses is reduced by 8% (16 buses);

• higher weight to the total running costs, 2
, reduces the number of used buses, but the average waiting time per passenger

increases faster.

The findings from Fig. 12 dictate that bus operators should act with caution when trying to obtain solutions that reduce sig-
nificantly the vehicle running costs because this can lead to increased headways and disproportionally longer passenger waiting
times.

Finally, we examine the effect of the weight factor that determines the relative importance of the bus depreciation costs. In this
case, we generate three scenarios with

3
values of 20, 110 and 200(€/bus) for which the weight factors

1
and

2
remain the same (

1

is always 4(€/h) and
2
is 60(€/h)). After allocating the buses to the originally and short-turn/interlining lines for each one of the

three scenarios using the GA of Algorithm 2, the results are presented in Fig. 13.
From Fig. 13 one can observe that:

• interestingly, the total running time of buses increases from 310.35 h to 315.6 h even if the number of deployed buses is reduced
from 200 to 187;

• a 2% reduction of the number of used buses (from 200 to 196 buses) increases the average waiting time per passenger by 5.7 s.

The above sensitivity analysis underlines the importance of selecting adequate weight factors which do not substantially com-
promise the passenger-related costs for a slight reduction of the operational costs or vice versa.

5.4. Pareto Frontiers

In the previous sub-section we evaluated the sensitivity of the average waiting time per passenger, the number of used buses and
the total running times to the changes of the weight factor value , ,

1 2 3. Following the work of Chow and Pavlides (2018), we
relax such specification and we construct a Pareto Frontier of two objective functions which can be represented by a curve where each
point of the curve indicates an efficient solution when those objective functions are being optimized simultaneously. First, the
objective function f n( ) is reformulated as:

Fig. 12. Sensitivity to changes of weight factor
2
which is related to the vehicle running time costs.

Fig. 13. Sensitivity to changes of weight factor
3
which is related to the cost of operating each extra bus.
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In this way, we calculate the corresponding solutions with different combinations of i in Eq. (16) and derive the Pareto frontier
accordingly. Following this approach, the Pareto frontiers illustrate the competition between pairs of objective functions during the
optimization process. Table 9 shows the set of values of cost coefficients when considering the two objective functions of passenger
waiting costs and depreciation costs.

Based upon the setting in Table 9, Fig. 14 shows the corresponding Pareto frontiers for the ‘passenger waiting times’ (Objective 1)
against the ‘number of used buses’ (Objective 3). Each point in Fig. 14 represents the corresponding cost values of ‘average waiting
time per passenger’ and ‘number of used buses’ for each combination of i in Table 9.

Fig. 14 reveals the conflicting nature between the two objectives: the value of the ‘passenger waiting time’ cost decreases as that of
the ‘depreciation cost’ increases. The results reveal the non-linearity between such trade-off relationship and we can notice a sta-
bilization in ‘passenger waiting time’ when the depreciation cost reaches €4 k. This indicates that additional buses result in a very
small benefit in terms of passenger waiting times.

Considering now the Parento frontiers for the passenger waiting times against the running costs, we use the set of values in
Table 10 to generate the Pareto frontiers in Fig. 15.

Again, the trade-off between the passenger waiting times and the vehicle running costs has a non-linear nature and the passenger
waiting times stabilize for a vehicle running cost of around €18.6 k. After that point, more vehicle-kilometers-traveled will not reduce
the passenger waiting times significantly.

5.5. Sensitivity analysis of the parameters related to the generation of virtual lines

Apart from the weight factors , ,
1 2 3 that control the relative importance of the waiting time, running time and depreciation

costs, the parameters that control the generation of short-turning and interlining lines can affect the performance of the bus allocation
solution.

For this reason, we investigate the performance changes for different values of the parameters which control the generation of
short-turning and interlining lines. For example, the parameter determines the minimum percentage of buses that should be
allocated to the originally planned lines and its value was initially set to 60% (in the scenario of Table 5). Some bus operators might,
however, be more conservative wish to ensure that at least 80 or 90% of the deployed buses are allocated to originally planned lines.

Similar to the above, some bus operators might not be willing to generate switch stop candidates at bus stops with slight ridership

Table 9
Cost coefficients for deriving the Pareto frontier of passenger waiting
times against depreciation costs.

Scenario 1 3

1 0.09 0.91
2 0.15 0.85
3 0.50 0.50
4 0.75 0.25
5 0.83 0.17

Fig. 14. Pareto frontiers: waiting time costs against depreciation costs of using extra buses.
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changes. Instead, they might consider a bus stop as switch stop candidate only when a significant ridership change is observed (i.e.,
z 50%> ). In principle, more conservative bus allocations that allocate a smaller portion of the fleet to short-turning and interlining
lines are expected to have an inferior performance compared to bus allocations that adopt more flexible bus allocation schemes.

The results from this analysis are presented in Fig. 16 where the performances of the optimal bus allocation solutions for different
values of and z are presented. It should be noted here that apart from the values of and z, all other parameters maintain their
values from Table 5.

In Fig. 16 the total cost of the operations for 60%= and z 20%= is 64,066€ (as reported in Table 7). The total cost of the
operations is the lowest (64,019€) for the most flexible scenario where the minimum number of buses that must be allocated to
originally planned lines is 40%= of the total number of deployed buses and z 10%= .

From Fig. 16 one can observe that there is a broad range of values, i.e. 60–80%= and z 10–30%= , for which the total cost of the
optimal bus allocations is relatively stable and hovers around 64,100€. This is an important finding because a more conservative (and
practical) bus allocation where at least 80% of the deployed buses are allocated to the originally planned lines can be adopted without
significantly increasing the total cost of operations.

Another important finding is that the solution is more sensitive to changes in than in z. For instance, when 90%= and z 20%=

the total cost of the bus allocation is 67,923€ which is very close to the total cost of the optimal bus allocation when considering only

Table 10
Cost coefficients for deriving the Pareto frontier of passenger waiting
times against running costs.

Scenario 1 2

1 0.33 0.66
2 0.40 0.60
3 0.50 0.50
4 0.75 0.25
5 0.80 0.20

Fig. 15. Pareto frontiers: waiting time costs against vehicle running costs.

Fig. 16. Total cost of the optimal bus allocation for different values of the parameter which controls the minimum percentage of buses that should
be allocated to originally planned lines and z which affects the set of switch stop candidates.
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originally planned lines (this cost was 69,032€). Notwithstanding, a comparable performance was observed when at least 60%, 70%
or 80% of the buses are allocated to originally planned lines. This provides a strong advantage to the bus operator that can have a
maximum benefit by allocating the vast majority of its buses to originally planned lines and still benefit from a significant im-
provement of passenger/operational-related costs. Hence, by allocating the minority of the buses (20–40%) to short-turning and
interlining lines can have the same effect of potentially impractical bus allocations that require the allocation of many buses to virtual
lines.

5.6. Exploitation of the local optima

When allocating buses to both originally planned and short-turning/interlining lines there can be more than one solutions that
result in quite similar total costs. For example, when allocating buses to originally planned and short-turning/interlining lines using
the parameters of Table 5, we might have different bus allocations than the one presented in Fig. 9 that exhibit quite similar
performances. All these are different locally optimal solutions that exhibit an almost equally good performance.

Each local optimum can be computed by solving the bus allocation problem using the GA proposed in this study and employing a
different set of initial solution guesses each time the problem is solved. Fig. 17 illustrates it by visualizing some of the local optima
(eight different solutions with almost equal performance) where each one of them represents a different bus allocation with total costs
in the range of 64,066–64,071€.

In Fig. 17, we present the detailed allocation of buses to originally planned (eight first lines) and active virtual lines (lines 9–49)
for each of the eight bus allocations that exhibit a similar performance. Fig. 17 presents also the performance of each bus allocation in
terms of total costs.

6. Concluding remarks

This work develops a framework for allocating buses to originally planned and short-turning/interlining bus lines in order to
reduce the passenger-related and the operational-related costs while satisfying a set of operational constraints. Following the problem
formulation, a meta-heuristic solution approach is developed and applied to a case study network. It became apparent after the
formulation of the problem that its combinatorial nature and its exponential complexity does not allow for the computation of
optimal bus allocations to a large set of virtual lines. For this reason, this work approximated the nonlinear constrained optimization
problem with the use of exterior point penalties and introduced a GA for allocating buses to originally planned and virtual lines.

Model application demonstrates that the partial replacement of current services with virtual lines can significantly reduce (i.e.
13.85% for the real-world case study network) the vehicle running times while reducing also the average waiting time per passenger
by 5%. In the proposed approach, the operational short-turning and interlining lines are endogenously generated (in contrast to the
works of Delle Site and Filippi (1998), Verbas and Mahmassani (2013), Verbas et al. (2015)), by considering a pool of virtual lines as
part of the optimization process. The results indicate that the plurality of bus allocation options when considering a broader set of
virtual lines can return a range of bus allocation combinations that offer almost equally large benefits. This provides a strong
decision-support tool to bus service planners and operators who might have latent preferences or requirements (e.g. familiarity of bus
drivers with certain lines, preference towards serving originally planned lines).

The sensitivity analysis of the model application demonstrated that re-allocating even a small share of vehicles to virtual lines can
have a significant impact on the total costs of the operations (i.e., significant improvements are observed even if 80% of the deployed
buses are allocated to originally planned lines). This finding demonstrates that bus operators do not need to change significantly the
deployment of their buses for reducing the passenger/operational-related costs.

Concerning the limitations of our approach:

• our work allocates buses to originally planned and short-turning/interlining lines at the tactical planning stage using historical
distributions of the round-trip travel times. For near real-time re-allocation of buses to lines, our approach should be modified for
incorporating short-term traffic predictions;

Fig. 17. Bus allocations to originally planned and active virtual lines for each one of the eight local optima and their corresponding total costs.
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• buses need to be equipped with electronic destination signs (e.g., LED-type destination signs) which can modify the displayed
location of the final destination if they operate a short-turning or interlining service;

• either observed or forecasted passenger demand between each pair of stops of each originally planned line needs to be available as
input.

Future research direction may consider the demand elasticity to changes in service frequency. Moreover, the development of
tactical planning tools that incorporate transit assignment models will potentially allow capturing the impacts of such interactions on
passenger flow re-distribution.
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