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Abstract— This paper presents a deep learning framework
for detecting COVID-19 positive subjects from their cough
sounds. In particular, the proposed approach comprises two
main steps. In the first step, we generate a feature representing
the cough sound by combining an embedding extracted from
a pre-trained model and handcrafted features extracted from
draw audio recording, referred to as the front-end feature
extraction. Then, the combined features are fed into different
back-end classification models for detecting COVID-19 positive
subjects in the second step. Our experiments on the Track-2
dataset of the Second 2021 DiCOVA Challenge achieved the
second top ranking with an AUC score of 81.21 and the
top F1 score of 53.21 on a Blind Test set, improving the
challenge baseline by 8.43% and 23.4% respectively and
showing deployability, robustness and competitiveness with the
state-of-the-art systems.

Clinical relevance— COVID-19, deep learning, feature ex-
traction, embedding, handcrafted feature.

I. INTRODUCTION

The COVID-19 pandemic has deeply impacted the global
health systems with a rising number of 231 million cases
and a high death toll of 4.7 million [1]. It is now spanning
across 200 countries quickly, and the number of COVID-19
infections per day is consistently reported at an alarming rate
without a sign of going down. Therefore, effective solutions
for COVID-19 testing on a massive scale is vital for control
and mitigate the enormous impacts of the current epidemic.
Indeed, if COVID-19 positive subjects can be early detected,
it is very useful for self-observation, isolation, and effective
treatment methods.

The use of rapid antigen test (ART) and polymerase chain
reaction (PCR) tests in popularity has been proven as effec-
tive, however, costly and time consuming. With advancement
of artificial intelligence, it is promising to alleviate the burden
of health care systems through predictable provision at hand
for the population. As a result, DiCOVA Challenges are
designed to find scientific and engineering insights to the
question - Can COVID-19 be detected from the cough,
breathing, or speech sound signals of an individual? In
particular, while the First 2021 DiCOVA Challenge [2]
provides a dataset of cough sound only, the Second 2021
DiCOVA Challenge [3] provides different sound signals of
cough, speech, and breathing. The audio recordings are gath-
ered from both COVID-19 positive and COVID-19 negative
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individuals. Given the cough, speech, and breath recordings,
research community can propose systems for COVID-19
detection, which is potentially deployable on edge devices.

There have been multiple studies [4], [5] gathering insights
on the possibility of acoustics based COVID-19 diagnosis.
Focusing on the cough sound, recent researchers show that it
is potential to detect COVID-19 through evaluating cough-
ing. For an example, a machine learning-based framework
proposed in [6] utilized handcrafted features and Support
Vector Machine (SVM) model, achieved the AUC score of
85.02 on the First DiCOVA dataset [2]. Further exploration
on this dataset, a deep learning framework proposed in [7],
which used the ConvNet model incorporated with Data
Augmentation, achieved the best AUC score of 87.07 and
presented the top-1 position in the First DiCOVA Challenge.
Focusing on feature extraction, Madhu et al. [8] combined
the Mel-frequency cepstral coefficients (MFCC) with the
delta features (i.e., the delta features are extracted from
a complicated framework using Long Short-Term Memory
(LSTM), Gabor filter bank, and the Teager energy operator
(TEO) in the order). By using the combined features and the
back-end LightGBM model, the authors can achieve the AUC
score of 76.31 with the First DiCOVA dataset [2]. Similarly,
Vincent et al. [9] conducted extensive experiments to evaluate
the role of the feature extraction. In particular, they proposed
to use three types of features: (1) Handcrafted features
extracted by openSMILE toolkit [10], (2) the deep features
extracted from different pre-trained VGGish networks which
were trained with AudioSet [11], and (3) the deep fea-
tures extracted from different standard pre-trained models
(ResNet50, DenseNet121, MobileNetV1, etc.) trained with
Imagenet dataset. They then obtained the best AUC score
of 72.8 on the First 2021 DiCOVA dataset [2] by using the
deep features extracted from the pre-trained VGG16 (i.e.,
the pre-trained VGG16 was trained with AudioSet) and the
back-end LSTM-based classification. Recently, a benchmark
dataset of cough sound for detecting COVID-19 [12], [13],
which was recorded on mobile phone, has been published.

In this paper, we also aim to explore cough sounds,
then propose a framework for detecting COVID-19. We
mainly contribute: (1) discriminative features by combin-
ing handcrafted feature and embedding based feature for
COVID detection by analysing cough sound, and (2) a robust
framework which can be further developed on edge devices
for an application of COVID-19 testing. Our experiments
are conducted on the Track-2 dataset in the Second 2021
DiCOVA Challenge (i.e., only contains cough sounds).
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Fig. 1. The high-level architecture of deep learning framework proposed.

II. THE TRACK-2 DATASET OF COUGH SOUNDS IN THE
SECOND 2021 DICOVA CHALLENGE

The Second 2021 DiCOVA Challenge uses a subset of
the Coswara dataset [3] collected between April 2020 and
July 2021 from the age group of 15 to 90. The challenge
provides a dataset of different sound signals: cough, speech,
and breathing gathered from both COVID-19 positive and
non-COVID-19 individuals. Given cough, speech, and breath
sounds, the Second 2021 DiCOVA Challenge proposes four
tracks that aim to detect COVID-19 positive subjects by
exploring only breathing (Track-1), only cough (Track-2),
only speech (Track-3), or all sound signals (Track-4).

As we aim to focus on cough sounds, which is also the
First 2021 DICOVA Challenge [2], only Track-2 dataset in
the Second 2021 DiCOVA is explored in this paper. The
Track-2 dataset provides a Development set of 965 audio
recordings and a Blind Test set of 471 audio recordings.
All audio recordings of cough sounds are not less than 500
milliseconds and recorded with different sample rates. While
Development set is used for training, and then obtaining the
best model, Blind Test set is used for evaluating and com-
paring the systems’ performance submitted. In Development
set, there are a total of 793 negative labels and 172 positive
labels, which shows a significantly imbalanced dataset [14].

The ‘Area under the ROC curve’ (AUC) is used as the
primary evaluation metric in the Second 2021 DiCOVA Chal-
lenge. Additionally, the Sensitivity (Sens.) and the Specificity
(Spec.) are used as the secondary evaluation metrics. No-
tably, Spec. is required to be equal or greater than 95% in
this challenge. The Leaderboard provides the evaluation of
the submitted systems on Blind Test set as well as the average
performance on five-fold cross validation from Development
set (Avg. AUC) [3].

III. DEEP LEARNING FRAMEWORK PROPOSED

A. High-level architecture of deep learning framework

The overall framework architecture is described as Fig. 1.
As the audio recordings show different sample rates, they

are firstly re-sampled to 44.1 kHz using a mono channel.
Then, the re-sampled recordings are inputted into the front-
end feature extraction, where embedding-based features and
handcrafted features are extracted and concatenated to obtain
the combined features. To deal with the issue of imbal-
anced dataset mentioned in Section II, SVM-based SMOTE
method, a variant of SMOTE algorithm which uses SVM
algorithm to detect neighbor samples [15], is applied on the
combined features to make sure the equal number of positive
and negative samples. Finally, the combined features after
augmentation are fed into different back-end classification
models for detecting COVID-19 positive cases.

B. The front-end feature extraction

In this step, we propose a method to create combined
features by combining handcrafted features and embedding-
based features extracted from pre-trained models for COVID
detection. Regarding handcrafted features, 64 Mel-frequency
cepstral coefficients (MFCCs), 12 Chromatic (Chroma), 128
Mel Spectrogram (Mel), 1 Zero-Crossing rate, 1 Gender,
and 1 Duration are utilized in this paper. These handcrafted
features are used as they are popularly adopted in speech
processing and show robustness in the First 2021 DiCOVA
Challenge [8], [9], [6]. To extract these handcrafted features,
python-based Librosa Toolkits [16], a powerful library of
audio signal processing, is used in this paper with the
window size, FFT number, hop size set to 2048, 2048, 512.

As regards the embedding features, we evaluate different
embedding features which are extracted from a wide range of
pre-trained models: YAMNet [17], Wave2Vec [18], TRILL
[19], and the COMPARE 2016 feature sets [20] using OpenS-
MILE [10] toolkit. As using these pre-trained models shows
effective for a wide range of down-stream classification tasks
(i.e., the pre-trained TRILL model with AudioSet [11] proves
robust for various classification tasks on non-semantic speech
signal such as speaker identity, language, and emotional state
in [19]), these embeddings are expected to work well with
the Track-2 dataset of cough sounds in the Second 2021
DiCOVA Challenge. By using the pre-trained models, when
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TABLE I
BACK-END CLASSIFICATION MODELS AND SETTING PARAMETERS.

Models Setting Parameters
Support Vector Machine (SVM) C=1.0

Kernel=‘RBF’
gamma=‘scale’

Random Forest (RF) Max Depth of Tree = 20,
Number of Trees = 100
Two hidden layer (4096 nodes),

Multilayer Perceptron (MLP) Adam optimization,
Max iter = 200
Learning rate = 0.001,
Entropy Loss

ExtraTreesClassifier (ETC) Max Depth of Tree = 20
learning rate = 0.03

LightGBM [23] objective = ‘binary’
metric = ‘auc’
subsample = 0.68
colsample bytree = 0.28
early stopping rounds = 100
num iterations = 10000
subsample freq = 1

we feed a cough recording into the pre-trained models, 2-
dimensional embeddings are extracted. We then compute
mean and standard deviation across the time dimension,
concatenating mean and standard deviation to obtain one 1-
dimensional embedding which represents for one input audio
sample. The embedding-based feature is then concatenated
with the handcrafted feature mentioned above to create a
combined feature. Finally, the combined feature is scaled
into a range of [0:1] before conducting data augmentation
and fed into the back-end classification models.

C. The back-end classification models

In this paper, we evaluate different back-end classifica-
tion models: Light Gradient Boosting Machine (LightGBM),
Random Forrest (RF), Support Vector Machine (SVM),
Multi-layer Perceptron (MLP), and Extra Tree Classifier
(ETC). To obtain the hyper-parameters used for optimizing
these back-end classifiers, we apply the Grid Search algo-
rithm from the Optuna framework [21]. Settings of these
back-end classification models are described in Table I and
all these models are implemented by using Scikit-Learn
toolkit [22]. To obtain results, each classification model is
run with 10 seeds numbered from 0 to 9. The output of the
cross-validation session will calculated by using an average
of 10 seeds. The GTX 1080 Titan GPU environment is used
for running classification experiments.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Performance comparison across different features

To evaluate different features extracted, we keep the back-
end classification model of LightGBM unchanged while
replacing different input features: Handcrafted feature, YAM-
Net based embedding, COMPARE 2016 based embed-
ding, Wave2Vec based embedding, TRILL based embedding,
handcrafted & YAMNet, handcrafted & COMPARE 2016,
handcrafted & Wave2Vec, and handcrafted & TRILL fea-
tures. As the results are shown in Table II, it can be seen
that TRILL-based embedding outperforms the other single

TABLE II
PERFORMANCE COMPARISON ACROSS DIFFERENT FEATURES WITH THE

BACK-END LIGHTGBM MODEL.

Extracted Features AUC Sens. Spec. Avg. AUC
(Blind Test) (Blind Test) (Blind Test) (Development)

Handcraft 76.36 36.66 95.13 72.62
YAMNet [17] 67.24 21.51 95.13 67.31
COMPARE 2016 [20] 63.18 15.00 95.13 71.00
Wave2Vec [18] 58.86 06.66 95.13 58.75
TRILL [19] 80.57 43.33 95.13 73.77
Handcraft + YAMNet 77.27 41.67 95.13 77.33
Handcraft + COMPARE 2016 69.14 25.00 95.13 77.19
Handcraft + Wave2Vec 71.00 25.00 95.13 71.47
Handcraft + TRILL 81.21 48.33 95.13 77.18

TABLE III
PERFORMANCE COMPARISON ACROSS DIFFERENT BACK-END

CLASSIFICATION MODELS WITH HANDCRAFTED AND TRILL BASED

EMBEDDING FEATURES

Back-end AUC Sens. Spec. Avg. AUC
Classification (Blind Test) (Blind Test) (Blind Test) (Development)
SVM 76.27 36.66 95.13 75.54
RandomForest 78.72 36.66 95.13 74.04
Multi-layer Perceptron 76.34 31.66 95.13 72.50
ExtraTreesClassifier 77.51 38.33 95.13 74.87
LightGBM 81.21 48.33 95.13 77.18

features, reporting an Avg. AUC score of 73.77 and 80.57
on Development set and Blind Test set, respectively.

When we combine the handcrafted feature with different
embedding-based features of YAMNet, COMPARE 2016,
and TRILL, it is effective to improve the performance,
reporting Avg. AUC scores of 77.33, 77.19, and 77.18, re-
spectively compared with 72.62 of using handcrafted feature
only. The best performance is obtained from the combination
of the handcrafted feature and TRILL-based embedding
feature, achieving the AUC, Sens., and Spec. scores of 81.21,
48.33, and 95.13 respectively on Blind Test set.

B. Performance comparison across different classification
models

As we obtained the best handcrafted & TRILL-based
embedding feature from the experiments above, we now
evaluate how back-end classification models affect the per-
formance. To this end, we keep the handcrafted & TRILL-
based embedding feature unchanged while replacing Light-
GBM by different back-end classification models of Support
Vector Machine (SVM), Random Forest (RF), Extra Trees
Classifier (ETC), and Multi-layer perceptron (MLP). As
the results are shown in Table III, the LightGBM model
still achieves the best scores. Meanwhile, the other models
show competitive results, reporting Avg. AUC/Blind Test
AUC scores of 75.54/76.27, 74.04/78.72, 72.50/76.34, and
74.87/77.51 for SVM, RF, MLP, and ETC respectively.

To make sure the best score is from the combination of
the handcrafted feature and TRILL-based embedding feature
for the front-end feature extraction and LightGBM for back-
end classification, we conducted 10 times of running the
experiments on five folds of Development set. We achieve
an average confidence interval (CI) of (0.76610763001,
0.77752917589), which matches the AUC score of 77.18
from Table III.
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TABLE IV
PERFORMANCE COMPARISON ON BLIND TEST SET ACROSS THE TOP-10

SYSTEMS SUBMITTED AND THE CHALLENGE BASELINE.

Systems AUC Sens. Spec. Prec. F1 Score
1st system 81.97 36.67 95.13 52.38 43.14
2nd (Our system) 81.21 48.33 95.13 59.18 53.21
3rd system 80.12 35.00 95.13 51.22 41.58
4th system 79.06 35.00 95.13 51.22 41.58
5th system 77.85 46.67 95.13 58.33 51.85
6th system 77.60 33.33 95.13 50.00 40.00
7th system 76.98 40.00 95.13 54.55 46.15
8th system 76.36 30.00 95.13 47.37 36.73
9th system 75.95 40.00 95.13 54.55 46.15
10th system 75.71 35.00 95.13 51.22 41.58
Challenge baseline 74.89 36.67 95.13 52.38 43.14

C. Performance comparison across the top-10 systems sub-
mitted for the Track-2 dataset of the Second 2021 DiCOVA
Challenge

To compare the state-of-the-art systems, we joined in
Track-2 of the Second 2021 DiCOVA Challenge, submitted
our proposed system, and compared with the other submis-
sions. The Table IV presents the performance comparison
across the top-10 systems submitted for the Track-2 of the
Second 2021 DiCOVA Challenge. As shown in Table IV, our
best results from handcrafted & TRILL-based embedding
features and LightGBM model achieved the top-2 AUC
score of 81.21, only after the top-1 AUC score of 81.97.
Nevertheless, we achieved a Sensitivity score of 48.33,
precision of 59.18, and F1 score of 53.21, which presents
significant improvements of 31.8%, 12.99%, and 23.4%
respectively from both baseline and the top-1 submission.
Despite the sense of high AUC, it is important to to evaluate
the suitably calibrated probabilities due to the nature of
COVID-19 screening and imbalanced dataset. These results
demonstrate that our proposed system is deployable, robust,
competitive, and has the potential to be further applied on
edge devices for detecting COVID-19.

V. CONCLUSION AND FUTURE WORK

This paper has presented a robust deep learning frame-
work for detecting COVID-19 positive subjects by exploring
cough sound inputs. By conducting extensive experiments
on the Track-2 of the Second 2021 DiCOVA Challenge, our
proposed framework with a discriminative combined feature
(handcrafted feature & embedding based feature from pre-
trained TRILL model) and LightGBM model achieved the
high performance in a stable manner, showing a potential
for a real-life application.

Our further research are to deeply analyse roles of input
features and focus on different sound representations such
as Chroma Feature, Spectral Contrast, Tonnetz, etc [24], as
well as to explore breathing, speech sounds provided by the
Second 2021 DiCOVA Challenge.
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