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Superadditivity of communication capacity using
entangled inputs
M. B. Hastings*

The design of error-correcting codes used in modern commu-
nications relies on information theory to quantify the capacity
of a noisy channel to send information1. This capacity can be
expressed using the mutual information between input and
output for a single use of the channel; although correlations
between subsequent input bits are used to correct errors,
they cannot increase the capacity. For quantum channels, it
has been an open question whether entangled input states
can increase the capacity to send classical information2. The
additivity conjecture3,4 states that entanglement does not
help, making practical computations of the capacity possible.
Although additivity is widely believed to be true, there is no
proof. Here, we show that additivity is false, by constructing a
random counter-example. Our results show that themost basic
question of classical capacity of a quantum channel remains
open, with further work needed to determine in which other
situations entanglement can boost capacity.

In the classical setting, Shannon presented a formal definition
of a noisy channel E as a probabilistic map from input states
to output states. In the quantum setting, the channel becomes
a linear, completely positive, trace-preserving map from density
matrices to density matrices, modelling noise in the system
due to interaction with an environment. Such a channel can
be used to send either quantum or classical information. In
the first case, a marked violation of operational additivity was
recently shown, in that there exist two channels, both having
zero capacity to send quantum information no matter how
many times it is used, which can be used in tandem to send
quantum information5.

Here, we address the classical capacity of a quantum channel. To
specify how information is encoded in the channel, we must pick
a set of states ρi which we use as input signals with probabilities pi.
Then the Holevo formula2 for the capacity is:

χ =H
(∑

i

piE(ρi)
)
−

∑
i

piH
(

E(ρi)
)

where H (ρ) = −Tr(ρ ln(ρ)) is the von Neumann entropy.
The maximum capacity of a channel is the maximum over
all input ensembles:

χmax(E)=max{pi},{ρi}χ(E,{pi},{ρi})

Suppose we have two different channels, E1 and E2. To compute
this capacity, it seems necessary to consider entangled input states
between the two channels. Similarly, when using the same channel
multiple times, itmay be useful to use input states that are entangled
across multiple uses of the same channel. The additivity conjecture
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Figure 1 | Communicating classical information over a quantum channel.
a, A set of states ρi are used with probabilities pi as signal states on the
channel E . The inputs are unentangled between channels E and E . The
capacity of E is equal to that of E . b, A set of entangled input states ρi are
used on the channel E⊗E . The question addressed is whether entangling
can increase capacity.

(see Fig. 1) is the conjecture that this does not help and that instead

χmax(E1⊗E2)=χmax(E1)+χmax(E2)

The additivity conjecture makes it possible to compute the
classical capacity of a quantum channel. Furthermore, Shor4
showed that several different additivity conjectures in quantum
information theory are all equivalent. These are the additivity
conjecture for the Holevo capacity, the additivity conjecture for en-
tanglement of formation6, strong superadditivity of entanglement
of formation7 and the additivity conjecture for minimum output
entropy3. Here, we show that all of these conjectures are false, by
constructing a counter-example to the last of these conjectures.
Given a channel E , define theminimumoutput entropyHmin by

Hmin(E)=min|ψ〉H (E(|ψ〉〈ψ |))

The minimum output entropy conjecture is that for all channels
E1 and E2, we have

Hmin(E1⊗E2)=Hmin(E1)+Hmin(E2)

A counter-example to this conjecture would be an entangled input
state that has a lower output entropy, and hence is more resistant to
noise, than any unentangled state (see Fig. 2).

Our counter-example to the additivity of minimum output
entropy is based on a random construction, similar to those
Winter and Hayden used to show violation of the maximal p-norm
multiplicativity conjecture for all p> 1 (refs 8–10). For p= 1, this
violation would imply violation of the minimum output entropy
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conjecture; however, the counter-example found in ref. 9 requires
a matrix size that diverges as p→ 1. We use different system and
environment sizes (note that D� N in our construction below)
and make a different analysis of the probability of different output
entropies. Other violations are known for p close to 0 (ref. 11).

We define a pair of channels E and E , which are complex
conjugates of each other. Each channel acts by randomly choosing
a unitary from a small set of unitaries Ui (i = 1 ...D) and
applying that to ρ. This models a situation in which the unitary
evolution of the system is determined by an unknown state of the
environment. We define

E(ρ)=
D∑
i=1

PiU
†
i ρUi

E(ρ)=
D∑
i=1

PiU
†
iρU i

where the Ui are N -by-N unitary matrices, chosen at random
from the Haar measure, and the probabilities Pi are chosen
randomly as described in Supplementary Information. The Pi are
all roughly equal. We pick

1�D�N

In Supplementary Informationwe prove the following theorem:
For sufficiently large D and for sufficiently large N , there is a

non-zero probability that a random choice of Ui from the Haar
measure and of Pi (as described in Supplementary Information) will
give a channel E such that

Hmin(E⊗E) < Hmin(E)+Hmin(E)

= 2Hmin(E)

The size of N depends on D.
For any pure-state input, the output entropy of E is at most

ln(D) and that of E ⊗ E is at most 2ln(D). To prove the above
theorem, we first construct an entangled state with a lower output
entropy for the channel E ⊗ E . The entangled state we use is the
maximally entangled state

|9ME〉= (1/
√
N )

N∑
α=1

|α〉⊗|α〉

As shown in Lemma 1 in Supplementary Information, the output
entropy for this state is bounded by

H
(

E⊗E(|9ME〉〈9ME |)
)
≤ 2ln(D)− ln(D)/D (1)

We then use the random properties of the channel to show that
no product state input can obtain such a low output entropy.
Lemmas 2–5 in Supplementary Information show that, with non-
zero probability, the entropyHmin(E) is at least ln(D)−δSmax, for

δSmax
= c1/D+p1(D)O(

√
ln(N )/N )

where c1 is a constant and p1(D)= poly(D). Thus, because for large
enough D and for large enough N we have 2δSmax < ln(D)/D,
the theorem follows.

The output entropy can be understood differently: for a given
pure-state input, can we determine from the output which of the
unitariesU †

i was applied? Recall that

U †
⊗U

†
|9ME〉= |9ME〉 (2)
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Figure 2 |Minimum output entropy of a quantum channel. a, A pure state
|ψ〉 is input to the channel E . Although |ψ〉 is a pure state, the output may
be a mixed state. We attempt to minimize the output entropy over all pure
input states. b, An entangled input state |ψ〉 is input to the channel E⊗E .
The question addressed is whether this entangled input state can have a
lower output entropy for channel E⊗E than the sum of the minimum
output entropies for the two channels.

for any unitary U . This means that, for the maximally entangled
state, if a unitary U †

i was applied to one subsystem, and U
†
i

was applied to the other subsystem, we cannot determine which
unitary i was applied by looking at the output. This is the key
idea behind equation (1).

Note that the minimum output entropy of E must be less than
ln(D) by an amount at least of order 1/D. Suppose U1 and U2 are
the two unitaries with the largest li. Choose a state |ψ〉 that is an
eigenvector of U1U

†
2 . For this state, we cannot distinguish between

the statesU †
1 |ψ〉 andU2|ψ〉, and so

Hmin(E)≤ ln(D)− (2/D)ln(2)

Our randomized analysis bounds how much further the output
entropy of the channel E can be lowered for a randomchoice ofUi.

Our work raises the question of how strong a violation of
additivity is possible. The relative violation we have found is
numerically small, but itmay be possible to increase this, and to find
new situations in which entangled inputs can be used to increase
channel capacity, or novel situations in which entanglement can
be used to protect against decoherence in practical devices. The
map E is similar to that used12 to construct random quantum
expanders13,14, raising the possibility that deterministic expander
constructions can provide stronger violations of additivity.

Although we have used two different channels, it is also possible
to find a single channel E such that Hmin(E ⊗ E)< 2Hmin(E), by
choosing Ui from the orthogonal group. Alternatively, we can add
an extra classical input used to ‘switch’ between E and E (P.Hayden,
private communication).

The equivalence of the different additivity conjectures4 means
that the violation of any one of the conjectures has profound
impacts. The violation of additivity of the Holevo capacity means
that the problem of channel capacity remains open, because if a
channel is usedmany times, wemust do an intractable optimization
over all entangled inputs to find the maximum capacity. However,
we conjecture that additivity holds for all channels of the form

E =F⊗F

Our intuition for this conjecture is that we believe that multi-party
entanglement (between the inputs to three or more channels) is not
useful, because it is very unlikely for all channels to apply the same
unitary; note that the state9ME has a lowminimum output entropy
precisely because it is left unchanged as in equation (2) if both
channels apply corresponding unitaries. This two-letter additivity
conjecture would enable us to restrict our attention to considering
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input states with a bipartite entanglement structure, possibly
opening theway to computing the capacity for arbitrary channels.
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