A COUNTEREXAMPLE TO PEREZ'S GENERALIZATION OF THE SHANNON-MCMILLAN THEOREM

By J. C. KIEFFER

University of Missouri-Rolla

A counterexample is given to a result of Perez which makes a statement about the convergence of a sequence of logarithms of Radon-Nikodym derivatives. The result, if true, would have been a generalization of the Shannon-McMillan theorem of information theory.

Perez ([1], Theorem 2.3 and Corollary 3.3) gives a result which is a generalization of the Shannon-McMillan theorem of information theory. It is the purpose of this note to show that Perez's result is false by providing a simple counterexample. We first state Perez's result and then proceed with the formulation of the counterexample.

Statement of Perez's result. Let P, Q be probability measures on a measurable space (Ω, \mathcal{F}) . Let X_1, X_2, X_3, \cdots be a sequence of measurable maps from this space to another. We further suppose that P and Q are stationary measures with respect to this sequence. For $n=1,2,3,\cdots$, let \mathcal{F}_n be the sub sigma-field of \mathcal{F} generated by X_1, X_2, \cdots, X_n , and let $P_n(Q_n)$ be the restriction of P(Q) to \mathcal{F}_n . We suppose for each n that P_n is absolutely continuous with respect to Q_n ; we let f_n denote the Radon-Nikodym derivative of P_n with respect to Q_n . Perez's result states that if $\lim_{n\to\infty} n^{-1} \int \log f_n \, dP$ exists and is finite, then $\lim_{n\to\infty} n^{-1} \log f_n$ exists in the sense of $L^1(P)$ convergence and also in the sense of a.e. [P] convergence. (All logarithms we take to the base 2.)

Convex sequences. To formulate the counterexample we need certain results about convex sequences. A sequence of real numbers c_1, c_2, \cdots , is convex if $c_{n+2} - 2c_{n+1} + c_n \ge 0$, $n = 1, 2, 3, \cdots$. It is well known (see [2]) that a nonnegative convex sequence c_1, c_2, \cdots converging to zero satisfies

(1)
$$\sum_{i=n}^{\infty} (i-n+1)(c_{i+2}-2c_{i+1}+c_i)=c_n, \qquad n=1,2,\cdots.$$

The following lemma is useful in constructing convex sequences.

LEMMA. Let a_1, a_2, \cdots be a sequence of real numbers such that

(a)
$$a_n \ge 2, n = 1, 2, \cdots$$

(b)
$$a_{n+1} \ge a_n - n^{-1}, n = 1, 2, \cdots$$

Then the sequence $(2^{-(n-1)a_n})_{1}^{\infty}$, is convex.

Received May 2, 1972.

AMS 1970 subject classifications. Primary: 94-A15, 60F99; Secondary: 28-A65.

Key words and phrases. Shannon-McMillan theorem, information theory, Radon-Nikodym derivatives.

PROOF. From (b) we have $1 - na_{n+1} \le -na_n + 2$. From (a) we have $-na_n + 2 \le -na_n + a_n = -(n-1)a_n$. It follows that $2^{1-na_{n+1}} \le 2^{-(n-1)a_n}$. The convexity condition $2^{-(n+1)a_{n+2}} - 2(2^{-na_{n+1}}) + 2^{-(n-1)a_n} \ge 0$ is now satisfied.

We construct some sequences we will need later.

Let a_1, a_2, \cdots be a sequence such that

- (a) $|a_{n+1}-a_n| \leq n^{-1}, n=1,2,\cdots$
- (b) $2 \le a_n \le 3, n = 1, 2, \dots$
- (c) $a_n = 2$ and $a_n = 3$ for infinitely many n. (It is not hard to see that such a sequence exists.) Define the sequences $(p_n)_1^{\infty}$ and $(q_n)_1^{\infty}$ as follows:

$$p_n = 2^{-(n-1)a_n}, \qquad q_n = 2^{-(n-1)(5-a_n)}, \qquad n = 1, 2, \cdots.$$

Using the lemma we see that these two sequences are convex; furthermore, they are positive, converge to zero, and $p_1 = q_1 = 1$.

The counterexample. We take Ω to consist of all doubly infinite sequences (\dots, x_1, x_2, \dots) that can be formed from 0, 1, 2. \mathscr{F} is the usual product sigmafield. Take X_n to be the *n*th coordinate mapping, $n = 1, 2, \dots$. We take P to be the discrete probability measure which assigns probability $\frac{1}{2}$ to the sequence identically equal to 0 and to the sequence identically equal to 0. P is clearly stationary.

Q is the discrete probability measure defined as follows:

- (a) For $n = 1, 2, \dots, Q$ assigns probability $\frac{1}{2}(p_{n+2} 2p_{n+1} + p_n)$ to each of the *n* periodic sequences in Ω that can be formed by repeating the block of digits consisting of a one followed by n 1 zeroes.
- (b) For $n = 1, 2, \dots, Q$ assigns probability $\frac{1}{2}(q_{n+2} 2q_{n+1} + q_n)$ to each of the *n* periodic sequences formed from repeating the block consisting of a one followed by n 1 twos.

Referring back to property (1) of convex sequences, we see that the probabilities sum to one. Therefore Q is a probability measure; it is easily seen to be stationary.

 P_n is absolutely continuous with respect to Q_n because

- (a) $Q_n(X_1 = 0, \dots, X_n = 0) = \frac{1}{2} \sum_{i=n+1}^{\infty} (i-n)(p_{i+2} 2p_{i+1} + p_i) = \frac{1}{2} p_{n+1} > 0;$ and
- (b) $Q_n(X_1=2,\cdots,X_n=2)=\frac{1}{2}q_{n+1}>0$. (Property 1 of convex sequences was again used.)

Also,

$$\lim_{n \to \infty} \frac{1}{n} \int \log f_n \, dP = \lim_{n \to \infty} \frac{1}{2n} \left(\log \frac{1}{p_{n+1}} + \log \frac{1}{q_{n+1}} \right) = \frac{5}{2} .$$

Therefore every hypothesis of Perez's result is satisfied. However, $n^{-1}\log f_n(\cdots, 0, 0, \cdots) = n^{-1}\log p_{n+1}^{-1}$, and therefore has no limit as $n\to\infty$. Therefore the sequence of functions $(n^{-1}\log f_n)_1^{\infty}$ cannot converge a.e. [P] or in the $L^1(P)$ sense.

Final remark. Suppose in Perez's result the hypothesis that Q be stationary is replaced with the requirement that X_1, X_2, \cdots be a Markov process with respect to Q, with stationary transition probabilities. Then a true theorem is obtained, which is again a generalization of the Shannon-McMillan Theorem. This theorem was proved by Moy [3] by making essential use of martingale theory and by this author [4] with no use of martingale theory. A version of the theorem for continuous time processes $(X_t: t > 0)$ can also be obtained (see [1]).

REFERENCES

- [1] Perez, A. (1964). Extensions of Shannon-McMillan's Limit Theorem to more general stochastic processes. Transactions of the Third Prague Conference on Information Theory: Statistical Decision Functions and Random Processes. Prague, 545-574.
- [2] KATZNELSON, Y. (1968). An Introduction to Harmonic Analysis. Wiley, New York.
- [3] Moy, S. C. (1961). Generalizations of Shannon-McMillan Theorem. *Pacific J. Math.* 11 705-714.
- [4] Kieffer, J. C. (1970). A generalization of the Shannon-McMillan theorem and its application to information theory. Ph. D. Dissertation, Univ. of Illinois, Urbana.

DEPARTMENT OF MATHEMATICS University of Missouri Rolla, Missouri 65401