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A COUNTEREXAMPLE TO THE CANTELLI CONJECTURE
THROUGH THE SKOROKHOD EMBEDDING PROBLEM

BY VICTOR KLEPTSYN1 AND ALINE KURTZMANN

Université Rennes 1 and Université de Lorraine

In this paper, we construct a counterexample to a question by Cantelli,
asking whether there exists a nonconstant positive measurable function ϕ

such that for i.i.d. r.v. X,Y of law N (0,1), the r.v. X + ϕ(X) · Y is also
Gaussian.

This construction is made by finding an unusual solution to the Skorokhod
embedding problem (showing that the corresponding Brownian transport,
contrary to the Root barrier, is not unique). To find it, we establish some
sufficient conditions for the continuity of the Root barrier function.

1. Introduction.

1.1. History of the Cantelli conjecture. The general thema of this paper is the
following.

CANTELLI CONJECTURE (1918). Let X,Y be two real random variables, of
standard Gaussian distribution law. Suppose that X and Y are independent. Let
ϕ be a measurable nonnegative function. Then the random variable X + ϕ(X) · Y
has a Gaussian distribution law if and only if ϕ is constant.

Actually, Cantelli has originally mentioned this as a question in his paper [3],
page 407, asking whether it is possible to have a nonconstant function ϕ, but later it
became known as Cantelli conjecture. This conjecture has been previously studied
by different authors. First, Tortorici [20] has given some restrictions on the func-
tion ϕ to satisfy the conjecture. To do that, he has developed ϕ in a Hermite series
and has approached the solution (via a truncation of the series). Then Tricomi [21]
has used analytical tools in order to describe some properties satisfied by the func-
tion ϕ (through the characteristic function). In the same paper, he has also given a
survey on this subject. Later, Dudley [8] has exposed two unsolved problems about
finite-dimensional Gaussian measures. One of them was Cantelli conjecture. Dud-
ley said about it “The problem seems to be a mere curiosity, but that will perhaps
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be unclear until it is solved.” Letac has also worked on this problem and has em-
phasized this question in his exercise book with Malliavin [10]. Indeed, they have
suggested an exercise, showing that the decomposition of ϕ with respect to the
Hermite polynomials, that is, ϕ(x) = ∑

n≥0 ϕn
Hn(x)

n! [in the L2(e−x2/2 dx√
2π

) sense]

is such that ϕ1 = 0, −2ϕ2 = ∑
n≥2

ϕ2
n

n! and ϕ(x) ≤ ϕ0 + 1 almost everywhere.
Finally, this striking question has been mentioned by de Meyer, Roynette, Val-

lois and Yor [7], Section 6. Actually, they answered a related question, asked by
Tortrat. Consider a standard (Ft , t ≥ 0)-Brownian motion, denoted by (Bt , t ≥ 0).
Can one find an a.s. bounded random variable Z, nonconstant and F1-measurable,
such that B1 + Z(B2 − B1) has a Gaussian distribution law? de Meyer et al. have
proved the existence of a linear standard (Ft , t ≥ 0)-Brownian motion (Bt , t ≥ 0),
and a stopping time T [w.r.t. (Ft , t ≥ 0)] which is bounded by 1, nonconstant
and such that BT has a Gaussian distribution law. Thanks to this result, they have
shown that the random variable B1 + √

T (B2 − B1) has a Gaussian distribution
law. In their example,

√
T is F1-measurable, bounded and nonconstant. However,√

T is not a function of B1. So this construction does not contradict the Cantelli
conjecture.

In the present paper, we construct a counterexample to the Cantelli conjecture. It
seems interesting to us (being, perhaps, a reply to a phrase of Dudley cited above),
that its construction uses the link of the question to the Skorokhod embedding
problem, as well as to the Stefan-type problem in partial differential equations.

Let us indicate how the rest of this paper is organized. The first step in the
construction of a counterexample to the Cantelli conjecture, stated in Section 1.2,
is based upon its link with the other famous problem, the Skorokhod embedding
problem for which we remind the preceding works in Section 1.3. We will explain
the link below in Section 2.2. Also, we will introduce there a notion closely re-
lated to Skorokhod embedding-type problems (in particular to Root barrier): the
Brownian transport. For our construction to work, we need some existence state-
ments about this transport: Theorems 2.3 and 2.4. These theorems are stated in
Section 2.4.

The main tool in the proof of Theorems 2.3 and 2.4 is the potential function �t

(going back to Chacon [4] and obeying a PDE of the type of Stefan problem), that
we introduce in Section 3. Using this function, we obtain some a priori estimates.
Roughly speaking, “how the solution should look like assuming that it is nice.” We
also deduce from these estimates Theorem 1.1 (that will thus be established once
these estimates are formally proven).

Finally, in Section 4, by means of the discretization, we prove the a priori esti-
mates, thus completing the proofs of our result.

1.2. Result for the Cantelli conjecture. Our main result here will be the fol-
lowing.
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THEOREM 1.1. There exists a measurable nonconstant function ϕ :R → R+
such that for two independent standard Gaussian variables X,Y ∼ N (0,1), the
random variable X + ϕ(X) · Y is also Gaussian.

In fact, as we will see from the construction in Section 2, the function ϕ can be
taken to be a “choice” between two continuous functions:

ϕ(x) =
{

ϕ0(x), x ∈ K,
ϕ1(x), x /∈ K,

where K is a fat Cantor set of positive Lebesgue measure (see its construction in
Section 2.3) and ϕ0, ϕ1 ∈ C(R). Actually, the function ϕ we construct here is dis-
continuous. We believe that Cantelli conjecture is true if we impose the continuity
of the function ϕ, but we have no proof for that.

1.3. The Skorokhod embedding problem: Historical context. The Skorokhod
embedding problem is the following. For a given centered probability measure μ

with finite second moment and a Brownian motion B , one looks for an (integrable)
stopping time T such that the distribution law of BT is μ. Several authors have de-
veloped different techniques to solve this problem, which has stimulated research
in probability theory since the first formulation of Skorokhod [18]; we present
briefly here their results that we need, largely (except for those appeared after its
publication date) following an excellent survey by Obłoj [13] (to which we refer
interested reader for more details).

One of the techniques closely related to our problem is Root’s barrier, intro-
duced by Root in [14]. Namely, he suggested to look for the solution T (ω) in the
form of the moment of the first intersection of a Brownian trajectory (Bt (ω), t)

with a barrier, that is a supergraph {(x, t) : t ≥ f (x)} of some lower semicontin-
uous function f :R → R+ ∪ {+∞}. He proved the (implicit) existence of such a
barrier, establishing it with topological arguments for a finitely supported target
measure, and then passing to the limit. Soon afterward, Loynes [9] has shown the
uniqueness of the Root barrier. Then Rost [16] has introduced the concept of one
measure being “earlier” than an other one, that is, a Brownian motion starting with
μ0 can be stopped with the law μ1, introducing a filling process to check it.

Chacon [4] has introduced the notion of potential U . It turns out that the con-
volutions Ut of the function |x| with the occupation measures μt at time t of a
martingale Xt (in particular for a Brownian motion stopped at time T ) form a
monotonous family of functions. McConnell [11] related these potential functions
to the Stefan problem: a particular type of a PDE, introduced in 1831 by Lamé and
Clapeyron as a model of melting ice (see the survey of Vuik [22] for details).

In his seemingly unpublished work, Rost has considered inverse barriers
(see [12] or [13], Section 7.3). Such barriers have also been studied in [5]. Cox
and Wang [6] have further studied Root barriers, in particular, developing the case
of a non-Dirac initial measure μ0. They have also studied the Stefan-type PDE re-
lating the potential and the barrier. Finally, Ankirchner and Starck [1] have studied
the conditions for the stopping time to be bounded.
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2. Construction.

2.1. Construction: First step. The first step in the proof of Theorem 1.1 is the
following idea, close to [7]. Consider the standard Brownian motion (Bt , t ≥ 0),
and let T = T (ω) be a stopping time [w.r.t. the standard family (Ft , t ≥ 0) of
σ -algebras], such that T < C almost surely for some constant C. Then

BC = BT + (BC − BT ) = BT + √
C − T · ξ,(2.1)

where the random variable ξ := BC−BT√
C−T

is a standard Gaussian variable N (0,1)

and is independent from BT due to the Markov property.
Now note that BC is a Gaussian random variable, so

BT + √
C − T · ξ ∼ N (0,C), BT ⊥⊥ ξ, ξ ∼ N (0,1).(2.2)

Compare it to what we need to prove Theorem 1.1 (and hence to disprove the
Cantelli conjecture):

X + ϕ(X) · Y ∼ N (0, ·), X ⊥⊥ Y,X,Y ∼N (0,1).(2.3)

This comparison immediately gives us the following conclusion.

PROPOSITION 2.1. Let T = T (ω) be a nonconstant stopping time for the
standard Brownian motion (Bt , t ≥ 0), and assume that the following holds:

(i) ∃C :∀ωT (ω) < C;
(ii) The law of BT is the standard Gaussian law: BT ∼ N (0,1);

(iii) There exists a measurable function f :R → R+, such that almost surely
T = f (BT ).

Then the function ϕ(x) = √
C − f (x) provides us a counterexample to the Cantelli

conjecture.

Indeed, using the latter result that will prove Theorem 1.1 in Section 3, we
will construct a nonconstant stopping time satisfying the assumptions of Proposi-
tion 2.1.

REMARK. There is one subtlety with property (iii) that we would like to em-
phasize. While this property says that the stopping moment T should be equal to
a function of the place BT where the process was stopped, it does not say that
we should stop the process immediately once the equality t = f (Bt) is satisfied.
Moreover, for the construction in the proof of Theorem 1.1, it is not true that
T = min{t : t = f (Bt)}.
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2.2. Brownian transport. Proposition 2.1 naturally leads us to the following
definition.

DEFINITION 1. Let μ0,μ1 be two probability measures, with the same mean
and square integrable. We say that there exists a Brownian transport from μ0 to
μ1 if, for a random process (Xt , t ≥ 0) such that X0 ∼ μ0 and dXt = dBt (where
B is a real Brownian motion independent of μ0), one can find a stopping time T

and a function f such that:

(i) XT ∼ μ1,
(ii) a.s. T = f (XT ).

We say that f is the stopping function of this transport.
If the stopping time T has finite expectation, then we say that there exists a finite

expectation Brownian transport.
If the function f is bounded or continuous, we speak, respectively, of bounded

or continuous Brownian transport from μ0 to μ1.

REMARK. Moreover, if the function f , corresponding to a bounded Brownian
transport, can be taken to be continuous, then the moment T is the first intersection
time of the trajectory (Xt , t ≥ 0) with the graph of f :

T (ω) = inf
{
t ≥ 0 : t = f (Xt)

}
.

In other words, the case of a continuous bounded Brownian transport is always
described by a Root barrier (see [14]) for the corresponding Skorokhod problem.
In this case, such a transport is unique (due to Loynes), though both assumptions
(continuity and boundedness) are essential. An unbounded solution can easily cor-
respond to, for instance, Rost inverse barrier (see [15]). Moreover, it can be shown
that there exist square integrable measures μ given by the Rost solution corre-
sponding to the inverse barrier {t ≤ ϕ(x)} with a continuous sufficiently quickly
growing function ϕ. On the other hand, such μ can be chosen to fulfill the assump-
tions of Theorem 2.3 below, and thus can also be obtained by a continuous Brown-
ian transport corresponding to the Root barrier solution. This shows nonuniqueness
of a continuous Brownian transport, even with the additional assumption of finite-
ness of expectation. Finally, the construction we propose in Section 2.3 shows that
bounded Brownian transport (without the assumption of continuity of the stopping
function) is highly nonunique.

Note also that a bounded Brownian transport between two given square inte-
grable measures μ0,μ1 does not always exist. An obvious restriction for its exis-
tence is that one should necessarily have Eμ0 = Eμ1 and Varμ0 ≤Varμ1, though
this condition is far from being sufficient. For instance, one can easily see that μ1
cannot have atoms (unless μ0 charges the same points with at least the same mass),
and that the bounded Brownian transport cannot create “holes” inside the support:
a necessary condition is Supp(μ0) ⊂ Supp(μ1).
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A finer, but much more restrictive, necessary condition is that the potential func-
tions �μ0 and �μ1 (in the sense of Section 3, or what is almost the same, of Cha-
con [4] and Cox–Wang [6]), corresponding, respectively, to μ0 and μ1, should
satisfy �μ0 ≤ �μ1 on the real line.

Finally, even such a positivity and the condition on the supports are not suffi-
cient: taking the measure μ1 to be the first intersection measure with the graph
{t = 1

|x| } of the function ϕ(x) = 1
|x| , we see that (due to the uniqueness by Loynes)

there is no continuous bounded Brownian transport for such a μ1. Moreover,
from [1], one sees that a necessary condition for a bounded Brownian transport
from δ0 to μ1 to exist is that there are no “too weakly charged” intervals for μ1
[compare with assumptions (iii) of Theorems 2.3 and 2.4].

However, in Section 3, we will state two theorems establishing sufficient condi-
tions for the existence of a continuous finite expectation Brownian transport on an
interval and on the real line.

2.3. Construction: Second step. We can now describe how the stopping
time T , satisfying the assumptions of Proposition 2.1, will be constructed. We
will fix a moment t0 ∈ (0,1) and choose in a small neighborhood of the origin a
fat Cantor set K ⊂ R of positive Lebesgue measure (with some restrictions on its
geometry), such that on this set the density of the law N (0,1) is everywhere upper
bounded by the density of the law N (0, t0):

ρN (0,t0)(x) > ρN (0,1)(x) ∀x ∈ K.

Then, at the moment t0, for any x ∈ K, we stop the proportion
ρN (0,1)(x)

ρN (0,t0)(x)
of all

the trajectories passing through x at this moment. To do so, one can either use a
probabilistic Markov time, modifying the initial probability space of the Brown-
ian motion by multiplying it by [0,1], or note that the random variable St0(ω) :=
sup0≤t≤t0

|Bt(ω)| has a continuous conditional distribution w.r.t. any condition
Bt0 = x, and hence, denoting by κ(α, x) the α-quantile of the corresponding con-
ditional distribution [that is the value y such that P(St0 ≤ y|Bt0 = x) ≥ 1

α
], we can

put

T (ω) = t0 if x := Bt0(ω) ∈ K and St0(ω) ≤ κ

(
ρN (0,1)(x)

ρN (0,t0)(x)
, x

)
.(2.4)

This stopping ensures that the transport time T and the corresponding function f

are nonconstant: there is something left to transport.
The following problem now remains. At the moment t0, there is a conditional

distribution of not yet stopped trajectories, with the density

ρ0(x) =
{

c−1ρN (0,t0)(x), x /∈ K,
c−1(

ρN (0,t0)(x) − ρN (0,1)(x)
)
, x ∈ K,

(2.5)

where c = P(N (0,1) /∈ K). We want to stop these trajectories at a bounded stop-
ping time T , such that:
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(i) T = f (BT ),
(ii) the law of BT conditionally to T > t0 is the restriction (to R \ K) of the

standard Gaussian law N (0,1)|R\K.

In other words, we are looking for a solution of the following.

PROBLEM 1. Find a bounded Brownian transport from μ0 = ρ0 dx, given
by (2.5), to μ1 which is the conditional distribution of N (0,1) on R \K.

Indeed, once Problem 1 is solved with the bounded stopping time T1 such that
T1 = f1(BT1), we can take for the original problem

T (ω) =

⎧⎪⎪⎨
⎪⎪⎩

t0, if x := Bt0(ω) ∈ K and

St0(ω) ≤ κ

(
ρN (0,1)(x)

ρN (0,t0)(x)
, x

)
,

t0 + T1, otherwise,

(2.6)

where T1 is evaluated on the trajectory Xt = Bt0+t . We then have

f (x) =
{

t0, if x ∈ K,
t0 + f1(x), if x /∈K.

(2.7)

REMARK. It is important to note that, due to the choice of the “target measure”
μ1, the stopping point of the process (Xt , t ≥ 0) a.s. does not belong to K. Hence,
even though in (2.7), the function f on K does not coincide with t0 + f1(x), the
equality T = f (BT ) still a.s. holds for the trajectories not yet stopped at time t0.

To solve Problem 1, we prove a sufficient condition for a more general result
(that we have already mentioned in Section 2.2), establishing the continuity (and
thus local boundedness) of the corresponding Root barrier. Then, further studying
the barrier function f1 in this particular case, we show that this function has a limit
at infinity, and thus is globally bounded. This proves the following.

THEOREM 2.2. Assume that K ⊂ [−1,1] and that there exists α > 0 such
that, for any interval I ⊂ [−1,1], one has Leb(I \K) ≥ exp{−α/|I |}. Then there
exists a solution T1 to Problem 1 and the corresponding function f1 is continuous.
Moreover, T1 can be represented as a “first intersection” moment

T1(ω) = inf
{
t ≥ 0 : t = f1(Xt)

}
.

Figure 1 shows a simulation of the functions f1 and ϕ (that one can do thanks
to an almost explicit nature of our construction).

It is not difficult to construct a compact set K satisfying the assumptions of The-
orem 2.2. Actually, if in the standard construction of the Cantor set, one chooses
to remove on the nth step an 1

(n+1)2 th part around the middle of the previously
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FIG. 1. On the left: the graph of the function f1. On the right: the graph of the resulting function ϕ.

constructed intervals, the obtained Cantor set K satisfies these assumptions. More-
over, for this Cantor set, an even stronger estimate holds: Leb(I \ K) ≥ α|I |2 for
some universal constant α.

Once such a set K is constructed, the above arguments allow us to deduce The-
orem 1.1 from Theorem 2.2. So, the task of disproving the Cantelli conjecture is
reduced to proving Theorem 2.2.

2.4. Results for the transport problem. Even though our stopping times ap-
pearing in Theorem 2.2 as well as in Theorems 2.3 and 2.4 below are (due to
the uniqueness by Loynes) Root stopping times, we cannot obtain their existence
directly from Root’s result. The problem here is that we need a bounded (and
preferably continuous) stopping function, and Root’s function is only lower semi-
continuous.

The second main result of the paper is the following.

THEOREM 2.3. Let μ0,μ1 be two centered probability measures, square inte-
grable and which support is R. Suppose that, for any R large enough, the troncated
probability measures μ̃R

0 = μ0|[−R,R]
μ0([−R,R]) and μ̃R

1 = μ1|[−R,R]
μ1([−R,R]) satisfy:

(i) μ̃R
0 and μ̃R

1 are absolutely continuous with respective densities ρμ0

and ρμ1 ,
(ii) there exist aR, bR > 0 such that for all −R ≤ x ≤ R, we have ρμ0(x) ≥ aR

and ρμ1(x) ≤ bR ,
(iii) there exists αR > 0 such that for any J ⊂ [−R,R], we have μ1(J ) ≥

e−αR/|J |.

Assume also that:

(iv) for any x ∈ R, we have �μ0→μ1(x) := ∫ x
−∞(μ0 − μ1)((−∞, s])ds > 0,

(v) lim sup|x|→+∞
ρμ0 (x)

ρμ1 (x)
< 1.
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Then there exists a finite expectation continuous Brownian transport from μ0 to μ1,
with a possibly unbounded stopping time T . Moreover, this Brownian transport is
given by the first intersection time with the graph the stopping function f .

REMARK. We can actually suppose in the latter theorem that the measures
μ0,μ1 have the same mean (instead of being centered).

An analogous question can be also asked for measures supported on an interval.
This question, on one hand, turns out to be a bit simpler than the real line one (due
to the compactness and lack of effects at infinity). On the other hand, it becomes
one of the steps in our proof of Theorem 2.3: the function f is constructed as a
limit of a subsequence of functions fR corresponding to a “cut-off” problem. The
corresponding theorem is the following.

THEOREM 2.4. Let μ0,μ1 be two probability measures, with the same mean,
square integrable and which support is an interval I ⊂R. Suppose that they satisfy
the hypotheses:

(i) μ0, μ1 are absolutely continuous with respective densities ρμ0 , ρμ1 ,
(ii) there exist a, b > 0 such that for all x ∈ I , we have ρμ0(x) ≥ a and

ρμ1(x) ≤ b,
(iii) there exists α > 0 such that for any interval J ⊂ I , we have μ1(J ) ≥

e−α/|J |,
(iv) for all x ∈ I , we have �μ0→μ1(x) := ∫ x

−∞(μ0 − μ1)((−∞, s])ds > 0,
(v) ρμ0 > ρμ1 in some inner neighborhood Uε(∂I ) ∩ I .

Then there exists a bounded Brownian transport from μ0 to μ1, given by the first
intersection time with the graph of some continuous function f .

In other words, under the respective assumptions, Theorems 2.3 and 2.4 state
that the Root barrier corresponding to the transport of μ0 to μ1 is given by a
continuous function.

The proof of these two results will be done in several steps. First, we will do
some a priori estimates and transformations, answering the question “assuming
that such a transport exists, how should it look like?” The understanding coming
from these steps will leave us with some kind of a PDE problem, of the Stefan
type.

However, we could not establish the existence theorems for this problem di-
rectly by PDE methods (in fact, it seems to be an interesting question to us), we
establish them via a discretization procedure: we solve an analogous discrete prob-
lem and pass to the limit as the mesh goes to 0. This part is rather technical and is
postponed to Section 4.2.
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REMARK. Some assumptions of Theorems 2.3 and 2.4 seem nonrestrictive,
such as the positivity of �μ0→μ1 (inside I for Theorem 2.4). Indeed, a necessary
condition is that the function � is nonnegative (see Corollary 3.2). Though, in the
case of a nonnegative function � that is not positive everywhere inside I , one can
simply split the interval I into the intervals of positivity of � (see Lemma 3.4).
Other assumptions, such as (iii), seem unavoidable in order to assure the uniform
boundedness of the stopping time. Indeed, otherwise the first intersection measure
of the Brownian motion with the graph of f (x) = 1

|x| would satisfy the assump-
tions of the theorem. Finally, some assumptions (such as the absolute continuity of
μ0 or the lower bound for its density) could be weakened. But we are not doing it
in the present work: the statement of Theorem 2.4 suffices for our construction.

3. Tools: The potential function � and some a priori arguments. In the
following, for a regular time–space function � :R+ × R → R, (t, x) �→ �t(x),
we denote by �̇t (x) = ∂t�t (x) its time-derivative. Moreover, for an absolutely
continuous measure μ, we denote by ρμ its density distribution function. The ε-
neighborhood of a set I is denoted by Uε(I ). As all the objects we consider in this
section are invariant by a translation, we will suppose that the measures μ0,μ1 are
centered.

3.1. The potential function � and Stefan-type problem. Before going deeper
into the proof of the existence theorems (Theorems 2.2, 2.3 and 2.4), let us first
do some a priori arguments. Namely, assuming that a finite expectation Brownian
transport from some centered measure μ0 to some other centered measure μ1 ex-
ists (both μ0, μ1 having a finite second moment), let us find out what could be its
properties and how could it be described.

Chacon has introduced in [4] the potential U , that is the convolutions of the
function |x| with the occupation measures at time t of a martingale. In our setting,
the following definition, corresponding to the convolutions of the function |x|+ :=
max(0, x) with the occupation measures at time t seems to be easier to work with
(though, they are related with an affine change).

DEFINITION 2. Let μ be a measure on R, with finite second moment. Then
we denote by �μ the primitive of its distribution function Fμ(x) := μ((−∞, x]):

�μ(x) :=
∫ x

−∞
μ

(
(−∞, s])ds = |x|+ ∗ μ.(3.1)

An easy computation then shows that

�μ(x) = x −E(μ) +
∫ +∞
x

μ
([s,+∞)

)
ds.(3.2)

In particular, for any two such measures μ0,μ1 with the same mean, the differ-
ence between the corresponding functions

�μ0→μ1(x) := �μ1(x) − �μ0(x)(3.3)
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converges to 0 as x tends to −∞ and as x → +∞. [A reader familiar with the
Chacon’s potential easily notices that �μ0→μ1 = 1

2(Uμ1 − Uμ0) due to the affine
relation between �μ and Uμ.]

The role of � is then given by the following conclusions, going back to Cha-
con [4]. Let (Xt , T ) be a finite expectation Brownian transport from μ0 to μ1.
Denote by X̃t := Xt∧T the “stopped” process, by ν̃t its distribution law at time t ,
and by νt the (nonprobability) measure given by the “not yet stopped” particles:
for any Borel set A, we have

νt (A) = P(Xt ∈ A, t < T ).

LEMMA 3.1. �̇ν̃t
= 1

2ρνt .

PROOF. Indeed, we have dX̃t = 1t<T dBt and hence by the heat equation, we
have �̇ν̃t

= 1
2ρνt . �

An immediate corollary to this lemma is the following.

COROLLARY 3.2. Let μ0,μ1 be two centered absolutely continuous prob-
ability measures, with finite second moment. Suppose that there exists a finite
expectation Brownian transport from μ0 to μ1. Then, for any x ∈ R, we have
�μ0→μ1(x) ≥ 0.

PROOF. It is obvious from Lemma 3.1 that the functions �t(x) :=
�ν̃t→μ1(x) = �μ1(x) − �ν̃t

(x) are monotonically decreasing with t for any
fixed x. The only thing we have to check is that �t(x) converges pointwise to
0 (what is evident in the case of a bounded Brownian transport, but needs to be
justified in general). Indeed, X̃t is a martingale and its variation

Var(X̃t ) =Var(X̃0) +E(t ∧ T ) ≤ Var(μ0) +ET < ∞
is uniformly bounded. Hence (see, e.g., [2], Theorem 4.3.3), we have that X̃t con-
verges in L2 to X̃∞(ω) := limt→∞ Xt(ω), and thus

�ν̃t
(x) =

∫ x

−∞
P(X̃t ≤ s)ds =

∫
�

∣∣X̃t (ω) − s
∣∣− dP(ω)

−→
t→∞

∫
�

∣∣X̃∞(ω) − s
∣∣− dP(ω) = �μ1(x),

where we have denoted |x|− := |x| · 1x≤0. �

These statements, in fact, suggest us a way of constructing the stopping time T .
Namely, together with the process (Xt , t ≥ 0), we consider an increasing family
of closed sets Kt = {�t = 0} (that will be in fact sections of the supergraph of f :
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Kt = {x ∈ R : t ≥ f (x)}, as shown in Figure 2 below). We stop the process once it
reaches this family:

T = inf{t ≥ 0 :Xt ∈ Kt }.
The function f will then be defined as

f (x) = inf{t ≥ 0 :x ∈ Kt } = inf
{
t ≥ 0 :�t(x) = 0

}
.

Roughly speaking, we let the function �t = �ν̃t→μ1 decrease (as �̇t ≤ 0), and
once it vanishes somewhere, we add this place to the set Kt of “stopped motion.”
Due to this description, we will call in the future �μ0→μ1 the potential function of
the finite expectation Brownian transport from μ0 to μ1.

We wish to emphasize that the above description is absolutely unrigorous. It
cannot be used without proving the corresponding existence theorems that do not
seem to have an obvious direct proof. So, we will prove them in Section 4, via
the discretization procedure. However, it gives an explanation why Theorems 2.3
and 2.4 should hold.

Moreover, this description can be (for the case of an absolutely continuous mea-
sure μ0) rephrased in terms of Stefan-type problem. Namely, the density ρt = ρνt

obeys the heat equation ρ̇t = 1
2�ρt with the (moving) Dirichlet boundary condition

ρt |Kt = 0. So, the couple (�t , ρt ) and the function f (x) obey the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�̇t = −1
2ρt ,

ρ̇t = 1
2�ρt, if t < f (x),

�f (x)(x) = 0,

ρf (x)(x) = 0,

(3.4)

where the third equation defines the function f , while the last one is considered as
a boundary condition on ρ.

FIG. 2. Construction of Kt .
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We will not go deeper into giving fully formal sense to the system (3.4) (e.g.,
note that on the graph of f , the derivative �̇t can be discontinuous and if f is
constant on some interval, then at the corresponding points, the density ρ will
abruptly go to 0). As we have already mentioned in Section 2.4, we could not
prove the existence theorem here by PDE methods, though it would be interesting
to find such a direct proof. However, we would like to emphasize here that the
system (3.4) seems analogous to the Stefan problem of melting ice (see [17, 22]).

Even though we have not yet established the existence of the process described
by the above rules, for the rest of this paragraph, we will—in order to understand
the ideas before passing to the technical part—assume that it exists, and then study
its behavior. Note that one of the questions appearing (and that will be answered
below) is the following one: does �t vanish everywhere in finite time? To answer
this question, it is natural to consider the connected components of R \ Kt and to
study their evolution. In fact, to prove Theorem 2.2, we have to show that any of
them disappears in a finite time. This will be done in Lemma 3.4. The next result
deals with “disconnecting” different intervals from each other, allowing us to study
their evolution separately.

LEMMA 3.3. Let μ, ν̃ be two centered absolutely continuous probability mea-
sures on R, with finite second moment, such that �ν̃→μ is nonnegative. Let x ∈ R

be such that �ν̃→μ(x) = 0. Then the measures μ and ν̃ of the interval (−∞, x]
coincide, as well as the expectations of the conditional measures ν̃|(−∞,x]

ν̃((−∞,x]) and
μ|(−∞,x]

μ((−∞,x]) .
The same holds for the restrictions on the interval [x,+∞) and on any interval

[x, y] provided that �ν̃→μ vanishes at both of its endpoints.

PROOF. As the measures ν̃ and μ are nonatomic, the function �ν̃→μ is of
class C1. But, as �ν̃→μ is nonnegative and �ν̃→μ(x) = 0, the point x is a mini-
mum of the function �ν̃→μ. Hence, ∂x�ν̃→μ(x) = 0. Noting that ∂x�ν̃→μ(x) =
−μ((−∞, x]) + ν̃((−∞, x]), we obtain the first conclusion of the lemma. Now,
remember identity (3.2):

�μ(x) =
∫ x

−∞
(x − y)dμ(y) = xμ

(
(−∞, x]) −

∫ x

−∞
y dμ(y).

As �ν̃→μ(x) = 0, and thus �μ(x) = �ν̃(x), we have

xμ
(
(−∞, x]) −

∫ x

−∞
y dμ(y) = xν̃

(
(−∞, x]) −

∫ x

−∞
y dν̃(y).(3.5)

The equality between the first terms in the left- and right-hand sides of (3.5) is
already established, and thus implies the equality between the last terms.

The other issues of the lemma are direct corollaries of the proved ones. �
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We are now ready to deduce Theorem 2.2 from Theorem 2.3. In other words,
still assuming that the description in Section 3.1 defines us the desired process, we
conclude the construction of the counterexample to the Cantelli conjecture. This
deduction will be split in several lemmas.

A first tool that we need is the following general lemma that allows to estimate
from above the time in which a connected component of R \ Kt “disappears.”

LEMMA 3.4. Let (X̃t ,Kt) be constructed as described above (Section 3.1) for
some probability measures μ0,μ1 with the same mean and finite second moment
(but perhaps with no time t̄ such that Kt̄ = R). Let I be an interval which is a
connected component of R \ Kt (at some time t). Assume that for any interval
J ⊂ I , we have μ1(J ) ≥ exp{−α/|J |}. Then there exists a constant θ (which does
not depend on I ) such that I ⊂ Kt+θα|I |.

PROOF. We will first prove the following auxiliary statement: there exists a
constant θ0 such that, at the moment t ′ := t + θ0α|I |, any connected component of
I \ Kt ′ is of length less than |I |/2. This statement will imply the conclusion of the
lemma. Indeed, applying it again to the connected components of I \ Kt+θ0α|I |,
we see that, at the moment t ′′ = t + θ0α|I | + θ0

2 α|I |, the lengths of connected

components of I \ Kt ′′ do not exceed |I |
4 . We repeat this procedure. Thus, at the

moment t + 2θ0α|I |, we have I ⊂ Kt+2θ0α|I |. This completes the proof.
Let us now prove the latter statement. Indeed, note that for any interval of com-

plement J ⊂ R \ Kt , the Wiener measure of the trajectories that are still moving
inside J at the time t is equal to μ1(J ). Indeed, as J is a connected component of
R\Kt , we have �t |∂J = 0, and hence Lemma 3.3 can be applied. So, to prove that
at some moment t ′ > t , the length of any connected component J ⊂ I \ Kt ′ is less
than |I |/2, it suffices to show that, at this moment, the proportion of trajectories
that have not yet intersected the graph of f is at most exp(− α

|I |/2).
To do this, we consider a weaker stopping condition: the trajectory is stopped

once it reaches the boundary of I . The density of such a process is given by the
heat equation with the Dirichlet boundary conditions on I . The measure of not
yet stopped trajectories at the moment t + τ is then given by the scalar product
〈ϕτ ,1/|I |〉, where

ϕ̇τ = 1
2�ϕτ , ϕτ |∂I = 0, ϕ0 = ρt .

As the Laplace operator is self-adjoint, this scalar product is equal to 〈ψτ ,ϕ0〉,
where

ψ̇τ = 1

2
�ψτ , ψτ |∂I = 0, ψ0 = 1

|I | .

Thus, this scalar product does not exceed |I | · supI ψτ . Rescaling the interval I

to [0,1] and accordingly multiplying the time by 1/|I |2 and the initial function by
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|I |, we obtain an upper bound by

sup
[0,1]

∑
n

c2n+1 exp
{
−π2(2n + 1)2

2|I |2 τ

}
sin

(
π(2n + 1)x

)
,(3.6)

where c2n+1 = 2
2n+1 are the nonzero Fourier coefficients of the function 1 with

respect to the eigenfunctions sin(π(2n + 1)x) of the Laplace operator on [0,1].
Estimating cn by 1 in (3.6) and the exponents by a geometric series, we see that
this supremum does not exceed

exp
{
− π2

2|I |2 τ

}
· 1

1 − exp{−π2/(|I |2)τ } .

Now, note that for τ = 8
π2 α|I |, the first factor is exp{−4 α

|I | } = (exp{− α
|I |/2 })2.

Thus, the product is at most

exp
{
− α

|I |/2

}
· exp{−α/(|I |/2)}

1 − exp{−α/(|I |/2)} .(3.7)

Note finally that exp{− α
|I |/2 } is at most 1/2, as otherwise the μ1-measures of

both left and right halves of I would be greater than 1/2. Hence, the second fac-
tor in (3.7) is not greater than 1 and we have obtained the desired estimate by
exp{− α

|I |/2 }. �

The next results are for the particular case of the transport in Theorem 2.2, based
essentially on the specifics of Gaussian distributions. Namely, let μ0 and μ1 be as
in Theorem 2.2.

LEMMA 3.5. μ0 and μ1 satisfy the assumptions of Theorem 2.3.

PROOF. The conditions (i) and (v) are obvious and the fact that the measures
μ0,μ1 have the same mean comes from the fact that we are removing the same
part from N (0, t0) and N (0,1). Conditions (ii) and (iii) are due to the assumptions
on K. We only have to prove (iv). Indeed, the function �μ depends linearly on μ:
�αμ+βν = α�μ + β�ν . Due to the definition of μ0 and μ1, we have that

Law
(
N (0, t0)

) = cμ0 + (1 − c)μ′,
Law

(
N (0,1)

) = cμ1 + (1 − c)μ′,
where μ′ is the conditional distribution law of N (0,1) on K. Hence,

�μ0→μ1(x) = c−1�N (0,t0)→N (0,1)(x) = c−1
∫ 1

t0

1√
2πt

exp
{
−x2

2t

}
dt > 0. �

Now, let the finite expectation Brownian transport (Xt , T1), where T1 =
f1(XT1), be a continuous Brownian transport of Theorem 2.3. We have to show
that the (continuous) function f1 is bounded. In other words, we have to estimate
its behavior at infinity. Actually, we will prove the stronger statement.
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PROPOSITION 3.6. limx→∞ f1(x) = 1 − t0. Moreover, there exists a constant
β > 0 such that for all |x| large enough, one has 1 − t0 ≤ f1(x) ≤ 1 − t0 + e−βx2

.

A first step in proving this proposition is the following.

LEMMA 3.7. ∀x ∈ R, f1(x) ≥ 1 − t0.

PROOF. It is here easier to work with the nonnormalized measures μ̂0 = cμ0
and μ̂1 = cμ1, and with the corresponding nonnormalized potential function

�μ̂0→μ̂1 = c�μ0→μ1 = �N (0,t0)→N (0,1).

It is clear that they satisfy the system (3.4). In fact, one can simply divide every-
thing by c, to pass to the normalized case, but it seems to us that the explanation
would be less clear.

If we had not removed at the initial moment, from N (0, t0), the particles corre-
sponding to (1 − c)μ′ = N (0,1)|K, we would have had∫ 1−t0

0
ρN (0,t+t0)(x)dt = �μ̂0→μ̂1(x).

As our initial condition is only a part of N (0, t0), we have ∀t > 0 ∀x ∈ R ρt (x) <

ρN (0,t0)(x), where ρt is the density of the process started with μ̂0 and stopped at
the moment of touching the graph of f1. Hence, we have

∀x ∈ R

∫ t0

0
ρt (x)dt < �μ̂0→μ̂1(x),

and as
∫ f1(x)

0 ρt dt = �μ̂0→μ̂1 , we have proved the result. �

Now, let us consider the density that we obtain at the time 1 − t0. The next
lemma estimates its behavior at infinity.

LEMMA 3.8. There exists a constant β0 > 0 such that for all |x| large enough,
one has

ρN (0,1)(x) · (
1 − e−β0x

2) ≤ ρ1−t0(x) ≤ ρN (0,1)(x).

PROOF. The measure ν1−t0 is the convolution of the initial measure μ̂0
with N (0,1 − t0). If, instead of μ̂0, we had N (0, t0), we would obtain ex-
actly N (0,1). But as μ̂0 is only a part of N (0,1 − t0), we immediately have
ρ1−t0(x) ≤ ρN (0,1)(x).

The difference ρN (0,1)(x) − ρ1−t0(x) is the part of the density that comes from
the removed part N (0,1)|K of the initial condition. This part is supported by
[−1,1]. Hence, the difference

ρN (0,1)(x) − ρ1−t0(x) = ρN (0,1)|K∗N (0,1−t0)(x)
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can be estimated from above as u · e−(x−1)2/(2(1−t0)), where u > 0 is a constant.
This is asymptotically less that e−β0x

2 · ρN (0,1)(x) for any β0 < 1
2( 1

1−t0
− 1). �

From now on, let us fix β0 as in Lemma 3.8. We can estimate the behavior of
the function � at the same moment 1 − t0.

LEMMA 3.9. For all |x| large enough, we have �1−t0(x) ≤ e−β0x
2
ρN (0,1).

PROOF. From the definition of �, we indeed have

�1−t0(x) =
∫ x

−∞
(
μ1

(
(−∞, s]) − ν̃1−t0

(
(−∞, s])) ds

=
∫ x

−∞
(x − s)(ρμ1 − ρν̃1−t0

)(s)ds

=
∫ x

−∞
(x − s)(ρN (0,1) − ρν1−t0

)(s)ds.

Applying Lemma 3.8, we have as x → −∞
�1−t0(x) =

∫ x

−∞
(x − s) · e−β0s

2 · ρN (0,1)(s)ds

≤ 1√
2π

∫ x

−∞
|s|e−(β0+1/2)s2

ds = 1√
2π

∫ ∞
x

e−(β0+1/2)v2
d
(
v2/2

)

≤ 1√
2π

e−(β0+1/2)x2 = e−β0x
2 · ρN (0,1)(x).

In the same way, using the integral representation of �μ→ν via the integral (3.2),
one can estimate �1−t0(x) for any large positive x. �

Having obtained this estimate, we can conclude that the inequality f1(x) ≤ 1 −
t0 + e−β0x

2/2 will be satisfied for a “very dense” at infinity set of points x. Namely,
denote �(x) := e−β0x

2/2.

LEMMA 3.10. For any |x| large enough, there exist two points y+ ∈ [x, x +
�(x)] and y− ∈ [x − �(x), x] such that f1(y+) ≤ 1 − t0 + �(x) and f1(y−) ≤
1 − t0 + �(x).

PROOF. Assume the contrary: for instance, that ∀y ∈ [x, x + �(x)], f1(y) >

(1− t0)+ �(x). This implies that the set Kt does not intersect the rectangle [x, x +
�(x)]× [1− t0,1− t0 + �(x)], and for any point of this rectangle, the density ρt (y)

can be estimated from below via the solution of the heat equation u̇ = 1
2�u on

[x, x + �(x)] with the initial conditions u1−t0 = ρ1−t0 .
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For all |x| large enough, ρN (0,1) varies on [x, x + �(x)] at most 2 times, and
hence we have a lower bound for the initial condition ∀y ∈ [x, x + �(x)]

ρ1−t0(y) ≥ 1

3
ρN (0,1)(m) ≥ 1

3
sin

(
π

�(x)
· (y − x)

)
· ρN (0,1)(m),

where m = x + 1
2�(x) is the middle of the interval [x, x + �(x)]. The function

sin( π
�(x)

· (y − x)) is an eigenfunction of the Laplace operator with the eigenvalue

λ = π2

�(x)2 , and hence for all t ∈ [1 − t0,1 − t0 + �(x)], we have a lower bound

ρt (y) ≥ 1

3
exp

{
− t − (1 − t0)

2
· π2

�(x)2

}
· sin

(
π

�(x)
· (y − x)

)
· ρN (0,1)(m)

≥ 1

4
sin

(
π

�(x)
· (y − x)

)
· ρN (0,1)(m).

In particular, for the middle point m of the interval we have

ρt (m) ≥ 1
4ρN (0,1)(m).

Thus, ∫ 1−t0+�(x)

1−t0

ρt (m)dt ≥ �(x)

4
· ρN (0,1)(m).(3.8)

As �(x) = e−β0x
2/2, we have due to Lemma 3.9

�1−t0(m) ≤ e−β0(x+�(x))2 · ρN (0,1)(m).

So, we have ∫ 1−t0+�(x)

1−t0

ρt (m)dt > �1−t0(m).

The obtained contradiction proves the lemma. �

We can now complete the proof of Proposition 3.6.

PROOF OF PROPOSITION 3.6. Lemma 3.10 implies that for any |x| large
enough, either f1(x) ≤ 1 − t0 + �(x) or the connected component I of R \ Kt

that contains x is a subset of [x − �(x), x + �(x)]. We are now going to show that
then f1(x) ≤ 1 − t0 + �(x) + θ1�(x)2, where the constant θ1 can be chosen not
depending on x. Indeed, due to Lemma 3.3, we can consider the continuous finite
expectation Brownian transport problem from ν1−t0+�(x)|I to μ̂1|I independently
of the rest of the real line. Let us then rescale I to [0,1], normalizing the measures
ν1−t0+�(x)|I and μ̂1|I to probability ones, and rescaling the time by the factor 1

|I |2 .
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The density of the new probability measure μ̃1 on Ĩ = [0,1] takes value on
[1/2,2] (as ρN (0,1) varies at most two times on I ). Hence, it satisfies the assump-
tions of Lemma 3.4 with some uniform (not depending on x) constant α. Thus,
the rescaled time in which the interval “disappears” is uniformly (for |x| large
enough) bounded by some constant θ3, and hence x ∈ I ⊂ K(1−t0)+�(x)+θ3�(x)2 . As
�(x) � 1, the latter statement implies the desired upper bound for f1(x). �

This completes the proof of Theorem 2.2: the function f1 is bounded on R.

4. Existence of a finite expectation Brownian transport.

4.1. Finite expectation Brownian transport on the real line. In this paragraph,
we will deduce Theorem 2.3 from Theorem 2.4 (which will be proved in the next
paragraph). To do so, assume that the measures μ0,μ1 satisfy the assumptions
of Theorem 2.3. Naturally, the idea here will be to find a family of compactly
supported measures μR

0 and μR
1 that approximate μ0 and μ1 and for which there

exist continuous finite expectation Brownian transports. The simplest case is when
the measures μ0,μ1, in addition to be centered are symmetric.

We will then consider the sequence of conditional normalized measures

μ̃R
0 := μ0|[−R,R]

μ0([−R,R]) and μ̃R
1 := μ1|[−R,R]

μ1([−R,R]) .
For the case of general centered measures μ0 and μ1, we will have to modify
this construction, as their restrictions on [−R,R] are no longer forced to have the
same mean. Namely, denote for any measure μ such that μ((−∞,0)) > 0 and
μ((0,∞)) > 0 by γ (μ) the measure

γ (μ) := c(μ)μ|(−∞,0) + d(μ)μ|(0,∞),

where (c(μ), d(μ)) is the unique solution of the system⎧⎪⎨
⎪⎩

c(μ)μ
(
(−∞,0)

) + d(μ)μ
(
(0,∞)

) = 1,

−c(μ)

∫ 0

−∞
|x|dμ + d(μ)

∫ ∞
0

x dμ = 0.

It is then easy to see that γ (μ) is always a centered measure and we have
c(μ̃R

j ) →
R→∞ 1 and d(μ̃R

j ) →
R→∞ 1 (as the second equation tends to c = d as R →

∞). Then we can consider the families μR
0 = γ (μ̃R

0 ) and μR
1 = γ (μ̃R

1 ).
Now we would like to consider continuous finite expectation Brownian trans-

ports from μR
0 to μR

1 , then extract a convergent subsequence from the sequence of
corresponding functions fR , and finally show that the limit function f indeed de-
fines a continuous finite expectation Brownian transport from μ0 to μ1. So, a first
step in the realization of this scheme is to check that for all R large enough, Theo-
rem 2.4 is indeed applicable for finding a continuous finite expectation Brownian
transport from μR

0 to μR
1 .
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LEMMA 4.1. For any R large enough, there exists a continuous finite expec-
tation Brownian transport from μR

0 to μR
1 .

PROOF. We have to check that the assumptions of Theorem 2.4 are satisfied
for all R large enough. As the conditions (i)–(iii) are the same in Theorems 2.3
and 2.4, we only have to check the two last ones.

Recall that we have λ := lim supx→∞
ρμ0 (x)

ρμ1 (x)
< 1. Hence, for some constant M ,

we have
ρμ0 (x)

ρμ1 (x)
< 1+λ

2 outside [−M,M]. Now, for x ∈ (−M,M), we have

ρμR
0
(x)

ρμR
1
(x)

= ρμ0(x)

ρμ1(x)
· μ1([−R,R])
μ0([−R,R]) ·

(
c(μ̃R

0 )

c(μ̃R
1 )

· 1x<0 + d(μ̃R
0 )

d(μ̃R
1 )

· 1x≥0

)
.

Note that the second factor in the right-hand side tends (uniformly) to 1 as
R → ∞. Thus, for any R large enough, it is less than 2

1+λ
, and hence ∃M :∀|x| >

M,
ρ

μR
0

(x)

ρ
μR

1
(x)

< 2
1+λ

· 1+λ
2 = 1. This proves the desired condition (v).

Moreover, note that due to the finiteness of the first moment of μ0 and μ1, we
have �μR

0 →μR
1
(x) →

R→∞�μ0→μ1(x) uniformly on x ∈ [−M,M]. Thus, for all R

large enough, we have �μR
0 →μR

1
> 0 on [−M,M].

Next, for all R > M and x ∈ (−R,−M], we have

�μR
0 →μR

1
(x) =

∫ x

−∞
(
μR

1 − μR
0

)(
(−∞, s])ds

=
∫ x

−∞
(x − s)

(
ρμR

1
(s) − ρμR

0
(s)

)
ds > 0.

Finally, if R > M and x ∈ [M,R), we have

�μR
0 →μR

1
(x) =

∫ ∞
x

(
μR

1 − μR
0

)([s,+∞)
)
ds

=
∫ ∞
x

(s − x)
(
ρμR

1
(s) − ρμR

0
(s)

)
ds > 0.

Thus, for all R large enough and all x ∈ (−R,R), we have �μR
0 →μR

1
(x) > 0. This

proves (iv), and thus completes the proof. �

We will choose and fix a value R0 ≥ 1 such that for any R > R0, there exists
a continuous finite expectation Brownian transport from μR

0 to μR
1 , and we will

consider the corresponding family of stopping functions fR .
A next step is to assure the possibility of extracting a convergent subsequence

from the family of functions fR .

PROPOSITION 4.2. The family (fR) is precompact in the topology of uniform
convergence on the compact sets.
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This proposition, due to the Arzelà–Ascoli theorem, is equivalent to the union
of the following two results.

LEMMA 4.3. The family of functions (fR) is locally uniformly bounded: for
any interval I = [−�, �], there exists C′ = C′(�) such that ∀R ≥ R0, we have
fR|I ≤ C′.

PROPOSITION 4.4. Let μ0,μ1 be two probability measures, supported on a
finite or infinite interval I ⊂ R, for which there exists a continuous finite expec-
tation Brownian transport from μ0 to μ1 with some stopping function f . Assume
that, for an interval I ′ ⊂ I and a constant C′ > 0, the following holds:

(i) μ0,μ1 satisfy the hypotheses of Theorem 2.4 on U1(I
′) ∩ I .

(ii) f |U1(I
′)∩I ≤ C′.

(iii) μ0|I ′ and μ1|I ′ satisfy the hypotheses of Theorem 2.4 for some constants
a′, b′, α′.

Let δ0 := min{ ε
3θ0α

′ , 1
2}. Then the inverse of the modulus of continuity of f |I ′ , de-

noted by δf |I ′ (ε), is lower bounded by

δf |I ′ (ε) ≥ επ · a′

2δ0 · b′ exp
{
−π2C′

δ2
0

}
.(4.1)

PROOF OF LEMMA 4.3. We will first prove that the functions fR “take small
values somewhere.” Namely, that there exist some constants �1,C

′′ such that
∀R ≥ R0, ∃x ∈ [−�1, �1]: fR(x) ≤ C′′. Indeed, as we have already mentioned, the
functions �R := �μR

0 →μR
1

converge to the function � := �μ0→μ1 . In particular,

the values �R(0) are uniformly bounded by some constant C1.
Now, let us consider a Brownian motion started from μ0|[−1,1]. Its density ρBM

at 0 has an asymptotics of 1√
t
, and thus, its integral diverges. Hence, there exists

C′′ such that ∫ C′′

0
ρBM(t)dt > C1.(4.2)

By continuity, (4.2) holds also in the case of the density ρ of the process starting
with an initial measure μR

0 |[−1,1] > μ0|[−1,1], and which trajectories are stopped
outside a large enough interval [−�1, �1]. Hence, for any R large enough (so that
μR

0 |[−1,1] is close enough to μ0|[−1,1]), there exists x ∈ [−�1, �1] such that f (x) ≤
C′′. Indeed, otherwise, we would have an inequality∫ C′′

0
ρR

t (0)dt > �μR
0 →μR

1
(0),

which would be a contradiction.
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Now, for the finite expectation Brownian transport from μR
0 to μR

1 , let us con-
sider the total measure νt (R\Kt) of the not yet stopped trajectories at some time t .
Note that, due to the recurrence of the Brownian motion on R: ∀ε > 0, ∀�2, there
exists a time t̄ = t̄ (ε, �2) such that for any x ∈ [−�2, �2], a Brownian trajectory,
starting at x, crosses the rectangle [−�1, �1] × [C′′, t̄] left to right with probability
at least 1 − ε.

Choose now �2 large enough so that ∀R ≥ R0, μR
0 ([−�2, �2]) ≥ 1 − ε. Then,

for any R ≥ R0, the total measure νt̄ (R \ Kt̄) of the not yet stopped trajectories
at time t̄ will be at most 2ε, as crossing the rectangle implies stopping due to the
choice of �1 and C′′. In particular, taking

ε := 1
4 min

(
μ0(−� − 1,−�),μ0(�, � + 1)

)
,

we see that

νt̄ (R \ Kt) ≤ 1
2μ0(−� − 1,−�) ≤ μR

0 (−� − 1,−�),

νt̄ (R \ Kt) ≤ 1
2μ0(�, � + 1) ≤ μR

0 (�, � + 1).

Hence, any connected component of R\Kt̄ that intersects I = (−�, �) is contained
in (−� − 1, � + 1).

Applying now Lemma 3.4 for all the connected components of R \ Kt̄ that
intersect I , we conclude that all of them disappear in at most time θ ·α�+1 · |[−�−
1, � + 1]|. Hence, ∀R ≥ R0, fR|[−�,�] ≤ t̄ + θ · α�+1 · (2� + 2) and we have the
desired upper bound. �

We are now ready to prove the uniform continuity for the family fR , that is,
Proposition 4.4. A basic idea here is the following one: assume that the function f

is smooth and (piecewise) monotonic. Then, considering a point x in a neighbor-
hood of which f is monotonically increasing, we see that between the moments
t = f (x) and t +�t = f (x +�x), the left end of the interval of complement to Kt

absorbs approximatively the mass �t ·ρ′
t (x) of Brownian particles and this should

be equal to the mass μ1 of the interval [x, x + �x]. Hence,

�t ≈ μ1([x, x + �x])
ρ′

t (x)
≈ ρμ1(x)

ρ′
t (x)

· �x.

Estimating from above the numerator by b, and from below the denominator (by
a comparison with the heat equation on an interval), we obtain the desired bound
for f ′ = �t

�x
. Let us now make these computations rigorous.

PROOF OF PROPOSITION 4.4. Note first that Lemma 3.4 guarantees that the
functions f |I cannot have “high thin peaks”: if y, z ∈ U1(I

′)∩ I and f (y) = f (z),
then

max
x∈[y,z]f (x) ≤ f (y) + θα′ · ∣∣[y, z]∣∣.
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Now, take δ = δ0 = min( ε
θ0α

′ , 1
2) and let us show the estimate (4.1). Namely, as-

sume first that x, y ∈ I ′ with the distance between x and y less than the right-hand
side of (4.1). We want to show that |f (x) − f (y)| ≤ ε. Without any loss of gen-
erality, we can assume that f (x) < f (y). We can also assume that ∀x′ ∈ [x, y],
f (x′) > f (x) (as otherwise, we can replace x with the rightmost point x′ of the
level set f −1(f (x)) ∩ [x, y]).

Consider now the behavior of f on [x, x + δ0]. Denote t1 = f (x) and t2 =
min[y,x+δ0] f . Due to Lemma 3.4 and the choice of δ0, we have

f (y) ≤ max(t1, t2) + θα′δ0 ≤ max(t1, t2) + ε

2
.

Thus, if t2 ≤ t1 + ε
2 , everything is proven. (In particular, this rules out the case of

x + δ0 falling outside I : the lower limit of f at an endpoint of I is zero.)
Thus, we can assume that t2 > t1 + ε

2 . Consider now the Brownian paths of the
process Xt that were not stopped. Note that any such path, starting anywhere in
[x, x + δ0], stays in this interval until the moment t1 and then leaves it through the
left end before the moment t2, as shown in Figure 3 below. The first intersection
point of such a path with the graph of f is somewhere above [x, y]. Hence, the
measure μ1([x, y]) is greater or equal to the measure of such paths.

Finally, we can easily estimate this measure from below through the heat equa-
tion. Namely, the condition ρμ0 |I ≥ a allows us to estimate the initial density
on [x, x + δ] from below by an eigenfunction of the Laplace operator, that is
u(z) = a sin π(z−x)

δ0
with the eigenvalue λ = π2

δ2
0

. Hence, the density of the trajecto-

ries that have never left [x, x + δ] up to time t is greater than e−λt · a′ sin π(z−x)
δ0

,
and thus the density of those who are first-leaving the interval through its left end
is at least a′ π

δ0
e−λt . The total mass of the trajectories leaving between the moments

t1 and t2 is ∫ t2

t1

a
π

δ0
e−λt dt ≥ a′ π

δ0
(t2 − t1)e

−λt2 .

As we have t2 − t1 ≥ ε
2 and t2 ≤ C′, we finally have obtained a lower bound for the

total mass of such trajectories and thus for μ1([x, y]). This lower bound is given

FIG. 3. Two Brownian paths crossing the graph of f .
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by

a′ π · ε
δ0 · 2

e−C′π2/δ2
0 .

Though, due to our assumption, μ1([x, y]) ≤ b′(y − x), and due to our choice of
δ(ε), this gives us a contradiction. �

Having proved both Lemma 4.3 and Proposition 4.4, we have thus proved
Proposition 4.2. We are now ready to start concluding the proof of Theorem 2.3.
Namely, as the family (fR) is precompact, there exists a convergent subsequence
fRk

→
k→∞f . A natural conclusion would then be that the first intersection measure

with the graph of f for the initial measure μ0 = limμ
Rk

0 is exactly μ1 = limμ
Rk

1 .
To make this argument work rigorously, we will need the following.

DEFINITION 3. Let f ∈ C(R,R+) be a continuous positive function and x ∈
R. The first intersection measure mx,f is defined as the law of the x-coordinate
of the first intersection between the graph of f and the trajectory of the Brownian
motion started from the point x: Xt = x + Bt , T = inf{t ≥ 0 : t = f (Xt)} and
mx,f = Law(XT ). Similarly, we denote by mμ,f the first intersection measure
between the process started from the distribution μ and the graph of the stopping
function f .

PROPOSITION 4.5. The first intersection measure mx,f depends continuously
(in the sense of the weak* convergence) on x ∈ R and f ∈ C(R,R+) [where
C(R,R+) is equipped with the topology of uniform convergence on compact sets].

The following lemma is an easy exercise.

LEMMA 4.6. Denote by (Xt , t ≥ 0) the standard Brownian motion. For all
ε > 0, there exists δ > 0 such that, with probability at least 1 − ε, there exist
t+, t− ∈ [δ, ε] such that Xt+ = δ, Xt− = −δ and sup0≤t≤max(t+,t−) |Xt | ≤ ε. In
other words, the Brownian motion crosses horizontally the rectangle [−δ, δ] ×
[δ, ε], and before this crossing, it stays inside the strip [−ε, ε]×R+ (see Figure 4).

PROOF OF PROPOSITION 4.5. Let f1 ∈ C(R,R+) and x1 ∈ R be given. Take
an arbitrary ε > 0 and let δ > 0 be defined by Lemma 4.6. It is easy to see that,
for some R > 0, for any initial point x ∈ U1(x1) and for any f such that |f (x1) −
f1(x1)| ≤ 1, the Brownian motion started at x intersects f before leaving the strip
[−R,R] ×R+ with probability at least 1 − ε.

Consider now x2 ∈ Uδ(x1) and ‖f2 − f1‖C([−R−δ,R+δ]) ≤ δ. We will estimate
the difference between mx1,f1 and mx2,f2 . To do this, take the trajectory of the
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FIG. 4. A Brownian path crossing the strip.

same Brownian motion Bt shifted to the initial points x1 and x2: X1
t = x1 +Bt and

X2
t = x2 + Bt .
Consider the moment of the first intersection of these processes with the cor-

responding graphs. Let Tj := inf{t ≥ 0 : t = fj (X
j
t )} for j = 1,2 and T :=

min(T1, T2). Note that T1 and T2 are two Markov hitting times and hence, the
conditional behavior of X

j
t under any condition T = T0 and X

j
T0

= x̄j is simply
the Brownian motion shifted to the initial point (T0, x̄j ). See Figure 5 below.

Now, let us prove that we have |X1
T1

−X2
T2

| ≤ ε with probability at least (1−ε)2.

To show this, we first note that, due to the choice of R, we have X
j
T ∈ UR+δ(x1)

with probability at least 1 − ε. Now, under any “first intersection condition” T2 ≥
T1 = t̄ , X1

t̄
= x̄1 ∈ UR(x1), the trajectory of X2

t̄
intersects the graph of f2 inside

Uε+δ(x̄1) × [t̄ , t̄ + ε] with probability at least 1 − ε. Indeed, under this condition,

FIG. 5. First intersection of X1,X2 with the graphs of f1 and f1 + δ, respectively.
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the trajectory of X2
t̄

is the trajectory of the Brownian motion started from the point
(t̄ ,X2

t̄
). Meanwhile, we have |X2

t̄
− X1

t̄
| = |x2 − x1| ≤ δ. Also, we have f2(x̄1) ≤

f1(x̄1) + δ. Recalling the definition of δ, we obtain the desired estimate on the
conditional probability.

In the same way, under any condition T1 ≥ T2 = t̄ and X2
t̄

= x̄2 ∈ UR(x1), we
have |X1

T1
− X2

T2
| ≤ ε + δ with probability at least 1 − ε. Considering the first in-

tersection moment, we see that, with probability at least (1− ε), the corresponding
point belongs to UR(x1), and conditionally to it we have |X1

T1
− X2

T2
| ≤ ε + δ with

probability at least 1 − ε. Hence, we have finally

P
(∣∣X1

T1
− X2

T2

∣∣ ≤ ε + δ
) ≥ (1 − ε)2.(4.3)

As mx1,f1 = Law(X1
T1

) and mx2,f2 = Law(X2
T2

), (4.3) gives us the desired com-
parison between these two measures. �

As it can be easily seen from the latter proof, the continuity in Proposition 4.5
is uniform for x belonging to any compact set in R.

For further arguments, it will be useful to consider the following distance be-
tween probability measures.

DEFINITION 4. Let μ,μ′ be two probability measures. We define the Pro-
horov distance between them as d(μ,μ′) := inf{δ > 0 :∃ random variables U,V :
Law(U) = μ,Law(V ) = μ′ and P(|U − V | ≤ δ) ≥ 1 − δ}.

REMARK. The Prohorov distance between two probability measures μ,μ′ is
usually defined as∣∣μ − μ′∣∣

P := inf
{
δ > 0 :μ(A) ≤ μ′(Uδ(A)

) + δ ∀A ∈ B(R)
}
,

where Uδ(A) is the δ-neighborhood of A. But Strassen’s theorem (see [19]) proves
that these distances are equivalent.

It is easy to see that this distance defines on the space of probability measures
precisely the weak* convergence. In fact, in the proof of Proposition 4.5, we obtain
the estimate

d(mx1,f1,mx2,f2) ≤ max
(
1 − (1 − ε)2, ε + δ

) ≤ 2ε.

Now, let us pass to the first intersection measures starting from arbitrary initial
distributions.

LEMMA 4.7. Let μ
(k)
0 → μ0 be a weak* convergent sequence of measures,

and f(k), f ∈ C(R,R+) be such that f(k) → f uniformly on any compact set.
Then m

μ
(k)
0 ,f(k)

→
k→∞mμ0,f .

If, additionally, the corresponding expectations of the first intersection times
T(k) are uniformly bounded by some constant C, then the expectation of the first
intersection time T is also finite and does not exceed C.
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PROOF. Indeed, for any ε > 0, there exist �1, �2, δ > 0, δ ≤ ε such that:

(i) μ0(−�1, �1) ≥ 1 − ε,
(ii) if |x| ≤ �1, |y − x| ≤ δ and ‖f − f̃ ‖C([−�1−�2,�1+�2]) ≤ δ, then we have

d(mx,f ,m
y,f̃

) ≤ ε.

(The second conclusion comes from the uniform version of Proposition 4.5.)
For any k large enough, we have d(μ0,μ

(k)
0 ) < δ. Hence, for any such k, we can

choose the processes X1,X2 such that Law(X1
0) = μ0, Law(X2

0) = μ
(k)
0 , dX1

t =
dX2

t = dBt and P(|X1
0 −X2

0| ≤ δ) ≥ 1−δ. Then, with probability at least 1−δ−ε,
we have ∣∣X1

0
∣∣ ≤ �1 and

∣∣X1
0 − X2

0
∣∣ ≤ δ.(4.4)

Due to the property (ii), the conditional probability of |X1
T −X2

Tk
| ≤ ε is at least 1−

ε under the condition (4.4), where T = inf{t ≥ 0 : t = f (X1
t )} and T(k) = inf{t ≥

0 : t = f(k)(X
2
t )} are first intersection stopping times.

Hence, with probability at least 1 − δ − 2ε, we have |X1
T −X2

T2
| ≤ ε, and hence

d(mμ0,f ,m
μ

(k)
0 ,f(k)

) ≤ δ + 2ε ≤ 3ε.

As ε is arbitrarily chosen, we have m
μ

(k)
0 ,f(k)

→
k→∞mμ0,f .

Now, let us prove the second statement of the lemma. Actually, for any k large
enough, and any realization as before, we have |T − T(k)| ≤ ε with probability at
least 1 − δ − 2ε ≥ 1 − 3ε. Thus, we have obtained a lower bound for the integral
of T over a set of probability 1 − 3ε, which is ET(k) + ε ≤ C + ε. As ε > 0 is
arbitrary, this implies that ET ≤ C. �

We can now conclude the proof of Theorem 2.3.

PROOF OF THEOREM 2.3. We have now constructed continuous finite expec-
tation Brownian transports from μ

Rk

0 to μ
Rk

1 with stopping functions fRk
converg-

ing uniformly on compact sets to some continuous function f . Then, due to the
first part of Lemma 4.7, we have

mμ0,f = lim
k→∞m

μ
Rk
0 ,fRk

= lim
k→∞μ

Rk

1 = μ1.

The expectations of the corresponding passage times T(k) are also equal to

ET(k) =VarμRk

1 −VarμRk

0

and thus, due to the choice of μ
Rk

0 ,μ
Rk

1 , the latter difference converges to Varμ1 −
Varμ0 < ∞. Hence, these expectations are uniformly bounded and due to the sec-
ond part of Lemma 4.7, we have ET < ∞. We have finally constructed a continu-
ous finite expectation Brownian transport from μ0 to μ1. �
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4.2. Finite expectation Brownian transport on an interval: Discretization.

4.2.1. Discretization. We are now going prove Theorem 2.4. As we have al-
ready mentioned, we will do it by means of a discretization procedure, replacing
the Brownian motion by a discrete random walk, and then passing to the limit as
the mesh of the lattice goes to zero.

We will first study a discretized version of our problem. Namely, instead of a
Brownian motion on R, we consider a random walk on Z:

Yt+1 =
{

Yt + 1, with probability 1/2,
Yt − 1, with probability 1/2.

We have to modify the setting of a continuous finite expectation Brownian trans-
port in the following way. The stopping time T is now a probabilistic Markov
moment, that is related to the new function g in the following way:{

if t > g(Yt ), then the process is stopped,

if t = g(Yt ), then the process is stopped with probability q(Yt ),
(4.5)

where q :Z → [0,1] is a new auxiliary function. A finite expectation Brownian
transport in this setting will be called a discrete Brownian transport.

The new discrete functions corresponding to � are defined as

�Z

μ(x) = ∑
y<x

∑
z≤y

μ(z) = ∑
z<x

(x − z)μ(z),

and �Z
μ0→μ1

(x) := �Z
μ1

(x) − �Z
μ0

(x). It is then easy to check that for a centered
measure μ on Z and for an integer x, one has �μ(x) = �Z

μ(x). So, we will in
further mostly omit the upper index “Z.” The discrete function � works in the
same way as its continuous analogue: an easy computation shows that

�δ0→(1/2)(δ−1+δ1)(x) = 1
2δ0(x).

Hence, we have for any displacement defined by (4.5)

�νt→νt+1(x) = 1

2
·
⎧⎪⎨
⎪⎩

νt (x), if g(x) > t ,
0, if g(x) < t ,
νt (x) · q(x), if g(x) = t .

(4.6)

This allows us, for two centered measures μ0,μ1, to define recursively the trans-
port process in the following way:

(i) Initial state: K−1 = ∅.
(ii) Evolution: for any t ≥ 0, any x ∈ Z \ Kt−1, if �νt→μ1(x) > 1

2νt (x), where
νt is the occupation measure at time t , there is nothing to be done. Otherwise, take

g(x) := t with q(x) = 2
�νt →μ1 (x)

νt (x)
[and 0 if �νt→μ1(x) = νt (x) = 0].



2278 V. KLEPTSYN AND A. KURTZMANN

Due to (4.6), we then have

�νt+1→μ1(x) = �νt→μ1(x) − min
(1

2νt (x),�νt→μ1(x)
)
.

In particular, we can easily see by induction that all the functions �t := �νt→μ1

are nonnegative, and the procedure is thus well defined for all t . Also, the latter
construction implies the following:

(i) if at some time t , at cell x, we have �νt→μ1(x) = 0, then the cell (t, x) is
frozen and any particle coming to it at this moment (or afterward) is stopped,

(ii) if �νt→μ1(x) ≥ 1
2νt (x), then the cell (t, x) is fully diffused,

(iii) if 0 < �νt→μ1(x) < 1
2νt (x), then the cell (t, x) is “partially frozen,” mean-

ing that a part of the particles of total measure 2�νt→μ1(x) is diffused, whereas the
others are frozen. In this case, �νt+1→μ1(x) = 0, so that, starting from the moment
t + 1, the cell x becomes fully frozen.

We have the following.

PROPOSITION 4.8. Let μ0,μ1 be two centered measures on Z, both with
finite support. Suppose that μ1 is everywhere positive on the interval I :=
[min Supp(μ0),max Supp(μ0)] and �μ0→μ1 ≥ 0. Then the procedure (4.5) pro-
vides us with everywhere defined functions g, q that define a discrete bounded
Brownian transport from μ0 to μ1.

To prove this result, we will first need the following lemma, which is a discrete
analogue of Lemma 3.3.

LEMMA 4.9. Let μ,ν be two centered (discrete) measures of finite support.
Suppose that �ν→μ ≥ 0 and �ν→μ(x) = �ν→μ(y) = 0 for some x < y. Then, we
have μ([x, y]) ≥ ν([x, y]) ≥ ν([x + 1, y − 1]) ≥ μ([x + 1, y − 1]).

PROOF. Note that ν(z) = (�ν(z+1)−�ν(z))− (�ν(z)−�ν(z−1)). Taking
the difference between such representations for μ(z) and ν(z), and summing up
on z ∈ [x + 1, y − 1], we have∑

z∈[x+1,y−1]

(
μ(z) − ν(z)

)

= (
�ν→μ(y) − �ν→μ(y − 1)

) − (
�ν→μ(x + 1) − �ν→μ(x)

)
= −�ν→μ(y − 1) − �ν→μ(x + 1).

Hence, we get

ν
([x + 1, y − 1]) − μ

([x + 1, y − 1]) = �ν→μ(y − 1) + �ν→μ(x + 1).
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On the other hand, summing on z ∈ [x, y], we have∑
z∈[x,y]

(
μ(z) − ν(z)

)

= (
�ν→μ(y + 1) − �ν→μ(y)

) − (
�ν→μ(x) − �ν→μ(x − 1)

)
= �ν→μ(y + 1) + �ν→μ(x − 1) ≥ 0.

Thus, we conclude that

μ
([x, y]) ≥ ν

([x, y]) ≥ ν
([x + 1, y − 1]) ≥ μ

([x + 1, y − 1]). �

PROOF OF PROPOSITION 4.8. Consider the value mt := νt ({x :�νt→μ1(x) >

0}). On one hand, the sequence (mt) converges to 0. Indeed, νt is a part of the
occupation measure of a random walk on Z with the initial distribution μ0, that is
in particular conditioned to never exit the interval I := Supp(μ1). The probability
of staying inside I during t steps converges to 0, and thus, so does mt . On the other
hand, Lemma 4.9 implies that

νt

({
x :�νt→μ1(x) > 0

}) ≥ μ1
({

x :�νt→μ1(x) > 0
})

and thus

mt ≥ �
{
x :�νt→μ1(x) > 0

} · min
z∈I

μ1(z).

As b := minz∈I μ1(z) > 0 due to the hypothesis of the proposition, once mt < b,
we have �t ≡ 0 and hence νt = μ1. �

4.2.2. Proof of Theorem 2.4. We are now ready to prove Theorem 2.4. Let
two centered measures μ0 and μ1, supported on some interval I ⊂ R, be given
and assume that, for these measures, the hypotheses (i)–(v) of the theorem are
satisfied. Up to a rescaling of space and time, we can assume that I = [−1,1].

For any natural n, one can consider the discretized measures μ
(n)
0 and μ

(n)
1 on

1
n
Z, defined as

μ
(n)
i

(
k

n

)
= n

∫ (k+1)/n

(k−1)/n

(
1 −

∣∣∣∣x − k

n

∣∣∣∣
)

dμi(x), i = 0,1.(4.7)

Note that the measures μ
(n)
0 and μ

(n)
1 are supported on the sets {−1, −n+1

n
, . . . ,

n−1
n

,1}, and have the same mean.
Consider now the corresponding random walks (with the elementary time

step 1
n2 ) and the corresponding functions

�
(1/n)Z

μ
(n)
i

(
k

n

)
= ∑

y<k/n,y∈(1/n)Z

(
y − k

n

)
μ

(n)
i (y),
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which, as earlier for Z, are the restrictions on 1
n
Z of the continuous functions

�
μ

(n)
i

(x). A first step in applying the discretization technique is a check that there

exists a discrete finite expectation Brownian transport from μ
(n)
0 to μ

(n)
1 .

LEMMA 4.10. For any n large enough, the measures μ
(n)
0 and μ

(n)
1 satisfy the

hypotheses of Proposition 4.8.

PROOF. Note that the functions �
μ

(n)
0 →μ

(n)
1

converge uniformly to the function

�μ0→μ1 that is positive inside I . Hence,

∀δ ∃n0 :∀n > n0 �
μ

(n)
0 →μ

(n)
1

|I\Uδ(∂I ) > 0.

On the other hand, due to the assumption (v), we have

∃n1 :∀n ≥ n1,∀x ∈ Uε(∂I ) ∩ I ∩ 1

n
Z μ

(n)
1 (x) > μ

(n)
0 (x),

what assures �
μ

(n)
0 →μ

(n)
1

|Uε(∂I )∩I∩(1/n)Z ≥ 0. Choosing then δ = ε/2, we see that

�
μ

(n)
0 →μ

(n)
1

is positive everywhere on I once n is large enough. �

Consider now the corresponding discrete potentials g(n)(x) that we extend to
[−1,1] piecewise linearly. Note that, for these functions, we still have the (uni-
form in n) estimates, analogous to Lemma 3.4 and Proposition 4.5 (proven by the
same methods). Hence, the family of functions g(n) is precompact and we can ex-
tract a convergent subsequence g(nk) → f . On the other hand, discrete random
walks tend, as n → ∞, to the Brownian motion. Hence, the same arguments as in
Proposition 4.5 and Lemma 4.7 imply that the first intersection measure for the ini-
tial distribution μ0 = limk→∞ μ

(nk)
0 with the stopping function f = limk→∞ g(nk)

will be limk→∞ μ
(nk)
1 = μ1. This completes the proof of Theorem 2.4.
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