A counter-example to the Hirsch conjecture

Francisco Santos

Universidad de Cantabria, Spain
http://personales.unican.es/santosf/Hirsch
The mathematics of Klee \& Grünbaum - Seattle, July 30, 2010

A counter-example to the Hirsch conjecture Or "Two theorems by Victor Klee and David Walkup"

Francisco Santos

Universidad de Cantabria, Spain
http://personales.unican.es/santosf/Hirsch

The mathematics of Klee \& Grünbaum \quad - Seattle, July 30, 2010

Two quotes by Victor Klee:

- A good talk contains no proofs; a great talk contains no theorems.
- Mathematical proofs should only be communicated in private and to consenting adults.

W A R N I N G

> This talk contains material that may not be suited for all audiences.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes, and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes, and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs,
pictures of highly dimensional polytopes, and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes, and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes,
and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes,
and explicit coordinates for them.

W A R N I N G

This includes, but may not be limited to, mathematical theorems and proofs, pictures of highly dimensional polytopes, and explicit coordinates for them.

W A R N I N G

We declare this room to be private for the following 45 minutes.

By staying in it you acknowledge to be an adult, and consent to be exposed to such material.

We declare this room to be private for the following 45 minutes.
By staying in it you acknowledge to be an adult, and consent to be exposed to such material.

W A R N I N G

We declare this room to be private for the following 45 minutes.
By staying in it you acknowledge to be an adult, and consent to be exposed to such material.

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The distance $d(a, b)$ between vertices a and b is the length (number of edges) of the shortest path from a to b.

For example, $d(a, b)=$?

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The distance $d(a, b)$ between vertices a and b is the length (number of edges) of the shortest path from a to b.
For example, $d(a, b)=2$.

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The diameter of $G(P)$ (or of P) is the maximum distance among its vertices:

$$
\delta(P)=\max \{d(a, b): a, b \in \operatorname{vert}(P)\}
$$

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

> Theorem (S. 2010+)
> There is a 43-dim. polytope with 86 facets and diameter 44.
> Corollary
> There is an infinite family of non-Hirsch polytopes with diameter $\sim(1+\epsilon) n$, even in fixed dimension. (Best so far: $\epsilon=1 / 43$).

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Theorem (S. 2010+)
There is a 43-dim. polytope with 86 facets and diameter 44.
Corollary
There is an infinite family of non-Hirsch polytopes with diameter $\sim(1+\epsilon) n$, even in fixed dimension. (Best so far: $\epsilon=1 / 43$)

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Theorem (S. 2010+)

There is a 43-dim. polytope with 86 facets and diameter 44.

Corollary

There is an infinite family of non-Hirsch polytopes with diameter $\sim(1+\epsilon) n$, even in fixed dimension. (Best so far: $\epsilon=1 / 43$).

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is almays attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In narticular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

Motivation: linear programming

A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints.

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say $3 m$.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.
(M. Todd, 2010)

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say $3 m$.

The simplex method has remained, if not the method of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.

(M. Todd, 2010)

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They are polynomial in the "bit model" but not in the "real machine model" [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the "mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

> Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics.

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They are polynomial in the "bit model" but not in the "real machine model" [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000].
this problem in the affirmative.

> Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics.

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They are polynomial in the "bit model" but not in the "real machine model" [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

> Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics.

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They are polynomial in the "bit model" but not in the "real machine model" [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They are polynomial in the "bit model" but not in the "real machine model" [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

$$
\ldots \text { in any case, } \ldots
$$

Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics.

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967] $H(11,4)=6$ [Schuchert, 1995], $H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=7$ [Bremner et al. >2009].
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

General bounds

A "quasi-polynomial" bound

Theorem (Kalai-Kleitman 1992): For every d-polytope with n facets

$$
\delta(P) \leq n^{\log _{2} d+2} .
$$

A linear bound in fixed dimension

Theorem (Barnette 1967, Larman 1970): For every d-polytope with n facets:

$$
\delta(P) \leq n 2^{d-3}
$$

General bounds

A "quasi-polynomial" bound

Theorem (Kalai-Kleitman 1992): For every d-polytope with n facets

$$
\delta(P) \leq n^{\log _{2} d+2}
$$

Theorem (Barnette 1967, Larman 1970): For every d-polytope with n facets:

General bounds

A "quasi-polynomial" bound

Theorem (Kalai-Kleitman 1992): For every d-polytope with n facets

$$
\delta(P) \leq n^{\log _{2} d+2}
$$

A linear bound in fixed dimension

Theorem (Barnette 1967, Larman 1970): For every d-polytope with n facets:

$$
\delta(P) \leq n 2^{d-3}
$$

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006] The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1}, and polylogarithmic in n.

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1}, and polylogarithmic in n.

Theorem 1: The d-step Theorem

Klee and Walkup, 1967

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Given any two vertices a and b of a simple polytope P :

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Given any two vertices a and b of a simple polytope P :
non-revisiting path conjecture
It is possible to go from a to b so that at each step we enter a new facet, one that we had not visited before.
non-revisiting path \Rightarrow Hirsch.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Given any two vertices a and b of a simple polytope P :
non-revisiting path conjecture
It is possible to go from a to b so that at each step we enter a new facet, one that we had not visited before.

$$
\text { non-revisiting path } \Rightarrow \text { Hirsch. }
$$

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
In particular: assume $n=2 d$ and let a and b be two complementary vertices (no common facet):

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
In particular: assume $n=2 d$ and let a and b be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from a to b so that at each step we abandon a facet containing a and we enter a facet containing b.

$$
\text { " } d \text {-step conjecture" } \Rightarrow \text { Hirsch for } n=2 d \text {. }
$$

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
In particular: assume $n=2 d$ and let a and b be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from a to b so that at each step we abandon a facet containing a and we enter a facet containing b.

$$
\text { " } d \text {-step conjecture" } \Rightarrow \text { Hirsch for } n=2 d
$$

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The key step in the proof is to show that for any k :

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :

$$
\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots
$$

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

That is to say:

1) $H(n, d) \leq H(n+1, d+1)$, for all n and d.
2) $H(n-1, d-1) \geq H(n, d)$, when $n<2 d$.

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$
2) $H(n-1, d-1) \geq H(n, d)$, when $n<2 d$:
common facet F, which is a polytope with one less
dimension and (at least) one less facet. Hence, $d_{P}(a, b) \leq d_{F}(a, b) \leq H(n-1, d-1)$.

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$
2) $H(n-1, d-1) \geq H(n, d)$, when $n<2 d$: Since $n<2 d$, every pair of vertices a and b lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet.

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :

$$
\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots
$$

2) $H(n-1, d-1) \geq H(n, d)$, when $n<2 d$: Since $n<2 d$, every pair of vertices a and b lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet. Hence,

$$
d_{P}(a, b) \leq d_{F}(a, b) \leq H(n-1, d-1)
$$

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

1) $H(n, d) \leq H(n+1, d+1)$, for all n and d :

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

1) $H(n, d) \leq H(n+1, d+1)$, for all n and d : Choose an arbitrary facet F of P.
P over F. Then:
$\forall a, b \in \operatorname{vert}(P), \quad \exists a^{\prime}, b^{\prime} \in \operatorname{vert}\left(P^{\prime}\right)$,

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

1) $H(n, d) \leq H(n+1, d+1)$, for all n and d : Choose an arbitrary facet F of P. Let P^{\prime} be the wedge of P over F. Then:

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The key step in the proof is to show that for any k :
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

1) $H(n, d) \leq H(n+1, d+1)$, for all n and d : Choose an arbitrary facet F of P. Let P^{\prime} be the wedge of P over F. Then:
$\forall a, b \in \operatorname{vert}(P), \quad \exists a^{\prime}, b^{\prime} \in \operatorname{vert}\left(P^{\prime}\right), \quad d_{P^{\prime}}\left(a^{\prime}, b^{\prime}\right) \geq d_{P}(a, b)$.

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Spindles

Definition

A spindle is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Definition
The length of a spindle is the graph distance from u to v.

Spindles

Definition

A spindle is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Definition
 The length of a spindle is the graph distance from u to v.

Spindles

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with $n>2 d$ facets and length δ.
Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\delta+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

In particular, if a spindle P has length $>d$ then there is another
spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length $\geq \delta+n-2 d>n-d)$ that violates the Hirsch conjecture.

Spindles

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with $n>2 d$ facets and length δ.
Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\delta+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

In particular, if a spindle P has length $>d$ then there is another spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length $\geq \delta+n-2 d>n-d)$ that violates the Hirsch conjecture.

Spindles

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with $n>2 d$ facets and length δ.
Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\delta+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

Corollary

In particular, if a spindle P has length $>d$ then there is another spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length
$\geq \delta+n-2 d>n-d)$ that violates the Hirsch conjecture.

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^{+} to Q^{-}.

Prismatoids

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ.
Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

Prismatoids

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ.
Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

The generalized d-step Theroem

Proof.

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant!!!
Question
Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant!!!

Question
Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant!!!

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-nrismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant!!!

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant!!!

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant!!!

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010].

Theorem 2: A non-Hirsch 4-polyhedron

 Klee and Walkup, 1967
Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done via an intermediate slice ...

Combinatorics of prismatoids

\ldots which equals the Minkowski sum $Q^{+}+Q^{-}$of the two bases Q^{+}and Q^{-}.

Combinatorics of prismatoids

\ldots which equals the Minkowski sum $Q^{+}+Q^{-}$of the two bases Q^{+}and Q^{-}. The normal fan of $Q^{+}+Q^{-}$equals the "superposition" of those of Q^{+}and Q^{-}.

Combinatorics of prismatoids

\ldots which equals the Minkowski sum $Q^{+}+Q^{-}$of the two bases Q^{+}and Q^{-}. The normal fan of $Q^{+}+Q^{-}$equals the "superposition" of those of Q^{+}and Q^{-}.

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark
The normal fan of a d - 1 -polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the a - 2-sphere.
\square
Conclusion

> 4-prismatoids \Leftrightarrow pairs of maps in the 2-sphere. 5-prismatoids \Leftrightarrow pairs of "maps" in the 3 -sphere.

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark

The normal fan of a d - 1 -polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.
\square
Conclusion

$$
\begin{aligned}
& \text { 4-prismatoids } \Leftrightarrow \text { pairs of maps in the 2-sphere. } \\
& \text { 5-prismatoids } \Leftrightarrow \text { pairs of "maps" in the 3-sphere. }
\end{aligned}
$$

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark

The normal fan of a d - 1 -polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Conclusion

4-prismatoids \Leftrightarrow pairs of maps in the 2-sphere. 5 -prismatoids \Leftrightarrow pairs of "maps" in the 3-sphere.

Example: (part of) a 4-prismatoid

$$
\text { 4-prismatoid of width }>4
$$

pair of (geodesic, polytopal) maps in S^{2} so that two steps do not let you go from a blue vertex to a red vertex

Example: (part of) a 4-prismatoid

4-prismatoid of width >4
§
pair of (geodesic, polytopal) maps in S^{2} so that two steps do not let you go from a blue vertex to a red vertex.

The Klee-Walkup (unbounded) 4-spindle

Klee and Walkup, in 1967, disproved the Hirsch conjecture:
Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4 -polyhedron with 8 facets and diameter 5 .

The Klee-Walkup (unbounded) 4-spindle

Klee and Walkup, in 1967, disproved the Hirsch conjecture:
Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and diameter 5 .

The Klee-Walkup (unbounded) 4-spindle

Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and diameter 5 .

The Klee-Walkup polytope is an "unbounded 4 -spindle". What is the corresponding "superposition of two (geodesic, polytopal) maps" in a surface?

The Klee-Walkup (unbounded) 4-spindle

The Klee-Walkup (unbounded) 4-spindle

The Klee-Walkup (unbounded) 4-spindle

A 4-dimensional prismatoid of width >4 ?

Replicating the basic structure of the Klee-Walkup polytope we can get a "non-Hirsch" pair of maps in the plane:

A 4-dimensional prismatoid of width >4 ?

Replicating the basic structure of the Klee-Walkup polytope we can get a "non-Hirsch" pair of maps in the plane:

A 4-dimensional prismatoid of width >4 ?

Replicating the basic structure of the Klee-Walkup polytope we can get a "non-Hirsch" pair of maps in the plane:

A 4-dimensional prismatoid of width >4 ?

A 4-dimensional prismatoid of width >4 ?

A 4-dimensional prismatoid of width >4 ?

Surprisingly enough:
Theorem (S., July 2010)
There is no "non-Hirsch" pair of maps in the 2-sphere.
Proof (rough idea of).
Every pair of non-Hirsch maps on a surface necessarily
contains certain "zig-zag alternating cycles", and no such cycle can bound a 2-ball.

A 4-dimensional prismatoid of width >4 ?

Surprisingly enough:
Theorem (S., July 2010)
There is no "non-Hirsch" pair of maps in the 2-sphere.
Proof (rough idea of).
Every pair of non-Hirsch maps on a surface necessarily contains certain "zig-zag alternating cycles", and no such cycle can bound a 2-ball.

A 4-dimensional prismatoid of width >4 ?

Surprisingly enough:
Theorem (S., July 2010)
There is no "non-Hirsch" pair of maps in the 2-sphere.

Proof (rough idea of).

Every pair of non-Hirsch maps on a surface necessarily contains certain "zig-zag alternating cycles", and no such cycle can bound a 2-ball.

A 5-prismatoid of width >5

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem
The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

A 5-prismatoid of width >5

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3 -sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Proof 1.

It has been verified with polymake that the dual graph of Q (modulo symmetry) has the following structure:

A 5-prismatoid of width >5

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}
	1^{+}	(18	0	0	0	1	1^{-}	(0	0	0	18	-1
	2^{+}	-18	0	0	0	1	2^{-}	0	0	0	-18	-1
	3^{+}	0	18	0	0	1	3^{-}	0	0	18	0	-1
	4^{+}	0	-18	0	0	1	4^{-}	0	0	-18	0	-1
	5^{+}	0	0	45	0	1	5^{-}	45	0	0	0	-1
	6^{+}	0	0	-45	0	1	6^{-}	-45	0	0	0	-1
	7^{+}	0	0	0	45	1	7^{-}	0	45	0	0	-1
	8^{+}	0	0	0	-45	1	8^{-}	0	-45	0	0	-1
	9^{+}	15	15	0	0	1	9^{-}	0	0	15	15	-1
	10^{+}	-15	15	0	0	1	10^{-}	0	0	15	-15	-1
	11^{+}	15	-15	0	0	1	11^{-}	0	0	-15	15	-1
$Q:=\operatorname{conv}$	12^{+}	-15	-15	0	0	1	12^{-}	0	0	-15	-15	-1
$Q:=\operatorname{conv}$,	13^{+}	0	0	30	30	1	13^{-}	30	30	0	0	-1
	14^{+}	0	0	-30	30	1	14^{-}	-30	30	0	0	-1
	15^{+}	0	0	30	-30	1	15^{-}	30	-30	0	0	-1
	16^{+}	0	0	-30	-30	1	16^{-}	-30	-30	0	0	-1
	17^{+}	0	10	40	0	1	17^{-}	40	0	10	0	-1
	18^{+}	0	-10	40	0	1	18^{-}	40	0	-10	0	-1
	19^{+}	0	10	-40	0	1	19^{-}	-40	0	10	0	-1
	20^{+}	0	-10	-40	0	1	20^{-}	-40	0	-10	0	-1
	21^{+}	10	0	0	40	1	21^{-}	0	40	0	10	-1
	22^{+}	-10	0	0	40	1	22-	0	40	0	-10	-1
	23^{+}	10	0	0	-40	1	23^{-}	0	-40	0	10	-1
	24^{+}	-10	0		-40	$1)$	24^{-}	0	-40	0	-10	-1

A 5-prismatoid of width >5

A 5-prismatoid of width >5

Proof 2.

Show that there are no blue vertex a and red vertex b such that a is a vertex of the blue cell containing b and b is a vertex of the red cell containing a.

A 5-prismatoid of width >5

Proof 2.

Show that there are no blue vertex a and red vertex b such that a is a vertex of the blue cell containing b and b is a vertex of the red cell containing a.

Conclusion

- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2\%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

> (V. Klee and P. Kleinschmidt, 1987)

Conclusion

- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first step in the line of investigation related to the conjecture.
(V. Klee and P. Kleinschmidt, 1987)

Conclusion

- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2\%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first step in the line of investigation related to the conjecture.
(V. Klee and P. Kleinschmidt, 1987)

The end

THANK YOU!

